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Abstract
In this paper, we introduce an ergodic-type method for solving a system of split variational inclusion and fixed point

problems of a family of nonexpansive mappings with averaged resolvent operator. We prove that the sequence generated by the
proposed algorithm converges strongly to a common element of the set of solutions of a system of split variational inclusion
and the set of fixed points of a family of nonexpansive mappings in Hilbert spaces, from which the minimum norm solution
is deduced as a special case. Moreover, a numerical example is given to illustrate the operational reliability and convergence
of the presented method and results, which may be viewed as a refinement and improvement of the previously known results.
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1. Introduction

Let H1 and H2 be real Hilbert spaces with inner product 〈., .〉 and norm ‖.‖. Recall that a mapping
S : H1 → H1 is called nonexpansive if

‖Sx− Sy‖ 6 ‖x− y‖, ∀ x,y ∈ H1.

The fixed point set of S is denoted by Fix(S), i.e., Fix(S) := {x ∈ H1 : Sx = x}.
Recall also that a multi-valued mapping M : H1 → 2H1 is called monotone if for all x,y ∈ H1, u ∈Mx

and v ∈My such that
〈x− y,u− v〉 > 0.

A monotone mapping M is maximal if the Graph(M) is not properly contained in the graph of any
other monotone mapping. Moreover, a monotone mapping M is maximal if and only if for (x,u) ∈
H1 ×H1, 〈x− y,u− v〉 > 0 for every (y, v) ∈ Graph(M) implies that u ∈Mx.
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Let M : H1 → 2H1 be a multi-valued maximal monotone mapping. Then the resolvent mapping
JMλ : H1 → H1 associated with M is defined by

JMλ (x) := (I+ λM)−1(x), ∀ x ∈ H1,

where I stands for the identity operator on H1. It is well-known that for all λ > 0 the resolvent operator
JMλ is single-valued, nonexpansive and firmly nonexpansive.

We consider the following system of split variational inclusion problem: Find x∗ ∈ H1 such that{
0 ∈ B(x∗),
y∗j = Ajx

∗ ∈ H2 : 0 ∈ Bj(y∗j ), j = 1, 2, · · · ,m,
(1.1)

where Aj : H1 → H2 are bounded linear operators, B : H1 → 2H1 and Bj : H2 → 2H2 are some multi-
valued maximal monotone mappings on Hilbert spaces. The set of solution of system (1.1) is denoted by
S = {x∗ ∈ H1 : 0 ∈ B(x∗), y∗j = Ajx∗ ∈ H2 : 0 ∈ Bj(y∗j ), j = 1, 2, · · · ,m}.

Note that, as j = 1, system (1.1) reduces to split variational inclusion problem, which is mainly due
to Byrne et al. [3]. The split variational inclusion problem includes split variational inclusion, split fixed
point problem, split equilibrium problem, split saddle-point problem and split minimization problem
as special cases, which theory and numerical method have been rapidly developed because of its appli-
cations in inverse problems, image reconstruction, optimization theory, communication and biomedical
engineering; see, for instance, [2, 4–8, 10, 11, 19] and the references therein.

In 2014, Kazmi and Rizvi [9] introduced the following iterative method for split variational inclusion
and fixed point problem of a nonexpansive mapping:{

yn = JBλ [xn − εA∗(I− JB1
λ )Axn],

xn+1 = αnf(xn) + (1 −αn)Syn.
(1.2)

Moreover, they proved that the sequence {xn} generated by (1.2) converges strongly to a common solution
of split variational inclusion and fixed point problem of a nonexpansive mapping. In 2015, Wen and Chen
[16] and Sitthithakerngkiet et al. [13] extended scheme (1.2) to a general iterative method and a hybrid
viscosity algorithm for solving the split variational inclusion in image reconstruction with fixed point
problems, respectively.

On the other hand, Shimizu and Takahashi [12] established an ergodic theorem of a family of nonex-
pansive mappings based on the Cesàro mean. They defined sequence {xn} as follows:

xn+1 = αnu+ (1 −αn)
1

n+ 1

∑n

i=0
Sixn, (1.3)

and proved that {xn} converges strongly to a fixed point of Si, which is the nearest to u.
In 2016, Wang et al. [15] proposed a modified iterative algorithm for a family of split equilibrium

problems and fixed problems in Hilbert spaces. They defined {xn} in the following manner:
un,j = T

F
rn

[
xn − εA∗j (I− T

Fj
rn)Ajxn

]
, j = 1, 2, · · · ,m,

yn = PC

[
I− λn

(∑N

k=1
γkBk

)]( 1
m

∑m

j=1
un,j

)
,

xn+1 = αnu+
∑n

i=1
(αi−1 −αi)Siyn,

(1.4)

where TFrn(x) = {z ∈ C : F(z,y) + 1
rn
〈y− z, z− x〉 > 0, ∀y ∈ C}, PC is a metric projection on C and Bk

is a family of inverse strongly monotone operators. Furthermore, they established a strong convergence
theorem for finding a common element of the set of a family of split equilibrium problems and fixed point
problems of nonexpansive mappings under certain conditions.
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Inspired and motivated by research going on in this area, we introduce a so-called ergodic-type
method for the system of split variational inclusion and fixed point problems of a countable family of
nonexpansive mappings via average resolvent operator, which is defined as follows:

un,j = J
B
λ

[
xn − εA∗j (I− J

Bj
λ )Ajxn

]
, j = 1, 2, · · · ,m,

yn = βn,0xn +
∑m

j=1
βn,jun,j,

xn+1 = αnf(xn) +
∑n

i=1
(αi−1 −αi)Siyn,

(1.5)

where JBλ = (I+ λB)−1, I stands the identity operator on H1 and the sequences {αn}, {βn,j} ⊂ [0, 1] for
j = 1, 2, · · · ,m such that

∑m
j=0 βn,j = 1.

Our purpose is not only to extend the iterative methods (1.2), (1.3) and (1.4) to the case of the system
of split variational inclusion and fixed point problems of a family of nonexpansive mappings in the
framework of real Hilbert spaces, but also to establish a strong convergence theorem of the system of
split variational inclusion and fixed point problems with variable coefficients instead of mean value, form
which the minimum norm solution is deduced as a special case. Moreover, a numerical example is given
to illustrate the operational reliability and convergence of our method and results which improve and
extend the previously known results of [9, 12, 13, 15, 16] and many others.

2. Preliminaries

Let C be a nonempty closed convex subset of real Hilbert space H1. For every point x ∈ H1, there
exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ 6 ‖x− y‖, ∀y ∈ C.

Then PC is called the metric projection of H1 onto C. It is well-known that PC is nonexpansive and the
following inequality holds:

〈x− u,y− u〉 6 0, ∀y ∈ C,

if and only if u = PCx for given x ∈ H1 and u ∈ C.
Recall that a mapping f : H1 → H1 is called a contraction (or, ρ-contraction), if there exists a constant

ρ ∈ (0, 1) such that
‖f(x) − f(y)‖ 6 ρ‖x− y‖, ∀ x,y ∈ H1.

A mapping T : H1 → H1 is called monotone if

〈Tx− Ty, x− y〉 > 0, ∀ x,y ∈ H1.

T is called strongly monotone if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 > α‖x− y‖2, ∀ x,y ∈ H1.

T is called τ-inverse strongly monotone (or, τ-ism) if there exists a constant τ > 0 such that

〈Tx− Ty, x− y〉 > τ‖Tx− Ty‖2, ∀ x,y ∈ H1.

It is well-known that I − λT is a nonexpansive mapping for each λ ∈ (0, 2τ] if T is τ-inverse strongly
monotone.

In order to prove our main results, we need the following lemmas and results.

Lemma 2.1. Let H1 be a real Hilbert space. The following well-known results hold:

(i) ‖x+ y‖2 6 ‖x‖2 + 2〈y, (x+ y)〉, ∀ x,y ∈ H1;
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(ii) ‖tx+ (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x− y‖2, t ∈ [0, 1], ∀ x,y ∈ H1.

Lemma 2.2 ([9]). Split variational inclusion problem (1.1) is equivalent to find x∗ ∈ H1 such that x∗ = JBλ (x
∗)

and y∗j = Ajx
∗ ∈ H2 : y∗j = J

Bj
λ (y∗j ) for some λ > 0 and j = 1, 2, · · · ,m.

Lemma 2.3 ([14]). A mapping S : H1 → H1 is nonexpansive if and only if the complement I− S is 1
2 -inverse

strongly monotone.

Lemma 2.4 ([18]). Let {xn} be a bounded sequence in H1 and {an} be a sequence in [0, 1] such that
∑∞
n=1 an = 1.

Then we have the following ∥∥∥ ∞∑
n=1

anxn

∥∥∥2
6

∞∑
n=1

an‖xn‖2.

Recall also that a mapping V : H1 → H1 is said to be averaged if and only if it can be written as the
average of the identity mapping and a nonexpansive mapping, i.e., V := (1 − α)I+ αS, where α ∈ (0, 1)
and S : H1 → H1 is a nonexpansive mapping.

Lemma 2.5 ([1]). Let V : H1 → H1 be averaged and S : H1 → H1 be nonexpansive. Then we have

(i) W = (1 −α)V +αS is averaged, where α ∈ (0, 1).

(ii) The composite of finitely many averaged mappings is averaged.

(iii) If mappings {Vi}Ni=1 are averaged and have a nonempty common fixed point, then

N⋂
i=1

Fix(Vi) = Fix(V1,V2, · · · ,VN).

Obviously, averaged mappings are nonexpansive. Further, firmly nonexpansive mappings (in partic-
ular, projections on nonempty closed and convex subsets and resolvent operators of maximal monotone
operators) are averaged.

Lemma 2.6 ([17]). Let {an}∞n=1 be a sequence of nonnegative real numbers such that

an+1 6 (1 − τn)an + δn, n > 1,

where {τn}∞n=1 is a sequence in (0, 1) and {δn}
∞
n=1 is a sequence such that

(i)
∑∞
n=1 τn =∞;

(ii) lim supn→∞ δn
τn

6 0, or
∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces. Let B : H1 → 2H1 , Bj : H2 → 2H2 be some maximal
monotone mappings and Aj : H1 → H2 be a family of bounded linear operators for j = 1, 2, · · · ,m. Let f be a ρ-
contraction and {Sn} be a countable family of nonexpansive mappings on H1 such that Ω =

⋂∞
n=1 Fix(Sn)

⋂
S 6=

∅. Assume that α0 = 1 and {αn}
∞
n=1 is a strictly decreasing sequence in [0, 1]. For given x1 ∈ H1, {βn,j}

∞
n=1 ⊂ [0, 1]

and the following conditions are satisfied:

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞ and

∑∞
n=1 |αn−1 −αn| <∞;

(ii)
∑m
j=0 βn,j = 1, lim infn→∞ βn,j > 0 and

∑∞
n=1 |βn,j −βn−1,j| <∞, for all j = 0, 1, 2, · · · ,m.



D.-J. Wen, Y.-A. Chen, Y.-L. Lu, J. Nonlinear Sci. Appl., 10 (2017), 3046–3058 3050

If λ ∈ (0, 1) and ε ∈ (0, 1
L), where L = max16j6m{Lj}, Lj is the spectral radius of the operator A∗jAj and A∗j is the

adjoint of Aj, then the sequence {xn} generated by (1.5) converges strongly to q ∈ Ω, which is the unique solution
of the variational inequality:

〈f(q) − q,w− q〉 6 0, ∀w ∈ Ω.

Proof. Taking p ∈ Ω, we have p = JBλp, Ajp = J
Bj
λ Ajp, for j = 1, 2, · · · ,m and Sip = p for i = 1, 2, · · · .

Since JBλ and JBjλ are firmly nonexpansive, they are averaged and hence nonexpansive. For ε ∈ (0, 1
L), the

mappings [I− εA∗j (I− J
Bj
λ )Aj] are averaged, see [9, 10]. From (1.5), we have

‖un,j − p‖ =
∥∥JBλ [xn − εA∗j (I− J

Bj
λ )Ajxn] − J

B
λp
∥∥

6
∥∥[I− εA∗j (I− JBjλ )Aj

]
xn − p

∥∥ (3.1)

6 ‖xn − p‖.

By βn,0 +
∑m
j=1 βn,j = 1 and (3.1), we obtain

‖yn − p‖ =
∥∥∥βn,0(xn − p) +

m∑
j=1

βn,j(un,j − p)
∥∥∥

6 βn,0‖xn − p‖+
m∑
j=1

βn,j‖un,j − p‖ (3.2)

6 ‖xn − p‖.

From (1.5) again, we have

‖xn+1 − p‖ =
∥∥∥αnf(xn) + n∑

i=1

(αi−1 −αi)Siyn − p
∥∥∥

6 αn‖f(xn) − p‖+
n∑
i=1

(αi−1 −αi)‖Siyn − p‖

6 αn‖f(xn) − f(p)‖+αn‖f(p) − p‖+
n∑
i=1

(αi−1 −αi)‖yn − p‖

6 αnρ‖xn − p‖+αn‖f(p) − p‖+
n∑
i=1

(αi−1 −αi)‖xn − p‖

= [1 − (1 − ρ)αn]‖xn − p‖+αn‖f(p) − p‖.

By a simple induction, we estimate

‖xn − p‖ 6 max
{
‖x1 − p‖,

1
1 − ρ

‖f(p) − p‖
}

.

Therefore, sequence {xn} is bounded, and so are sequences {yn}, {un,j}, {f(xn)} and {Snyn}.
Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Note that JBλ [I − εA

∗
j (I − J

Bj
λ )Aj

]
is averaged and

nonexpansive by Lemma 2.5. Using (1.5), we have

‖un,j − un−1,j‖ =
∥∥JBλ [xn − εA∗j (I− J

Bj
λ )Ajxn

]
− JBλ

[
xn−1 − εA

∗
j (I− J

Bj
λ )Ajxn−1

]∥∥
6 ‖xn − xn−1‖.
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Moreover, we have

‖yn − yn−1‖ =
∥∥∥βn,0xn +

m∑
j=1

βn,jun,j −βn−1,0xn−1 −

m∑
j=1

βn−1,jun−1,j

∥∥∥
6 ‖βn,0xn −βn−1,0xn−1‖+

m∑
j=1

‖βn,jun,j −βn−1,jun−1,j‖

6 ‖βn,0xn −βn−1,0xn−1‖+
m∑
j=1

βn,j‖un,j − un−1,j‖+
m∑
j=1

|βn,j −βn−1,j|‖un−1,j‖

6 ‖xn − xn−1‖+ |βn,0 −βn−1,0|‖xn−1‖+
m∑
j=1

|βn,j −βn−1,j|‖un−1,j‖.

Since Si is nonexpansive, we further obtain

‖xn+1 − xn‖ =
∥∥∥αnf(xn) + n∑

i=1

(αi−1 −αi)Siyn −αn−1f(xn−1) −

n−1∑
i=1

(αi−1 −αi)Siyn−1

∥∥∥
6 ‖αnf(xn) −αn−1f(xn−1)‖+

n−1∑
i=1

(αi−1 −αi)‖Siyn − Siyn−1‖+ (αn−1 −αn)‖Snyn‖

6 ‖αnf(xn) −αn−1f(xn−1)‖+
n−1∑
i=1

(αi−1 −αi)‖yn − yn−1‖+ (αn−1 −αn)‖Snyn‖ (3.3)

6 |αn −αn−1|‖f(xn)‖+αn−1ρ‖xn − xn−1‖+ (1 −αn−1)‖xn − xn−1‖

+ |βn,0 −βn−1,0|‖xn−1‖+
m∑
j=1

|βn,j −βn−1,j|‖un−1,j‖+ (αn−1 −αn)‖Snyn‖

6 [1 − (1 − ρ)αn−1]‖xn − xn−1‖+ (αn−1 −αn)M1 +

m∑
j=0

|βn,j −βn−1,j|M2,

where M1 = max{‖f(xn)‖, ‖Snyn‖} and M2 = max{‖xn−1‖, sup16j6m ‖un−1,j‖}. It follows from (3.3) and
Lemma 2.6 that

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.4)

Now, we prove that limn→∞ ‖Sixn − xn‖ = 0 for i = 1, 2, · · · . To do this, we first prove that A∗j (I−

J
Bj
λ )Aj is a 1

2Lj
-inverse strong monotone. It follows from Lemma 2.3 that

Θ =
∥∥A∗j (I− JBjλ )Ajx−A

∗
j (I− J

Bj
λ )Ajy

∥∥2

=
〈
(I− J

Bj
λ )(Ajx−Ajy),AjA∗j (I− J

Bj
λ )(Ajx−Ajy)

〉
6 Lj

〈
(I− J

Bj
λ )(Ajx−Ajy), (I− J

Bj
λ )(Ajx−Ajy)

〉
6 Lj

∥∥(I− JBjλ )(Ajx−Ajy)
∥∥2

6 2Lj
〈
Ajx−Ajy, (I− JBjλ )(Ajx−Ajy)

〉
= 2Lj

〈
x− y,A∗j (I− J

Bj
λ )Aj(x− y)

〉
,

for all x,y ∈ H1, which implies that A∗j (I− J
Bj
λ )Aj is a 1

2Lj
-inverse strong monotone. Since JBλ is firmly

nonexpansive and

‖un,j − p‖2 =
∥∥JBλ [I− εA∗j (I− JBjλ )Aj]xn − JBλp

∥∥2
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6
∥∥xn − p− ε[A∗j (I− J

Bj
λ )Ajxn −A∗j (I− J

Bj
λ )Ajp]

∥∥2

= ‖xn − p‖2 − 2ε
〈
xn − p,A∗j (I− J

Bj
λ )Aj(xn − p)

〉
+ ε2∥∥A∗j (I− JBjλ )Aj(xn − p)

∥∥2 (3.5)

6 ‖xn − p‖2 + ε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn −A∗j (I− J
Bj
λ )Ajp

∥∥2

= ‖xn − p‖2 + ε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn
∥∥2.

By (3.5) and Lemma 2.4, we have

‖yn − p‖2 =
∥∥∥βn,0(xn − p) +

m∑
j=1

βn,j(un,j − p)
∥∥∥2

6 βn,0‖xn − p‖2 +

m∑
j=1

βn,j‖un,j − p‖2 (3.6)

6 ‖xn − p‖2 +

m∑
j=1

βn,jε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn
∥∥2.

From (1.5) and (3.6), we obtain

‖xn+1 − p‖2 =
∥∥∥αnf(xn) + n∑

i=1

(αi−1 −αi)Siyn − p
∥∥∥2

6 αn‖f(xn) − p‖2 +

n∑
i=1

(αi−1 −αi)‖Siyn − p‖2 (3.7)

6 αn‖f(xn) − p‖2 +

n∑
i=1

(αi−1 −αi)‖yn − p‖2

6 αn‖f(xn) − p‖2 + ‖xn − p‖2 +

m∑
j=1

βn,jε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn
∥∥2,

which implies that

βn,jε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn
∥∥2

6
m∑
j=1

βn,jε
(
ε−

1
Lj

)∥∥A∗j (I− JBjλ )Ajxn
∥∥2

6 αn‖f(xn) − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

6 αn‖f(xn) − p‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).

It follows from condition (i) and (3.4) that

lim
n→∞

∥∥(I− JBjλ )Ajxn
∥∥ = 0, j = 1, 2, · · · ,m. (3.8)

Since JBλ is firmly nonexpansive and I− εA∗j (I− J
Bj
λ )Aj is nonexpansive, we have

‖un,j − p‖2 =
∥∥JBλ [xn − εA∗j (I− J

Bj
λ )Ajxn

]
− JBλp

∥∥2

6
〈
un,j − p, xn − εA∗j (I− J

Bj
λ )Ajxn − p

〉
=

1
2
{
‖un,j − p‖2 +

∥∥xn − εA∗j (I− J
Bj
λ )Ajxn − p

∥∥2
−
∥∥un,j − xn + εA∗j (I− J

Bj
λ )Ajxn

∥∥2}
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6
1
2
{
‖un,j − p‖2 + ‖xn − p‖2 − ‖un,j − xn‖2 − ε2∥∥A∗j (I− JBjλ )Ajxn

∥∥2

− 2ε
〈
un,j − xn,A∗j (I− J

Bj
λ )Ajxn

〉}
.

Thus, we deduce that

‖un,j − p‖2 6 ‖xn − p‖2 − ‖un,j − xn‖2 + 2ε‖un,j − xn‖
∥∥A∗j (I− JBjλ )Ajxn

∥∥. (3.9)

Combining (3.6), (3.7) and (3.9), we have

‖xn+1 − p‖2 6 αn‖f(xn) − p‖2 + (1 −αn)‖yn − p‖2

6 αn‖f(xn) − p‖2 +βn,0‖xn − p‖2 +

m∑
j=1

βn,j‖un,j − p‖2

6 αn‖f(xn) − p‖2 + ‖xn − p‖2 −

m∑
j=1

βn,j‖un,j − xn‖2

+ 2ε
m∑
j=1

βn,j‖un,j − xn‖
∥∥A∗j (I− JBjλ )Ajxn

∥∥,

which implies that

βn,j‖un,j − xn‖2 6
m∑
j=1

βn,j‖un,j − xn‖2

6 αn‖f(xn) − p‖2 + ‖xn+1 − xn‖(‖xn+1 − p‖+ ‖xn − p‖)

+ 2ε
m∑
j=1

βn,j‖un,j − xn‖
∥∥A∗j (I− JBjλ )Ajxn

∥∥.

Together with condition (i), (3.4) and (3.8), we arrive at

lim
n→∞ ‖un,j − xn‖ = 0, j = 1, 2, · · · ,m. (3.10)

Moreover, by (1.5), yn − xn =
∑m
j=1 βn,j(un,j − xn), we have

lim
n→∞ ‖yn − xn‖ = 0. (3.11)

From (1.5) again, we obtain

xn+1 − yn = αn[f(xn) − yn] +

n∑
i=1

(αi−1 −αi)(Siyn − yn).

Since {αn}
∞
n=1 is a strictly decreasing sequence, we find that

(αi−1 −αi)‖Siyn − yn‖2 6
n∑
j=1

(αi−1 −αi)‖Siyn − yn‖2

6 2
n∑
j=1

(αi−1 −αi)〈Siyn − yn,p− yn〉

6 2〈xn+1 − yn,p− yn〉− 2αn〈f(xn) − yn,p− yn〉
6 2‖xn+1 − yn‖‖p− yn‖+ 2αn‖f(xn) − yn‖‖yn − p‖
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6 2(‖xn+1 − xn‖+ ‖xn − yn‖)‖p− yn‖+ 2αn‖f(xn) − yn‖‖yn − p‖.

By (3.4), (3.11) and condition (i), we have

lim
n→∞ ‖Siyn − yn‖ = 0, i = 1, 2, · · · . (3.12)

Note that

‖Sixn − xn‖ 6 ‖Sixn − Siyn‖+ ‖Siyn − yn‖+ ‖yn − xn‖
6 2‖xn − yn‖+ ‖Siyn − yn‖.

It follows from (3.11) and (3.12) that

lim
n→∞ ‖Sixn − xn‖ = 0, i = 1, 2, · · · .

Since {xn} is bounded, without loss of generality, we assume that {xnk} is a subsequence of {xn} such
that {xnk} converges weakly to w, i.e., xnk ⇀ w as k → ∞. We claim that w ∈ Fix(Si). Indeed, assume
that w 6= Siw, we have

lim inf
k→∞ ‖xnk −w‖ < lim inf

k→∞ ‖xnk − Siw‖
6 lim inf

k→∞ {‖xnk − Sixnk‖+ ‖Sixnk − Siw‖}

6 lim inf
k→∞ ‖xnk −w‖,

which is a contradiction arising from Opial’s condition. Therefore, we obtain w ∈ Fix(Si). On the other
hand, unk,j = J

B
λ

[
xnk − εA

∗
j (I− J

Bj
λ )Ajxnk

]
can be rewritten as

(xnk − unk,j) − εA
∗
j (I− J

Bj
λ )Ajxnk

λ
∈ Bunk,j, j = 1, 2, · · · ,m. (3.13)

Taking limit k→∞ in (3.13) and by using (3.8), (3.10) and the fact that the graph of a maximal monotone
operator is weakly-strongly closed, we can obtain 0 ∈ B(w). Moreover, since {xn} and {un,j} have the
same asymptotical behavior, {Ajxnk} weakly converges to Ajw. By the fact that JBjλ is nonexpansive and
(3.8), we obtain 0 ∈ Bj(Aw) for j = 1, 2, · · · ,m. It follows from Lemma 2.2 that w ∈ S . Consequently,
w ∈ Ω =

⋂∞
n=1 Fix(Sn)

⋂
S .

Finally, we prove that {xn} converges strongly to q, where q = PΩf(q). Note that the subsequence
{xnk} of {xn} converges weakly to w and

lim sup
n→∞ 〈f(q) − q, xn − q〉 = lim

k→∞〈f(q) − q, xnk − q〉 = 〈f(q) − q,w− q〉 6 0. (3.14)

In addition, we show that the uniqueness of a solution of the variational inequality

〈f(x) − x,w− x〉 6 0, ∀w ∈ Ω. (3.15)

Suppose q ∈ Ω and q̂ ∈ Ω are solutions to (3.15), then

〈f(q) − q, q̂− q〉 6 0, (3.16)

and

〈f(q̂) − q̂,q− q̂〉 6 0. (3.17)
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Adding up (3.16) and (3.17) one gets

〈q− f(q) − (q̂− f(q̂)),q− q̂〉 6 0,

which implies that

ρ‖q− q̂‖2 > 〈f(q) − f(q̂),q− q̂〉 > 〈q− q̂,q− q̂〉 = ‖q− q̂‖2.

Thus from ρ ∈ [0, 1), it follows that q = q̂, the uniqueness is proved. Furthermore, by (1.5) and (3.2), we
obtain

‖xn+1 − q‖2 = αn〈f(xn) − q, xn+1 − q〉+
n∑
i=1

(αi−1 −αi)〈Siyn − q, xn+1 − q〉

6 αn〈f(xn) − q, xn+1 − q〉+
1
2

n∑
i=1

(αi−1 −αi)
(
‖Siyn − q‖2 + ‖xn+1 − q‖2)

6 αn〈f(xn) − q, xn+1 − q〉+
1
2

n∑
i=1

(αi−1 −αi)
(
‖yn − q‖2 + ‖xn+1 − q‖2)

6 αn〈f(xn) − f(q), xn+1 − q〉+αn〈f(q) − q, xn+1 − q〉

+
1
2
(1 −αn)

(
‖xn − q‖2 + ‖xn+1 − q‖2)

6
1
2
αn(‖f(xn) − f(q)‖2 + ‖xn+1 − q‖2) +αn〈f(q) − q, xn+1 − q〉

+
1
2
(1 −αn)

(
‖xn − q‖2 + ‖xn+1 − q‖2)

6
1
2
[1 − (1 − ρ)αn]‖xn − q‖2 +

1
2
‖xn+1 − q‖2 +αn〈f(q) − q, xn+1 − q〉.

This implies that

‖xn+1 − q‖2 6 [1 − (1 − ρ)αn]‖xn − q‖2 + 2αn〈f(q) − q, xn+1 − q〉.

From the condition (i), (3.14) and Lemma 2.6, we obtain the desired conclusion that {xn} converges
strongly to q ∈ Ω. This completes the proof.

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces. Let B : H1 → 2H1 , Bj : H2 → 2H2 be some maximal
monotone mappings and Aj : H1 → H2 be a family of bounded linear operators for j = 1, 2, · · · ,m. Let {Sn} be a
countable family of nonexpansive mappings on H1 such that Ω =

⋂∞
n=1 Fix(Sn)

⋂
S 6= ∅. For given x1 ∈ H1 and

λ ∈ (0, 1), define {xn} in the following manner:
un,j = J

B
λ

[
xn − εA∗j (I− J

Bj
λ )Ajxn

]
, j = 1, 2, · · · ,m,

yn = βn,0xn +
∑m

j=1
βn,jun,j,

xn+1 =
∑n

i=1
(αi−1 −αi)Siyn,

(3.18)

where ε ∈ (0, 1
L), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Suppose that α0 = 1

and {αn}
∞
n=1 is a strictly decreasing sequence in [0, 1], {βn,j}

∞
n=1 ⊂ [0, 1], for j = 0, 1, 2, · · · ,m and the following

conditions are satisfied:

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞ and

∑∞
n=1 |αn−1 −αn| <∞;

(ii)
∑m
j=0 βn,j = 1, lim infn→∞ βn,j > 0 and

∑∞
n=1 |βn,j −βn−1,j| <∞, for all j = 0, 1, 2, · · · ,m.
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Then the sequence {xn} generated by (3.18) converges strongly to q ∈ Ω, which is the minimum norm solution of
the system (1.1).

Proof. Setting f(x) = 0, the ergodic-type iterative method (1.5) is equivalent to (3.18). By Theorem 3.1, we
obtain that

〈−q,w− q〉 6 0, ∀w ∈ Ω.

Therefore,

‖q‖2 6 〈q,w〉 6 ‖q‖‖w‖, ∀w ∈ Ω,

which implies that ‖q‖ 6 ‖w‖, for all w ∈ Ω. That is, q is the minimum norm solution of the system (1.1).
This completes the proof.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces. Let B : H1 → 2H1 , Bj : H2 → 2H2 be some maximal
monotone mappings and Aj : H1 → H2 be a family of bounded linear operators for j = 1, 2, · · · ,m. Let S be a
nonexpansive mappings on H1 such that Ω = Fix(S)

⋂
S 6= ∅. For given u, x1 ∈ H1 and λ ∈ (0, 1), define {xn}

in the following manner: 
un,j = J

B
λ

[
xn − εA∗j (I− J

Bj
λ )Ajxn

]
, j = 1, 2, · · · ,m,

yn = βn,0xn +
∑m

j=1
βn,jun,j,

xn+1 = αnu+ (1 −αn)Syn,

(3.19)

where ε ∈ (0, 1
L), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Suppose {αn}, {βn,j} ⊂

[0, 1], for j = 0, 1, 2, · · · ,m and the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(ii)
∑m
j=0 βn,j = 1, lim infn→∞ βn,j > 0 and

∑∞
n=1 |βn,j −βn−1,j| <∞, for all j = 0, 1, 2, · · · ,m.

Then the sequence {xn} generated by (3.19) converges strongly to q = PΩu.

Proof. Setting f(x) = u and Si = S, the modified iterative method (1.5) is equivalent to (3.19). Then the
desired conclusion follows immediately from Theorem 3.1. This completes the proof.

4. Numerical examples

In this section, we give a numerical example to illustrate the operational reliability and strong conver-
gence of the ergodic-type algorithm in Theorems 3.1 and 3.2 as follows.

Example 4.1. Let H1 = H2 = R2, Aj ∈ R2×2 be a non-singular matrix operator with spectral radius
Lj = ‖A∗jAj‖2, where A∗j is an adjoint of Aj and ‖.‖2 is the matrix 2-norm for j = 1, 2. Let B, B1 and B2 be

matrix operators defined by B =

(
8 0
0 2

)
, B1 =

(
3 0
0 6

)
and B2 =

(
4 0
0 5

)
, respectively. Since B, B1 and B2

are positive linear operators and hence maximal monotone, the resolvent operators JBλ = (I+ λB)−1 and
J
Bj
λ = (I+ λBj)

−1 are well-defined on R2.

Algorithm 4.2. Put αn = 1
2n , βn,j =

1
3 , λ = 1

2 and ε = 1
2 . Also, f : R2 → R2 is defined by f(x) = 1

2x

and mapping sequences {Sn}
∞
n=1 : R2 → R2 are defined by Sn(x) = n

n+1x. For a given x1 =
(
x
(1)
1 , x(2)

1

)
,

compute sequence {xn} in the following way:
un,j = J

B
λ

[
xn − εA∗j (I− J

Bj
λ )Ajxn

]
, j = 1, 2,

yn =
1
3
xn +

1
3
(un,1 + un,2),

xn+1 =
1

2n
f(xn) +

1
2
S1yn +

∑n

i=2

1
2i(i− 1)

Siyn.

(4.1)
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Setting ‖xn − x∗‖ < 10−6 as stop criterion, then we obtain the following numerical results of scheme (4.1)
with some different initial points x1 = x1i =

(
x
(1)
1i , x(2)

1i

)
, i = 1, 2, 3 in Table 1.

Table 1: Numerical results of (4.1) for different initial points x1 =
(
x
(1)
1 , x(2)

1
)
.

Iter.(n) x
(1)
n1 x

(2)
n1 x

(1)
n2 x

(2)
n2 x

(1)
n3 x

(2)
n3

0 3.000000 5.000000 -325.000000 1427.00000 -172.800000 -52.400000
1 1.068333 1.930804 -115.736111 551.051339 -61.536000 -20.234821
2 0.322478 0.679516 -34.935159 193.933991 -18.574756 -7.121332
3 0.092459 0.233963 -10.016363 66.773031 -5.325623 -2.451932
4 0.025891 0.079929 -2.804860 22.811635 -1.491322 -0.837652
5 0.007156 0.027214 -0.775180 7.766819 -0.412157 -0.285201
6 0.001961 0.009251 -0.212477 2.640124 -0.112973 -0.096946
7 0.000535 0.003142 -0.057915 0.896703 -0.030793 -0.032927
... ...... ...... ...... ...... ...... ......
12 0.000001 0.000014 -0.000083 0.004040 -0.000044 -0.000148
15 0.000000 0.000001 -0.000002 0.000158 -0.000001 -0.000006
18 0.000000 0.000000 -0.000000 0.000006 -0.000000 -0.000000
20 0.000000 0.000000 -0.000000 0.000001 -0.000000 -0.000000

Algorithm 4.3. Put αn = 1
2n , βn,1 = βn,2 = 2

5 and λ = 1
4 . Also, f : R2 → R2 is defined by f(x) = 0 and

mapping sequences {Sn}
∞
n=1 : R2 → R2 are defined by Sn(x) = n

n+1x. For a given x1 =
(
3, 5), compute

sequence {xn} in the following way:
un,j = J

B
λ

[
xn − εA∗j (I− J

Bj
λ )Ajxn

]
, j = 1, 2,

yn =
1
5
xn +

2
5
(un,1 + un,2),

xn+1 =
1
2
S1yn +

∑n

i=2

1
2i(i− 1)

Siyn.

(4.2)

Setting ‖xn − x∗‖ < 10−6 as stop criterion, then we obtain the following numerical results of scheme (4.2)
for x1 = x1ε with different coefficients ε = 0.1, 0.5, 0.8 in Table 2.

Table 2: Minimum norm solution of (4.2) with different coefficients ε = 0.1, 0.5, 0.8.

Iter.(n)
(
x
(1)
n0.1, x(2)

n0.1

) (
x
(1)
n0.5, x(2)

n0.5

) (
x
(1)
n0.8, x(2)

n0.8

)
0 (3.000000, 5.000000) (3.000000, 5.000000) (3.000000, 5.000000)
1 (0.340714, 0.878148) (0.303571, 0.724074) (0.275714, 0.608519)
2 (0.064492, 0.257048) (0.051198, 0.174761) (0.042232, 0.123432)
3 (0.014039, 0.086528) (0.009930, 0.048507) (0.007439, 0.028792)
4 (0.003268, 0.031154) (0.002060, 0.014400) (0.001402, 0.007183)
5 (0.000792, 0.011673) (0.000445, 0.004449) (0.000275, 0.001865)
6 (0.000197, 0.004491) (0.000099, 0.001411) (0.000055, 0.000497)
... ...... ...... ......
10 (0.000001, 0.000114) (0.000000, 0.000017) (0.000000, 0.000003)
12 (0.000000, 0.000019) (0.000000, 0.000002) (0.000000, 0.000000)
15 (0.000000, 0.000001) (0.000000, 0.000000) (0.000000, 0.000000)



D.-J. Wen, Y.-A. Chen, Y.-L. Lu, J. Nonlinear Sci. Appl., 10 (2017), 3046–3058 3058

We display the ergodic-type iterative process with three different initial points x1 ∈ R2 in Table 1. The
numerical example shows that the given point x1 has a little effect on iteration and Algorithm 4.2 is good
in strong convergence and operational reliability. Moreover, based on a same initial point x1 = (3, 5),
we compare the minimum norm solution of the system (1.1) and the fixed point of a countable family
of nonexpansive mappings with different coefficients ε = 0.1, 0.5, 0.8 in Table 2, which implies that the
increasing of ε has an effect on the number of iteration, that is sequence {xn} generated by (4.2) will
converge faster to a common solution when ε is increased.

The computations are performed by Matlab R2012a running on a PC Desktop Intel(R) Core(TM)i3-
2330M CPU @2.20GHz 790MHz 1.83GB, 2GB RAM.
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