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Abstract
In this paper, we present some sufficient conditions for the stability of nonlinear systems with impulse time window by

using some inequality techniques and results of matrix analysis. The proposed results are simpler than ones shown by Feng
et al. [Y.-M. Feng, C.-D. Li, T.-W. Huang, Neurocomputing, 193 (2016), 7–13]. Finally, several numerical examples are given to
show the effectiveness of our results. c©2017 All rights reserved.
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1. Introduction

In this note we mainly adopt the notation and terminology in [20]. For convenience, recall that, as
usual, we use PT , λmax(P), and smax(P) to denote the transpose, the maximum eigenvalue and maximum
singular value of a square matrix P, respectively. The symbol ||x|| is used to denote the Euclidean norm
of the vector x. We use P > 0 (< 0, 6 0, > 0) to denote a symmetrical positive (negative, semi-negative,
semi-positive) definite matrix P. f(x(t−1 )) is defined by f(x(t−1 )) = lim

t→t−1
f(x(t)). I denotes the identity

matrix of proper dimension.
Let g (t) be a continuous real-valued function defined on a real interval Ω and H be a Hermitian

matrix with eigenvalues in Ω, let
H = Udiag (λ1, · · · , λn)U∗,

be a spectral decomposition with U unitary, then the functional calculus for H is defined as

g (H) = Udiag (g (λ1) , · · · ,g (λn))U∗.

For example, if H > 0, then
H1/2 = Udiag

(
λ

1/2
1 , · · · , λ1/2

n

)
U∗.
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Feng et al. [4] discussed the following nonlinear impulsive control systems with impulse time window:
ẋ(t) = Ax(t) + f(x(t)), mT 6 t < mT + τm,
x(t) = x(t−) + Jx(t−), t = mT + τm,
ẋ(t) = Ax(t) + f(x(t)), mT + τm < t < (m+ 1)T ,

(1.1)

where x ∈ Rn presents the state vector, f : Rn → Rn is a continuous nonlinear function satisfying f(0) = 0
and there exists a diagonal matrix L = diag(l1, l2, · · · , ln) > 0 such that ||f(x)||2 6 xTLx for any x ∈ Rn,
A ∈ Rn×n is constant matrix. T > 0 denotes the control period, 0 6 τm < T , τm is unknown within
impulse time window [mT , (m+ 1)T ] and J ∈ Rn×n.

In [4], the authors gave some conditions ([4, Theorem 1]) to ensure the system (1.1) to be stable. One
of the conditions is to find constants g > 0, ε > 0 and a symmetric and positive definite matrix P ∈ Rn×n,
such that

PA+ATP+ εP2 + ε−1L− gP 6 0, (1.2)

is valid. Inequality (1.2) is equivalent to the following LMI[
PA+ATP+ ε−1L− gP −P

−P −ε−1I

]
6 0.

Although LMIs can be solved in polynomial-time, the computation amount of solving LMIs is not very
small [1], so methods of avoiding solving LMIs will be very helpful for solving the problem. Therefore,
our target is to find proper T and J avoiding solving LMIs, such that the system (1.1) is stable, which
implies that system (1.1) can be controlled by periodically single state-jumps impulsive control methods
with impulse time window. For more results on this topic and its applications, readers are referred to
[2, 3, 5, 7–9, 11, 13–19, 21–24, 26, 27] and the references therein.

In this paper, we use some inequality techniques and results of matrix analysis to simplify the condi-
tion (1.2).

2. Main results

We first need the following lemma [4].

Lemma 2.1. Let x,y ∈ Rn and ε > 0. Then

2xTy 6 εxTx+
1
ε
yTy.

Now we are going to give the main results.

Theorem 2.2. Let g, ε, δ > 0 such that

(1) g2

4 I− 2
(
ATA+ L

)
> 0;

(2) gT + ln λ < 0,

where
λ = λmax

(
P−1 (I+ J)T P (I+ J)

)
,

with

P =
1√
ε

((
g2

4ε
− δ

)
I−

2
ε

(
ATA+ L

))1/2

+
g

2ε
I,

then the origin of system (1.1) is exponentially stable.
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Proof. Since
g2

4
I− 2

(
ATA+ L

)
> 0,

we have
g2

4ε
I−

2
ε

(
ATA+ L

)
> 0.

So, there exists δ > 0 such that (
g2

4ε
− δ

)
I−

2
ε

(
ATA+ L

)
> 0.

Let

X =

((
g2

4ε
− δ

)
I−

2
ε

(
ATA+ L

))1/2

> 0,

and
P =

1√
ε
X+

g

2ε
I > 0,

then, we have

X2 6
g2

4ε
I−

2
ε

(
ATA+ L

)
,

and so (√
εP−

g

2
√
ε
I

)2

6
g2

4ε
I−

2
ε

(
ATA+ L

)
,

which is equivalent to

εP2 +
2
ε

(
ATA+ L

)
− gP 6 0. (2.1)

Now, let us construct the following Lyapunov function:

V (x (t)) = xT (t)Px (t) .

If mT 6 t < mT + τm, then by Lemma 2.1 and inequality (2.1), we have

D+ (V (x (t))) = 2xTP (Ax+ f (x))

6 εxTP2x+
1
ε
(Ax+ f (x))T (Ax+ f (x))

= εxTP2x+
1
ε

(
xTATAx+ fT (x) f (x)

)
+

1
ε

(
xTAT f (x) + fT (x)Ax

)
6 εxTP2x+

1
ε

(
xTATAx+ fT (x) f (x)

)
+

1
ε

(
xTATAx+ fT (x) f (x)

)
= εxTP2x+

2
ε

(
xTATAx+ fT (x) f (x)

)
6 εxTP2x+

2
ε

(
xTATAx+ xTLx

)
= xT

(
εP2 +

2
ε

(
ATA+ L

))
x

= xT
(
εP2 +

2
ε

(
ATA+ L

))
x− gxTPx+ gxTPx
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= xT
(
εP2 +

2
ε

(
ATA+ L

)
− gP

)
x+ gV (x)

6 gV (x (t)) ,

which implies that
V (x (t)) 6 V (x (mT)) eg(t−mT). (2.2)

If t = mT + τm, then we have

V (x (t)) =
(
x(t−) + Jx(t−)

)T
P
(
x(t−) + Jx(t−)

)
= xT (t−) (I+ I)T P (I+ J) x(t−)

= xT (t−)P1/2P−1/2 (I+ I)T P (I+ J)P−1/2P1/2x(t−)

6 λV
(
x
(
t−
))

.

(2.3)

Similarly, if mT + τm < t 6 (m+ 1)T , we also have

D+ (V (x (t))) 6 gV (x (t)) ,

which implies that
V (x (t)) 6 V (x (mT + τm)) eg(t−mT−τm). (2.4)

It follows from (2.3) and (2.4) that

V (x (t)) 6 λV
(
x
(
(mT + τm)−

))
eg(t−mT−τm), (2.5)

where
mT + τm 6 t < (m+ 1)T .

For m = 0:

1) If 0 6 t < τ0, then by (2.2) we have

V (x (t)) 6 V (x (0)) egt. (2.6)

2) If τ0 6 t < T , then combining (2.5) and (2.6), we have

V (x (t)) 6 λV
(
x
(
τ−0
))
eg(t−τ0)

6 λV (x (0)) egt.
(2.7)

For m = 1:

1) If T 6 t < T + τ1, then it follows from (2.2) and (2.7) that

V (x (t)) 6 V (x (T)) eg(t−T)

6 λV (x (0)) egt.
(2.8)

2) If T + τ1 6 t < 2T , then combining (2.5) and (2.8), we obtain

V (x (t)) 6 λV
(
x
(
(T + τ1)

−)) eg(t−T−τ1)

6 λ2V (x (0)) egt.
(2.9)

For m = 2:
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1) If 2T 6 t < 2T + τ2, then it follows from (2.2) and (2.9) that

V (x (t)) 6 V (x (2T)) eg(t−2T)

6 λ2V (x (0)) egt.
(2.10)

2) If 2T + τ2 6 t < 3T , then combining (2.5) and (2.10), we get

V (x (t)) 6 λV
(
x
(
(2T + τ2)

−)) eg(t−2T−τ2)

6 λ3V (x (0)) egt.

By induction, for m = k:

1) If kT 6 t < kT + τk, then we have

V (x (t)) 6 λkV (x (0)) egt. (2.11)

2) If kT + τk 6 t < (k+ 1)T , then we obtain

V (x (t)) 6 λk+1V (x (0)) egt. (2.12)

From (2.11), we know that if kT 6 t < kT + τk, then

V (x (t)) 6 V (x (0)) egT+k(gT+lnλ). (2.13)

It is from (2.12) that if kT + τk 6 t < (k+ 1)T , then

V (x (t)) 6 V (x (0)) e(k+1)(gT+lnλ). (2.14)

It follows from (2.13), (2.14), and gT + ln λ < 0 that

lim
t→∞V (x (t)) = 0.

This completes the proof.

Remark 2.3. For any symmetric matrix, by Schur’s theorem, we know that there exists g > 0 such that
gI−A > 0. So, we can always find the symmetric and positive definite matrix P in Theorem 2.2.

Remark 2.4. If we choose J = aI, then we have

λ = λmax

(
P−1 (I+ J)T P (I+ J)

)
= λmax

(
P−1 (1 + a) IP (1 + a) I

)
= (1 + a)2 ,

and so condition (2) becomes
gT + 2 ln (1 + a) < 0,

which can be easily calculated.

Corollary 2.5. Let g > 0 such that

(1) g2

4 I− 2
(
ATA+ L

)
> 0;

(2) gT + 2 ln smax (I+ J) < 0,
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then the origin of system (1.1) is exponentially stable.

Proof. It is known that

λ = λmax

(
P−1 (I+ J)T P (I+ J)

)
= λmax

(
P−1/2 (I+ J)T P (I+ J)P−1/2

)
= smax

(
P−1/2 (I+ J)T P (I+ J)P−1/2

)
6 smax

(
P−1/2

)
smax

(
(I+ J)T

)
smax (P) smax (I+ J) smax

(
P−1/2

)
= s

−1/2
max (P) smax (I+ J) smax (P) smax (I+ J) s

−1/2
max (P)

= s2
max (I+ J) .

From the inequality above, we know that if

gT + 2 ln smax (I+ J) < 0,

then
gT + ln λ < 0.

This completes the proof.

Remark 2.6. The calculations of 2 ln smax (I+ J) are much simpler than ones of ln λ, because the former
does not employ the matrix P.

According to the proof of Theorem 2.2, a simple design strategy for controlling chaotic systems can be
obtained as follows.

Step 1. Finding a diagonal matrix L = diag(l1, l2, · · · , ln) > 0 such that ||f(x)||2 6 xTLx for any x ∈ Rn.

Step 2. Finding g > 0 such that
g2

4
I− 2

(
ATA+ L

)
> 0, by using Geršgorin disk theorem [6] or other

results about bounds for eigenvalues such as presented in [28].

Step 3. Choosing suitable ε, δ and calculating the matrix P according to the following formula,

P =
1√
ε

((
g2

4ε
− δ

)
I−

2
ε

(
ATA+ L

))1/2

+
g

2ε
I.

Step 4. Choosing a J according to the needs of the actual applications and computing the bound on T by
applying the following inequality,

gT + ln λ < 0.

If we want to use Corollary 2.5 for controlling chaotic systems, the following steps can be considered.

Step 1. Finding a diagonal matrix L = diag(l1, l2, · · · , ln) > 0 such that ||f(x)||2 6 xTLx, for any x ∈ Rn.

Step 2. Finding g > 0 such that
g2

4
I − 2

(
ATA+ L

)
> 0 by using Geršgorin disk theorem [6] or other

results about bounds for eigenvalues such as presented in [28].

Step 3. Choosing a J according to the needs of the actual applications and computing the bound on T by
applying the following inequality,

gT + 2 ln smax (I+ J) < 0.
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3. Numerical examples

In this section, we illustrate the effectiveness of the foregoing results by showing several simulation
results employing the Chua’s, Lorenz’s, and Rössler’s system. Throughout this section we assume that
x = [x,y, z]T .

Example 3.1. The original and dimensionless form of a Chua’s oscillator [12] is given by
ẋ = α(y− x− g(x)),
ẏ = x− y+ z,
ż = −βy,

(3.1)

where α and β are parameters and g(x) is the piecewise linear characteristics of the Chua’s diode, which
is defined by

g(x) = bx+ 0.5(a− b)(|x+ 1|− |x− 1|),

where a < b < 0 are two constants.
We rewrite the system (3.1) as follows

ẋ = Ax + f(x),

where

A =

 −α−αb α 0
1 −1 1
0 −β 0

 ,

f(x) =

 −0.5α(a− b)(|x+ 1|− |x− 1|)
0
0

 .

So, simple calculations show that

||f(x)||2 = 0.25α2(a− b)2[(x+ 1)2

+ (x− 1)2 − 2|(x+ 1)(x− 1)|]

= 0.5α2(a− b)2(x2 + 1 − |x2 − 1|)

=

{
α2(a− b)2, x2 > 1,
α2(a− b)2x2, x2 6 1,

6 α2(a− b)2x2.

Thus we can choose L = diag(α2(a− b)2, 0, 0).
In this example, we set the system parameters as

α = 9.2156, β = 15.9946, a = −1.24905, b = −0.75735,

which make Chua’s circuit (3.1) chaotic [12]. Figure 1 shows the chaotic phenomenon of Chua’s oscillator
with the initial condition x(0) = (5, 1,−3)T .

It is easy to see that

ATA+ L =

 26.5332 −21.6076 1.0000
−21.6076 341.7545 −1.0000

1.0000 −1.0000 1.0000

 .

By [28, Theorem 2.1], we choose g = 55.
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Let ε = 1 and δ = 60. Then, we have

P =

 52.8158 1.5139 −0.0408
1.5139 30.7318 0.0697
−0.0408 0.0697 53.8485

 .

Meanwhile, we set
J = diag (−0.5,−0.6,−0.4) ,

and then λ = 0.3600. From the inequality
gT + ln λ < 0,

we can choose T = 0.0180. Thus by Theorem 2.2 we obtain that the origin of system (3.1) is exponentially
stable. The time response curves of Chua’s oscillator by using such method is shown in Figure 2.
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Figure 1: The chaotic phenomenon of Chua’s oscillator with the initial condition x(0) = (5, 1,−3)T .
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Figure 2: Time response curves of controlled Chua’s system.
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Example 3.2. The Lorenz system [10] is given by
ẋ = −σx+ σy,
ẏ = rx− y− xz,
ż = xy− bz,

(3.2)

where σ, r and b are three real positive parameters. Assume that x ∈ [−d,d] and d > 0.
The system (3.2) can be easily rewritten as

ẋ = Ax + f(x),

where

A =

 −σ σ 0
r −1 0
0 0 −b

 , f(x) =

 0
−xz
xy

 .

Thus
||f(x)||2 = x2y2 + x2z2 6 d2y2 + d2z2.

So we can choose L = diag(0,d2,d2).
In this example, we set the system parameters as

σ = 10, r = 28, b =
8
3

, d = 20,

which make Lorenz system (3.2) chaotic [10]. Figure 3 shows the chaotic phenomenon of Lorenz system
with the initial condition x(0) = (5, 1,−3)T .
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Figure 3: The chaotic phenomenon of Lorenz system with the initial condition x(0) = (5, 1,−3)T .

Simple calculations show that

ATA+ L =

 884.0000 −128.0000 0.0000
−128.0000 501.0000 0.0000

0.0000 0.0000 407.1111

 .

By [28, Theorem 2.1], we choose g = 90.
Meanwhile, we set

J = diag (−0.6,−0.7,−0.8) ,
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and then smax (I+ J) = 0.4000. From the inequality

gT + 2 ln smax (I+ J) < 0,

we can choose T = 0.0200. Thus by Theorem 2.2 we obtain that the origin of system (3.2) is exponentially
stable. The time response curves of Lorenz system by using such method is shown in Figure 4.
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Figure 4: Time response curves of controlled Lorenz system.

Example 3.3. The Rössler system [25] is given by
ẋ = −y− z,
ẏ = x+ ay,
ż = bx− cz+ xz,

(3.3)

where a, b and c are three real positive parameters. Assume that x ∈ [−d,d] and d > 0. System (3.3) can
be easily rewritten as

ẋ = Ax + f(x),

where

A =

 0 −1 −1
1 a 0
b 0 −c

 , f(x) =

 0
0
xz

 .

Thus
||f(x)||2 = x2z2 6 d2z2.

Thus we can choose L = diag(0, 0,d2).
In this example, we set the system parameters as

a = 0.34, b = 0.4, c = 4.5, d = 20,

which make Rössler attractor (3.3) chaotic [25]. Figure 5 shows the chaotic phenomenon of Rössler attrac-
tor with the initial condition x(0) = (−1, 3,−2)T .

Simple calculations show that

ATA+ L =

 1.1600 0.3400 −1.8000
0.3400 1.1156 1.0000
−1.8000 1.0000 421.2500

 .
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By [28, Theorem 2.1], we choosing g = 60. Meanwhile, we set

J = diag (−0.5,−0.6,−0.5) ,

and then smax (I+ J) = 0.5000. From the inequality

gT + 2 ln smax (I+ J) < 0,

we can choose T = 0.0220. Thus by Theorem 2.2 we obtain that the origin of system (3.3) is exponentially
stable. The time response curves of Rössler attractor by using such method is shown in Figure 6.
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Figure 5: The chaotic phenomenon of Rössler attractor with the initial condition x(0) = (−1, 3,−2)T .
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Figure 6: Time response curves of controlled Rössler system.
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