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Meng Liua,b,∗, Meiling Denga, Zhaojuan Wanga

aSchool of Mathematical Science, Huaiyin Normal University, Huaian 223300, P. R. China.
bSchool of Mathematics and Statistics, Northeast Normal University, Jilin 130024, P. R. China.

Communicated by D. Baleanu

Abstract
Permanence is one of the most important topics in biomathematics. The question of permanence of stochastic multi-species

models is challenging because the current approaches can not be used. In this paper, an asymptotic approach is used, and
sufficient criteria for permanence of a general n-species stochastic delay Lotka-Volterra competition model with Lévy jumps are
established. It is also shown that these criteria are sharp in some cases. The results reveal that the stochastic noises play a key
role in the permanence. This approach can be also applied to investigate the permanence of other stochastic population models
with/without time delay and/or Lévy noises. c©2017 All rights reserved.
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1. Introduction

Permanence, indicating the long-term survival of all species in a model, has regarded as one of the
most important concepts in ecology and epidemics. The concept of permanence was originally proposed
in late 1970s for ordinary differential equations (ODEs), and then were developed rapidly in the 1980s to
difference systems, functional differential equations (FDEs) and partial differential equations (PDEs) [36].
Now, it has become one of the most important topics in biomathematics [27].

In the natural world, the growth of species is inevitably affected by environmental perturbations
[7, 8, 21, 22, 24, 25, 28, 46]. The concept of permanence is also extended to stochastic models and attracts
much attention [27, 35]. There are two widely used definitions of permanence for stochastic population
models. The first one is as follows:

Definition 1.1 ([17]). Let N(t) = (N1(t), · · · ,Nn(t))T stand for the solution of a stochastic population
model. If for arbitrary ε ∈ (0, 1), there are positive constants α1 = α1(ε) and α2 = α2(ε) such that

lim inf
t→∞ P

{
|N(t)| =

√√√√ n∑
i=1

N2
i(t) > α1

}
> 1 − ε, lim inf

t→∞ P

{
|N(t)| 6 α2

}
> 1 − ε,

then the model is said to be stochastically permanent (which we refer to as SP1).
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Using this definition,

• Li and Mao [17] considered the following non-autonomous stochastic competitive system

dNi(t) = Ni(t)

(
ri(t) −

n∑
j=1

cij(t)Nj(t)

)
dt+ σi(t)Ni(t)dWi(t), i = 1, · · · ,n, (1.1)

where Ni(t) represents the size of the i-th species at time t, ri(t) > 0, cij(t) > 0,σi(t) are all
continuous and bounded functions defined on [0,+∞), {(W1(t), ...,Wn(t))}t>0 is an n-dimensional
Brownian motion defined on a complete probability space (Ω, {Ft}t∈R+ ,P) with a filtration {Ft}t∈R+ ,
σ2
i is the intensity of the stochastic noise. The authors [17] proved that if

min
16i6n

{
inf
t>0

cii(t)

}
> 0, min

16i6n

{
inf
t>0

bi(t)

}
> 0,

where bi(t) = ri(t) − 0.5σ2
i(t), then model (1.1) is SP1.

• Li et al. [16, Theorem 3.3] analyzed the SP1 of stochastic Lotka-Volterra systems with Markovian
switching.
• Bao et al. [3, Theorem 4.1] obtained the sufficient conditions for SP1 of a stochastic competitive

model with Lévy jumps.
• Tran and Yin [38, Theorem 4.2] investigated the SP1 of stochastic competitive models with partial

observation.
• Mandal et al. [31, Theorem 3.3.1] studied the SP1 of a allelopathic phytoplankton model.
• Tan et al. [37, Theorem 3.1] considered the SP1 of a stochastic competitive model with impulsive

perturbations.

More results of SP1 for stochastic population models can be found in Li et al. [15, Theorem 3.3], Lv and
Wang [29, Theorem 3.2], Qiu et al. [34, Theorem 6], Zhang and Wang [45, Theorem 6.2], Jiang et al. [12,
Theorem 2.1], Lv and Wang [30, Theorem 3.5], Li et al. [14, Theorem 4.3].

However, Definition 1.1 is not appropriate in some cases. Definition 1.1 means

lim inf
t→∞ P

{√√√√ n∑
i=1

N2
i(t) > α1

}
> 1 − ε.

This can not guarantee all the species have a positive lower bound, some species can go to extinction as
long as one species has a positive lower bound. To see this more clearly, consider the following two-species
competitive model:

dN1(t) = N1(t)

[
0.6 − 0.3N1(t) − 0.32N2(t)

]
dt+ 0.447N1(t)dW1(t),

dN2(t) = N2(t)

[
0.55 − 0.28N1(t) − 0.3N2(t)

]
dt+ 0.447N2(t)dW2(t).

(1.2)

According to [27], the species 2 in system (1.2) will go to extinction almost surely (a.s.), i.e., lim
t→∞N2(t) = 0

a.s. However, by the work of Li and Mao [17], model (1.2) is SP1.
The other definition of permanence for stochastic population models was proposed by Schreiber et al.

[35]. Consider the following stochastic differential equation (SDE)

dNi(t) = Ni(t)

{
ρi(N(t))dt+

m∑
j=1

σij(N(t))dWj(t)

}
, i = 1, · · · ,n, x(0) ∈ Rn+, (1.3)

where N(t) = (N1(t), · · · ,Nn(t))T , Rn+ = {η ∈ Rn|ηi > 0, 1 6 i 6 n}. Let R̄n+ = {η ∈ Rn|ηi > 0, 1 6 i 6 n}

and Λ0 = {η ∈ R̄n+|ηi = 0 for some i, 1 6 i 6 n}.
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Definition 1.2 ([35]). If there exists a unique invariant measure µ such that

(i) the distribution of N(t) converges to µ as t→ +∞, and
(ii) µ(Λ0) = 0,

then model (1.3) is said to be stochastically persistent (which we refer to as SP2).

Clearly, SP2 can ensure the long-term survival of all species. At the same time, SP2 implies SP1, but
not the converse.

Schreiber et al. [35, Theorem 4] have shown that if for all invariant measures ν supported on Λ0,
λ∗(ν) := max

16i6n
λi(ν) > 0, where

λi(ν) =

∫
λi(N)ν(dN), λi(N) = ρi(N) −

1
2
qii(N), qij(N) =

m∑
k=1

σik(N)σkj(N),

then the solution N(t) of (1.3) is SP2. However, these results can not apply to investigate most stochastic
population models. For example, consider the following stochastic logistic model:

dN(t) = N(t)

(
r−

N(t)

K

)
dt+ σN(t)dW(t), N(0) > 0. (1.4)

By Remark 2.10 below, we can see that for model (1.4), λ∗(ν) = 0.
Then an interesting and important question arises: is there another approach to study the SP2 of

stochastic population models? The main aim of this paper is to study this question. An asymptotic
approach is used, and sufficient criteria for the SP2 of a stochastic delay competition model with Lévy
jumps are established. We also show that these criteria are sharp in some cases. The results demonstrate
that the stochastic perturbations play a key role in determining the SP2 of the models. At the end of
this paper, we show that this approach can be also used to study the SP2 of other stochastic population
models with/without time delay and/or Lévy noises, and as an example, we establish the sharp criteria
for SP2 of a stochastic delay predator-prey model with Lévy jumps.

2. Main results

In this paper, we consider the following stochastic delay competitive model with Lévy jumps:

dNi(t) = Ni(t
−)

{(
ri − ciiNi(t

−) −

n∑
j=1,j6=i

cijNj(t
− − τij)

)
dt

+ σidWi(t) +

∫
Y

γi(u)Γ̃(dt,du)
}

, i = 1, · · · ,n,

(2.1)

with initial condition

N(ξ) = (N1(ξ), · · · ,Nn(ξ))T = (φ1(ξ), · · · ,φn(ξ))T = φ(ξ) ∈ Φ,

where Ni(t) is the size of species i at time t, N(t−) is the left limit of N(t), ri > 0 and cij > 0 are constants
representing the growth rate and competition coefficient respectively, Γ̃(dt,du) = Γ(dt,du)−θ(du)dt, Γ is
a Poisson counting measure, θ is the characteristic measure of Γ , Y is a subset of (0,+∞) with θ(Y) < +∞,
τij > 0 represents the time delay, i, j = 1, · · · ,n, τ = max

i,j=1,...,n,j6=i
{τij}, Φ is the family of all continuous

functions from [−τ, 0] to Rn+. For biological reasons, we assume that [3]

1 + γi(u) > 0, u ∈ Y, i = 1, · · · ,n. (2.2)
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It is useful to point out that some special cases of (2.1) have been studied extensively in literature, for
example, [11, 12, 15–17, 37, 38] considered model (2.1) with τij = 0 and γi(u) = 0, [23, 39, 42] investigated
model (2.1) with γi(u) = 0. Model (2.1) with τij = 0 was analyzed in [3].

Throughout this paper, as a standing hypothesis we assume that Γ and {(W1(t), · · · ,Wn(t))}t>0 are
independent. For simplicity, we introduce the following notations.

bi =ri − 0.5σ2
i −

∫
Y

[
γi(u) − ln(1 + γi(u))

]
θ(du),

fi =bi −

n∑
j=1,j6=i

cij

cjj
bj, mi(t) =

∫t
0

∫
Y

ln(1 + γi(u))Γ̃(ds,du), i = 1, · · · ,n.

Let C = det((cij)n×n), let Ci be the determinant obtained by changing the ith column of C to

(b1,b2, · · · ,bn)T . By Golpalsamy [10], if bi > 0 and fi > 0, i = 1, · · · ,n, then
(
C1
C , · · · , CnC

)T
is a

unique positive solution of the following equations

c11N1 + c12N2 + · · ·+ c1nNn = b1,

c21N1 + c22N2 + · · ·+ c2nNn = b2,

...

cn1N1 + cn2N2 + · · ·+ cnnNn = bn.

Lemma 2.1. Under (2.2), for any given initial value N(ξ) ∈ Φ, model (2.1) has a unique global solution N(t) =
(N1(t), · · · ,Nn(t))T ∈ Rn+ on t > 0 a.s.. Moreover, there exists a positive constant K1 such that

lim sup
t→+∞ E(Ni(t)) 6 K1, i = 1, 2, · · · ,n. (2.3)

Proof. The proof is a slight modification of that in Bao et al. [3, Theorem 2.1 and Theorem 3.1], and hence
is omitted.

Now we are in the position to give our main results.

Assumption 2.2. There is a constant k > 0 such that∫
Y

[
ln(1 + γi(u))

]2

θ(du) < k.

Assumption 2.3. cii >
n∑

j=1,j6=i
cij, i = 1, · · · ,n.

Theorem 2.4. Let (2.2), Assumptions 2.2 and 2.3 hold. If bi > 0 and fi > 0, i = 1, · · · ,n, then model (2.1) is
SP2, and at the same time, µ is ergodic with∫

Rn+

Nµ(dN) = lim
t→+∞ t−1

∫t
0
N(s)ds =

(
C1

C
, · · · ,

Cn

C

)T
, a.s. . (2.4)

Remark 2.5. It is useful to pint out that if bi < 0 for some i, then the species i in model (2.1) will go to
extinction.

The proof of Theorem 2.4 is divided into the following three steps:
(i) First, we give some conditions under which all the species in model (2.1) are not extinctive.

(ii) Then, we establish the sufficient conditions for global attractivity of solutions of model (2.1).
(iii) Finally, we prove the existence, uniqueness and ergodicity of the invariant measure µ.
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2.1. Non-extinction
Consider the following auxiliary equations:

dyi(t) = yi(t
−)

(
ri − ciiyi(t

−)

)
dt+ σiyi(t

−)dWi(t)

+

∫
Y

yi(t
−)γi(u)Γ̃(dt,du), i = 1, · · · ,n,

(2.5)

dzi(t) = zi(t
−)

(
ri − ciizi(t

−) −

n∑
j=1,j6=i

cijyj(t
− − τij)

)
dt

+ σizi(t
−)dWi(t) +

∫
Y

zi(t
−)γi(u)Γ̃(dt,du), i = 1, · · · ,n,

(2.6)

where
yi(ξ) = zi(ξ) = Ni(ξ), ξ ∈ [−τ, 0], i = 1, 2, · · · ,n.

Under (2.2), Bao et al. [3, Lemma 4.2] have shown that the solution of model (2.5) can be explicitly
expressed as:

yi(t) =
exp{bit+ σiWi(t) +mi(t)}

y−1
i (0) + cii

∫t
0 exp{bis+ σiWi(s) +mi(s)}ds

, i = 1, · · · ,n.

Similarly, the solution of model (2.6) is:

zi(t) =

exp
{
bit−

n∑
j=1,j 6=i

cij

∫t
0
yj(s− τij)ds+ σiWi(t) +mi(t)

}

z−1
i (0) + cii

∫t
0

exp
{
bis−

n∑
j=1,j 6=i

cij

∫s
0
yj(u− τij)du+ σiWi(s) +mi(s)

}
ds

, i = 1, · · · ,n. (2.7)

Lemma 2.6 ([26]). For model (2.5), let Assumption 2.2 and (2.2) hold. If bi > 0, then

lim
t→+∞ t−1 lnyi(t) = 0, lim

t→+∞ t−1
∫t

0
yi(s)ds = bi/cii, a.s., i = 1, ...,n. (2.8)

Now we are in the position to study the non-extinction of model (2.1).

Lemma 2.7 ([20]). Let M(t), t > 0, be a local martingale vanishing at time zero. If lim
t→+∞ ρM(t) < +∞, then

lim
t→+∞M(t)

t
= 0 a.s.,

where

ρM(t) =

∫t
0

d〈M,M〉(s)
(1 + s)2 , t > 0,

and 〈M,M〉(t) is Meyer’s angle bracket process (see, e.g., [1, 13]).

Theorem 2.8. Let Assumption 2.2 and (2.2) hold. If bi > 0 and fi > 0, i = 1, · · · ,n, then

lim
t→+∞ t−1

∫t
0
Ni(s)ds = Ci/C, a.s. i = 1, · · · ,n. (2.9)

Proof. An application of Itô’s formula (see, e.g., [13]) to (2.1) gives

t−1 lnNi(t) − t−1 lnNi(0) = bi − ciit−1
∫t

0
Ni(s)ds−

n∑
j=1,j6=i

cijt
−1
∫t

0
Nj(s− τij)ds

+ σit
−1Wi(t) + t

−1
∫t

0

∫
Y

ln
(

1 + γi(u)

)
Γ̃(ds,du)
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= bi −

[
ciit

−1
∫t

0
Ni(s)ds+

n∑
j=1,j6=i

cijt
−1
∫t

0
Nj(s)ds

]

+

n∑
j=1,j6=i

cijt
−1
[ ∫t
t−τij

Nj(s)ds−

∫ 0

−τij

Nj(s)ds

]
+ σit

−1Wi(t) + t
−1mi(t).

Since bi > 0, by (2.8), we can see that for i, j = 1, · · · ,n, j 6= i,

lim
t→+∞ t−1

∫t
t−τij

yj(s)ds = lim
t→+∞

(
t−1
∫t

0
yj(s)ds− t

−1
∫t−τij

0
yj(s)ds

)
= 0. (2.10)

In view of the comparison theorem for SDEs with jumps ([33]), one can see that for t > −τ,

zi(t) 6 Ni(t) 6 yi(t) a.s. i = 1, · · · ,n. (2.11)

It follows that

lim
t→+∞ t−1

∫t
t−τij

Nj(s)ds = 0, i, j = 1, · · · ,n, j 6= i.

Therefore

lim
t→+∞ t−1

[ ∫t
t−τij

Nj(s)ds−

∫ 0

−τij

Nj(s)ds

]
= 0, i, j = 1, · · · ,n, j 6= i.

Note that Assumption 2.2 and (2.2) hold, it then follows from Lemma 2.7 that

lim
t→+∞ t−1Wi(t) = 0, lim

t→+∞ t−1mi(t) = 0, a.s. . (2.12)

Thus, to complete the proof, we only need to show that

lim
t→+∞ t−1 lnNi(t) = 0 a.s. i = 1, · · · ,n.

Thanks to (2.8) and (2.11),

lim inf
t→+∞ t−1 ln zi(t) 6 lim inf

t→+∞ t−1 lnNi(t) 6 lim sup
t→+∞ t−1 lnNi(t) 6 lim sup

t→+∞ t−1yi(t) = 0.

Consequently, we only need to prove that

lim inf
t→+∞ t−1 ln zi(t) > 0 a.s. i = 1, · · · ,n. (2.13)

By virtue of (2.8) and (2.10), we can observe that for i, j = 1, · · · ,n, j 6= i,

lim
t→+∞ t−1

∫t
0
yj(s− τij)ds = lim

t→+∞ t−1
( ∫t

0
yj(s)ds−

∫t
t−τij

yj(s)ds+

∫ 0

−τij

yj(s)ds

)
= bj/cjj, a.s. .

Hence by (2.12), for arbitrary given ε > 0, there exists a T = T(ω) such that for t > T , i, j = 1, · · · ,n, j 6= i,

bj/cjj − ε 6 t
−1
∫t

0
yj(s− τij)ds 6 bj/cjj + ε,

and
− ε 6 t−1σiWi(t) + t

−1mi(t) 6 ε.
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When these inequalities are used in (2.7), one can see that

1
zi(t)

= exp
{
− bit+

n∑
j=1,j6=i

cij

∫t
0
yj(s− τij)ds− σiWi(t) −mi(t)

}

×
{
z−1
i (0) + cii

∫t
0

exp
{
bis−

n∑
j=1,j6=i

cij

∫s
0
yj(u− τij)du+ σiWi(s) +mi(s)

}
ds

}

= exp
{
− bit+

n∑
j=1,j6=i

cij

∫t
0
yj(s− τij)ds− σiWi(t) −mi(t)

}

×
{
z−1
i (0) + cii

∫T
0

exp
[
bis−

n∑
j=1,j6=i

cij

∫s
0
yj(u− τij)du+ σiWi(s) +mi(s)

]
ds

+ cii

∫t
T

exp
[
bis−

n∑
j=1,j 6=i

cij

∫s
0
yj(u− τij)du+ σiWi(s) +mi(s)

]
ds

}

6 exp
{
t

[
− bi +

n∑
j=1,j6=i

cij

(
bj

cjj
+ ε

)
+ ε

]}

×
{
z−1
i (0) +Ki + cii

∫t
T

exp
{
s

[
bi −

n∑
j=1,j6=i

cij

(
bj

cjj
− ε

)
+ ε

]}
ds

}

= exp
{
t

[
− fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]}

×
{
z−1
i (0) +Ki + cii

∫t
T

exp
{
s

[
fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]}
ds

}
,

where Ki > 0 is a constant. Note that fi > 0, hence for sufficiently large t, one can derive that

z−1
i (0) +Ki 6 cii

∫t
T

exp
{
s

[
fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]}
ds.

That is to say, for sufficiently large t,

1
zi(t)

6 exp
{
t

[
− fi +

(
1 +

n∑
j=1,j 6=i

cij

)
ε

]}

× 2cii

∫t
T

exp
{
s

[
fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]}
ds

=
2cii

fi +

(
1 +

n∑
j=1,j 6=i

cij

)
ε

exp
{
t

[
− fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]}

× exp
{[
fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]
(t− T)

}
.

Consequently

t−1 ln zi(t) > t−1 ln

fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

2cii
− 2
(

1 +

n∑
j=1,j6=i

cij

)
ε

+

[
fi +

(
1 +

n∑
j=1,j6=i

cij

)
ε

]
T/t.
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Letting t→ +∞ and then making use of the arbitrariness of ε, one can get the desired assertion (2.13).

2.2. Global attractivity
Theorem 2.9. If Assumption 2.3 holds, then model (2.1) is globally attractive, i.e.,

lim
t→+∞

n∑
i=1

E
∣∣Ni(φ; t) −Ni(ϕ; t)

∣∣ = 0, a.s., (2.14)

where N(φ; t) = (N1(φ; t), · · · ,Nn(φ; t))T and N(ϕ; t) = (N1(ϕ; t), · · · ,Nn(ϕ; t))T are two solutions of model
(2.1) with initial data φ(ξ) ∈ Φ and ϕ(ξ) ∈ Φ, respectively.

Proof. Let βi represent the cofactor of the i-th diagonal element of LC, where

LC =



n∑
j=2

c1j −c12 · · · −c1n

−c21

n∑
j=1,j6=2

c2j · · · −c2n

· · · · · · · · · · · ·

−cn1 −cn2 · · ·
n−1∑
j=1

cnj


.

By Kirchhoff’s Matrix Tree Theorem (see e.g., [32]), we have βi > 0, i = 1, · · · ,n.
Define (the following V function is motivated by [25])

V(t) =

n∑
i=1

βi

∣∣∣∣ lnNi(φ; t) − lnNi(ϕ; t)
∣∣∣∣+ n∑

i=1

n∑
j=1,j6=i

βicij

∫t
t−τij

∣∣∣∣Nj(φ; s) −Nj(ϕ; s)
∣∣∣∣ds.

Making use of Itô’s formula, we have

d+V(t) =

n∑
i=1

βisgn
(
Ni(φ; t) −Ni(ϕ; t)

)
d

(
lnNi(φ; t) − lnNi(ϕ; t)

)

+

n∑
i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t) −Nj(ϕ; t)
∣∣∣∣dt− n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t− τij) −Nj(ϕ; t− τij)
∣∣∣∣dt

=

n∑
i=1

βisgn
(
Ni(φ; t) −Ni(ϕ; t)

)[
− cii

(
Ni(φ; t) −Ni(ϕ; t)

)

−

n∑
j=1,j6=i

cij

(
Nj(φ; t− τij) −Nj(ϕ; t− τij)

)]
dt

+

n∑
i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t) −Nj(ϕ; t)
∣∣∣∣dt− n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t− τij) −Nj(ϕ; t− τij)
∣∣∣∣dt

6 −

n∑
i=1

βicii

∣∣∣∣Ni(φ; t) −Ni(ϕ; t)
∣∣∣∣dt+ n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t− τij) −Nj(ϕ; t− τij)
∣∣∣∣dt

+

n∑
i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t) −Nj(ϕ; t)
∣∣∣∣dt− n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t− τij) −Nj(ϕ; t− τij)
∣∣∣∣dt

= −

n∑
i=1

βicii

∣∣∣∣Ni(φ; t) −Ni(ϕ; t)
∣∣∣∣dt+ n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t) −Nj(ϕ; t)
∣∣∣∣dt.
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In view of [18, Theorem 2.3],
n∑
i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Nj(φ; t) −Nj(ϕ; t)
∣∣∣∣ = n∑

i=1

n∑
j=1,j6=i

βicij

∣∣∣∣Ni(φ; t) −Ni(ϕ; t)
∣∣∣∣.

Consequently,

E(V(t)) 6 V(0) −
n∑
i=1

βi

[
cii −

n∑
j=1,j6=i

cij

] ∫t
0

E

∣∣∣∣Ni(φ; s) −Ni(ϕ; s)
∣∣∣∣ds.

It then follows from E(V(t)) > 0 that
n∑
i=1

βi

[
cii −

n∑
j=1,j6=i

cij

] ∫t
0

E

∣∣∣∣Ni(φ; s) −Ni(ϕ; s)
∣∣∣∣ds 6 V(0) <∞.

That is to say,

E

∣∣∣∣Ni(φ; t) −Ni(ϕ; t)
∣∣∣∣ ∈ L1[0,∞), i = 1, · · · ,n.

On the other hand, by (2.1),

E(Ni(t)) = Ni(0) +
∫t

0

[
E

(
Ni(s)

)
ri − ciiE

(
Ni(s)

)2

−

n∑
j=1,j6=i

cijE

(
Ni(s)Nj(s− τij)

)]
ds.

It follows that E(Ni(t)) is continuously differentiable with respect to t. According to (2.3),

dE(Ni(t))

dt
= E

(
Ni(t)

)
ri − ciiE

(
Ni(t)

)2

−

n∑
j=1,j6=i

cijE

(
Ni(t)Nj(t− τij)

)
6 E

(
Ni(t)

)
ri 6 riK1.

Thereby, E(Ni(t)) is uniformly continuous with respect to t. Then the required assertion (2.14) follows
from Barbalat’s results [4].

2.3. Proof of Theorem 2.4
Proof of Theorem 2.4. The proof is motivated by [23, 25, 28]. To begin with, let us prove the existence and
uniqueness of the measure µ. Let p(t,φ, ·) be the transition probability of N(t), and let P(t,φ,B) be
the probability of N(t) ∈ B. It then follows from (2.3) and the Chebyshev inequality that the family of
transition probability {p(t,φ, ·)} is tight.

Let Λ(Φ) stand for all the probability measures defined on Φ. For any two measures P1, P2 ∈ Λ,
define the following Kantorovich metric ([5])

dH(P1,P2) = sup
h∈H

∣∣∣∣ ∫
Rn+

h(N)P1(dN) −

∫
Rn+

h(N)P2(dN)

∣∣∣∣,
where

H =

{
h : Φ→ R

∣∣∣∣|h(x) − h(y)| 6 ||x− y||, |h(·)| 6 1
}

.

For any h ∈ H and t, s > 0, we have∣∣∣∣Eh(N(φ; t+ s)) − Eh(N(φ; t))
∣∣∣∣ = ∣∣∣∣E[E

(
h(N(φ; t+ s))|Fs

)]
− Eh(N(φ; t))

∣∣∣∣
=

∣∣∣∣ ∫
Rn+

Eh(N(ϕ; t))p(s,φ,dϕ) − Eh(N(φ; t))
∣∣∣∣

6
∫
Rn+

∣∣∣∣Eh(N(ϕ; t)) − Eh(N(φ; t))
∣∣∣∣p(s,φ,dϕ).

(2.15)
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Thanks to (2.14), there is a T > 0 such that for t > T ,

sup
h∈H

∣∣∣∣Eh(N(ϕ; t)) − Eh(N(φ; t))
∣∣∣∣ 6 ε.

Substituting this inequality into (2.15), and then using the tightness of {p(t,φ, ·)}, we obtain∣∣∣∣Eh(N(φ; t+ s)) − Eh(N(φ; t))
∣∣∣∣ 6 ε.

It then follows from the arbitrariness of h that

sup
h∈H

∣∣∣∣Eh(N(φ; t+ s)) − Eh(N(φ; t))
∣∣∣∣ 6 ε.

That is to say,
dH(p(t+ s,φ, ·),p(t,φ, ·)) 6 ε, ∀t > T , s > 0.

Consequently, {p(t,φ, ·) : t > 0} is Cauchy in the space Λ(Φ). It follows that there exists a unique measure
µ(·) ∈ Λ(Φ) such that

lim
t→+∞dH(p(t, κ, ·),µ(·)) = 0,

where κ = κ(ξ) ≡ (0.1, · · · , 0.1)T , ξ ∈ [−τ, 0]. But from (2.14), we have

lim
t→+∞dH(p(t,φ, ·),p(t, κ, ·)) = 0.

Therefore

lim
t→+∞dH(p(t,φ, ·),µ(·)) 6 lim

t→+∞dH(p(t,φ, ·),p(t, κ, ·)) + lim
t→+∞dH(p(t, κ, ·),µ(·)) = 0.

This completes the proof of the existence and uniqueness of µ. At the same time, by (2.9), µ(Λ0) = 0.
Now we are in the position to prove the ergodicity of µ. In fact, the distribution of N(t) converges to

µ as t → +∞. In view of [9, Corollary 3.4.3], we can see that µ(·) is strong mixing. It then follows from
[9, Theorem 3.2.6] that µ(·) is ergodic. By virtue of (3.3.2) in [9], one can observe that

lim
t→+∞ t−1

∫t
0
N(s)ds =

∫
Rn+

Nµ(dN).

This, together with (2.9), means (2.4).

Remark 2.10. When Theorem 2.4 is applied to the logistic model (1.4), we can obtain that if r− σ2

2 > 0, the
distribution of N(t) converges to a unique measure ν which is ergodic:

lim
t→+∞ t−1

∫t
0
N(s)ds =

∫
R+

Nν(dN) = K

(
r−

σ2

2

)
.

Therefore,

λ(ν) =

∫
R+

λ(N)ν(dN) =

∫
R+

(
r−

N

K
−

1
2
σ2
)
ν(dN) = r−

1
2
σ2 −

(
r−

1
2
σ2
)

= 0.

Hence we can not use the results in [35] to investigate the SP2 of model (1.4).

Under (2.2), Assumptions 2.2 and 2.3, Theorem 2.4 has established the sufficient conditions for SP2 of
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model (2.1). In the following, we shall show that these conditions are sharp when n = 2. Consider the
following model: 

dN1(t) = N1(t
−)

[
r1 − c11N1(t

−) − c12N2(t
− − τ12)

]
dt

+ σ1N1(t
−)dW1(t) +N1(t

−)

∫
Y

γ1(u)Γ̃(dt,du),

dN2(t) = N2(t
−)

[
r2 − c21N1(t

− − τ21) − c22N2(t
−)

]
dt

+ σ2N2(t
−)dW2(t) +N2(t

−)

∫
Y

γ2(u)Γ̃(dt,du),

(2.16)

with initial data
(N1(ξ),N2(ξ))

T = (φ1(ξ),φ2(ξ))
T ∈ Φ.

Lemma 2.11 ([26]). For model (2.16), let (2.2) and Assumption 2.2 hold. If b1 > 0, b2 > 0 and ∆ := c11c22 −
c12c21 > 0, then

(i) if f1 > 0 and f2 < 0, then N2 goes extinct a.s.;
(ii) if f1 < 0 and f2 > 0, then N1 goes extinct a.s.

Clearly, Assumption 2.3 means that ∆ > 0. Moreover, it is easy to see that if ∆ > 0, then f1 < 0 and
f2 < 0 can not hold simultaneously. Therefore, by Lemma 2.11 and Theorem 2.4, we have:

Corollary 2.12. For model (2.16), let (2.2), Assumption 2.2 and Assumption 2.3 hold. If b1 > 0 and b2 > 0, then:

(a) if f1 > 0 and f2 > 0, then model (2.16) is SP2, and at the same time, µ is ergodic with∫
R2
+

Nµ(dN) = lim
t→+∞ t−1

∫t
0
N(s)ds =

(
b1c22 − b2c12

c11c22 − c12c21
,
b2c11 − b1c21

c11c22 − c12c21

)T
, a.s.;

(b) if f1 > 0 and f2 < 0, then N2 goes extinct a.s., and N1 is SP2 with an ergodic measure µ̄:∫
R+

N1µ̄(dN1) = lim
t→+∞ t−1

∫t
0
N1(s)ds =

b1

c11
, a.s.;

(c) if f1 < 0 and f2 > 0, then N1 goes extinct a.s., and N2 is SP2 with an ergodic measure µ̂:∫
R+

N2µ̂(dN2) = lim
t→+∞ t−1

∫t
0
N2(s)ds =

b2

c22
, a.s. .

3. Numerical simulations

Now let us work out some numerical figures to illustrate the results. For simplicity, let us consider
model (2.16) with r1 = 0.8, r2 = 0.5, c11 = 0.5, c12 = 0.4, c21 = 0.3, c22 = 0.4, σ2

2 = 0.3, Y = [0,+∞),
θ(Y) = 1, γ1(u) ≡ 0.5162, γ2(u) ≡ 0.3504, τ1 = τ2 = 5, N1(θ) = 0.5 + 0.1 sin θ, N2(θ) = 0.4 − 0.2 sin θ.
Clearly, (2.2), Assumptions 2.2 and 2.3 hold, and b2 = 0.3. The only difference between Figure 1, Figure 2
and Figure 3 is that the value of σ2

1 is different.
• In Figure 1, we choose σ2

1/2 = 0.3, then b1 = 0.4. According to (a) in Corollary 2.12, model (2.16) is
SP2 and

lim
t→+∞ t−1

∫t
0
N1(s)ds = 0.5,

lim
t→+∞ t−1

∫t
0
N2(s)ds = 0.375.
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See Figure 1. Figure 1 (a) is a sample path and Figure 1 (b) is the density of the distribution at time
t = 5000 ([6]).
• In Figure 2, we set σ2

1/2 = 0.1, then b1 = 0.6. By virtue of (b) in Corollary 2.12, N1 is SP2,

lim
t→+∞ t−1

∫t
0
N1(s)ds = 1.2, and N2 goes extinct, see Figure 2.

• In Figure 3, we choose σ2
1/2 = 0.5, then b1 = 0.2. In view of (c) in Corollary 2.12, N1 goes extinct,

N2 is SP2, and lim
t→+∞ t−1

∫t
0
N2(s)ds = 0.75, see Figure 3.
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Figure 1: Model (2.16) with r1 = 0.8, r2 = 0.5, c11 = 0.5, c12 = 0.4, c21 = 0.3, c22 = 0.4, σ2
2 = 0.3, Y = [0,+∞), θ(Y) = 1,

γ1(u) ≡ 0.1, γ2(u) ≡ 0.05, σ2
1/2 = 0.3, τ1 = τ2 = 5, N1(θ) = 0.5 + 0.1 sin θ, N2(θ) = 0.4 − 0.2 sin θ. (a) is a sample path; (b) is the

density of the distribution at time t = 5000.
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Figure 2: A sample path of model (2.16) with the same parameter values given in Figure 1 except σ2
1/2 = 0.1.
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Figure 3: A sample path of model (2.16) with the same parameter values given in Figure 1 except σ2
1/2 = 0.5.

4. Conclusions and discussions

Permanence is one of the most interesting and important topics in ecology and epidemics. However,
one widely used concept of permanence for stochastic population models, SP1, can not ensure the long-
term survival of all species. Schreiber et al. [35] proposed a more appropriate concept, SP2. However, the
methods in [35] can not apply to investigate most stochastic population models. In this paper, we use an
asymptotic approach to investigate the SP2. Sufficient criteria for the SP2 of a stochastic delay competition
model with Lévy jumps are established. We also show that these criteria are sharp when n = 2.

Our results show that the stochastic perturbations play a key role in determining the SP2 of the models.
To see this more clearly, let us consider model (2.16). Corollary 2.12 shows that the permanence or not of
species i depends only on the sign of fi, i = 1, 2, where

f1 = b1 −
c12

c22
b2, f2 = b2 −

c21

c11
b1,

bi = ri − 0.5σ2
i −

∫
Y

[
γi(u) − ln(1 + γi(u))

]
θ(du).

Firstly, let us consider the effects of white noises. Clearly,

∂f1

∂(σ2
1)
< 0,

∂f1

∂(σ2
2)
> 0,

∂f2

∂(σ2
1)
> 0,

∂f2

∂(σ2
2)
< 0.

Therefore, with the increasing of σ2
i, the species i tends to go extinct while the species j tends to be

permanent, i, j = 1, 2, i 6= j. That is to say, the white noise of a species is harmful for the permanence of
this species and is favorable for the permanence of its competitor.

Now let us consider the effect of Lévy noises. For simplicity, we let γi(u) be a constant, κi, hence

bi = ri − 0.5σ2
i − (κi − ln(1 + κi)), i = 1, 2.

Not that
a− ln(1 + a) = a+ 1 − 1 − ln(1 + a) > 0, a > −1,

thus
bi 6 ri − 0.5σ2

i, i = 1, 2.
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Therefore the Lévy noise of a species is harmful for the permanence of this species and is favorable for
the permanence of its competitor.

It is useful to point out that the method used in this paper can also be used to study other stochastic
population models with/without time delay and/or Lévy noises. For example, consider the following
delay stochastic predator-prey model with delay ([26]):

dN1(t) = N1(t
−)

[
r1 − c11N1(t

−) − c12N2(t
− − τ12)

]
dt

+ σ1N1(t
−)dW1(t) +N1(t

−)

∫
Y

γ1(u)Γ̃(dt,du),

dN2(t) = N2(t
−)

[
r2 − c21N1(t

− − τ21) − c22N2(t
−)

]
dt

+ σ2N2(t
−)dW2(t) +N2(t

−)

∫
Y

γ2(u)Γ̃(dt,du),

(4.1)

with initial data
(N1(ξ),N2(ξ))

T = (φ1(ξ),φ2(ξ))
T ∈ Φ,

where r2 < 0, c21 < 0. For model (4.1), Liu et al. [26] have shown that if b1 < 0, then both species 1 and 2
go extinct a.s.; if b1 > 0 and f2 < 0, then species 2 goes extinct a.s. Clearly, f2 > 0 means b1 > 0. According
to the steps below Theorem 2.4, similar to the proof of Theorem 2.4, we can show that for model (4.1),
• if f2 > 0, then model (4.1) is SP2, and at the same time, µ is ergodic with∫

R2
+

Nµ(dN) = lim
t→+∞ t−1

∫t
0
N(s)ds =

(
b1c22 − b2c12

c11c22 − c12c21
,
b2c11 − b1c21

c11c22 − c12c21

)T
, a.s.;

• if b1 > 0 and f2 < 0, then N2 goes extinct a.s., and N1 is SP2 with an ergodic measure µ̃:∫
R+

N1µ̃(dN1) = lim
t→+∞ t−1

∫t
0
N1(s)ds =

b1

c11
, a.s.;

• if b1 < 0, then both N1 and N2 go extinct a.s.

Some interesting questions deserve further investigation. In this paper, we consider the stochastic
perturbations. The fractional derivative is another tool to show long term effects, and the population
models often are discrete, then it is interesting to consider discrete fractional population models (see e.g.
[40, 41]). It is also interesting to consider the necessity of conditions in Theorem 2.4. Another problem of
interest is to consider some more realistic but complex models (see, e.g., [2, 19, 43, 44]), or other stochastic
delay population models, for example, mutualism models (see, e.g., [45]), food chain models (see, e.g.,
[21]). All these questions are left for future study.
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