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Abstract
Our aim in this paper is to investigate the existence and uniqueness of the positive solutions and the asymptotic behavior

of the equilibrium points of the fuzzy difference equation

xn+1 =
Axn−1xn−2

D+Bxn−3 +Cxn−4
, n = 0, 1, 2, · · · ,

where xn is a sequence of positive fuzzy numbers, the parameters A, B, C, D and the initial conditions x−4, x−3, x−2, x−1, x0
are positive fuzzy numbers. Moreover, some numerical examples to the difference system are given to verify our theoretical
results. c©2017 All rights reserved.
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1. Introduction

Because of the necessity for some techniques that can be used in mathematical models describing
the real world phenomenon, nonlinear difference equation have been studied in the fields of population
biology, economics, probability theory, genetics, psychology etc., (see, e.g., [4, 10, 21, 22, 25] and the ref-
erences therein). In recent years, with the dramatically development of computer-based computational
techniques, difference equation is found to be much appropriate mathematical representation for com-
puter simulation and experiment (see, e.g., [9, 26–29] and the references therein). However, in view of
the facts that the information of the difference equation model to describe many practical problems is
incomplete and the fuzzy set theory is a powerful tool for modeling uncertainty and for processing vague
or subjective information in mathematical model, it is more interesting to investigate the behavior of
solutions of a system of fuzzy difference equation where the parameters and the initial values are fuzzy
numbers and its solutions are sequences of fuzzy numbers (see, e.g., [1, 7, 11, 12, 15–18] and the references
therein).
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Making a historical flash back for the equation we study in this paper, we should mention that in 1996,
Deeba et al. [6] studied the first order difference equation

xn+1 = wxn + q, n = 0, 1, · · · ,

where xn is a sequence of fuzzy numbers and x0,q,w are fuzzy numbers, which arise in population
genetics. Moreover, Deeba and Korvin [5] studied the following second order linear fuzzy difference
equation

Cn+1 = Cn − abCn−1 +m, n = 0, 1, · · · ,

where Cn is a sequence of fuzzy numbers and a,b,m,C0,C1 are fuzzy numbers. This equation is a
linearized model of a nonlinear model which determines the carbon dioxide (CO2) level in the blood.

In 2003, Papaschinopoulos and Stefanidou [20] studied the existence, the uniqueness, the boundedness
and persistence of the positive solutions of the following fuzzy difference equation

xn+1 =

k∑
i=0

Ai

x
pi
n−i

, n = 0, 1, · · · ,

where k ∈ {1, 2, · · ·} , the parameters Ai, i ∈ {0, 1, · · · , k} are positive fuzzy numbers, the parameters
pi, i ∈ {0, 1, · · · , k} are positive real constants and the initial values xi, i ∈ {−k,−k+ 1, · · · , 0} are
positive fuzzy numbers. Moreover, in 2006, they [24] considered the periodicity of the positive solutions
of the following max-type fuzzy difference equation

xn+1 = max
{
A0

xn−k
,

A1

xn−m

}
, n = 0, 1, · · · ,

where k,m are positive integers, A0,A1 and the initial values xi, i ∈ {−d,−d+ 1, · · · ,−1} ,d = max {k, m}

are positive fuzzy numbers.
Recently, Zhang et al. [33] studied the existence, asymptotic behavior of the positive solutions of a

fuzzy nonlinear difference equation

xn+1 =
Axn + xn−1

B+ xn−1
, n = 0, 1, 2, · · · ,

where {xn} is a sequence of positive fuzzy number, A,B are positive fuzzy numbers and the initial condi-
tions x−1, x0 are positive fuzzy numbers. Moreover, in 2014, Zhang et al [34] continuously dealt with the
existence, the boundedness and the asymptotic behavior of the positive solutions for a first order fuzzy
Ricatti difference equation

xn+1 =
A+ xn
B+ xn

, n = 0, 1, 2, · · · ,

where {xn} is a sequence of positive fuzzy numbers, A,B and the initial value x0 are positive fuzzy
numbers.

More recently, in 2015, Zhang et al. [32] investigated the boundedness, persistence and global behavior
of a positive fuzzy solution of the third-order rational fuzzy difference equation

xn+1 = A+
xn−1

xn−1xn−2
, n = 0, 1, 2, · · · ,

where A and initial values x0, x−1, x−2 are positive fuzzy numbers. In 2017, Khastan [13] considered
the existence, uniqueness and global behavior of the solution for the following two inequivalent fuzzy
difference equations

xn+1 − q = wxn, n = 0, 1, · · · .
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Motivated by the discussions above, this paper aims at studying the existence and uniqueness of the
positive solutions and the asymptotic behavior of the equilibrium points of the following five-order fuzzy
nonlinear difference equation

xn+1 =
Axn−1xn−2

D+Bxn−3 +Cxn−4
, n = 0, 1, 2, · · · , (1.1)

where {xn} is a sequence of positive fuzzy numbers, A,B,C,D and the initial conditions x−4, x−3, x−2,
x−1, x0 are positive fuzzy numbers. When the parameters and the initial values are positive real numbers,
Wang et al. [30] considered the global attractivity of the equilibrium point, and the asymptotic behavior
of the solutions of the difference equation (1.1).

This paper is arranged as follows: in Section 2, we give some definitions and preliminary results. The
main results and their proofs are given in Section 3. Finally, some numerical simulations are given to
illustrate our theoretical analysis.

2. Preliminaries and notations

For the convenience of the readers, we give the following definitions and preliminary results, see
[2, 3, 8, 14, 23].

Definition 2.1. For a set B we denote by B̄ the closure of B. We say that a function A : R→ [0, 1] is a fuzzy
number if it satisfies the following properties

(i) A is normal, i.e., there exists x ∈ R such that A(x) = 1;

(ii) A is a fuzzy convex, i.e., A(tx1 + (1 − t)x2) > min{A(x1),A(x2)}, for all t ∈ [0, 1], x1, x2 ∈ R;

(iii) A is upper semicontinuous on R;

(iv) A is compactly supported, i.e., suppA = ∪α∈(0,1][A]α = {x ∈ R : A (x) >0} is compact.

Let us denote by Rf the set of all fuzzy numbers. For α ∈ (0, 1] and A ∈ Rf, we denote α-cuts of fuzzy
number A by [A]α = {x ∈ R : A (x) > α} and [A]0 = {x ∈ R : A (x) >0}. We call [A]0 the support of fuzzy
number A and denote it by supp (u). It is clear that the [A]α is a bounded closed interval in R, we say that
a fuzzy number A is positive if suppA ⊂ (0, ∞). It is obvious that if A is a positive real number (trivial
fuzzy number), then A is a positive fuzzy number with [A]α = [A, A]. For u,ν ∈ Rf, [u]α = [ul, α, ur, α],
[ν]α = [νl, α, νr, α], and λ ∈ R, the sum µ+ ν, the scalar product λµ, multiplication uν and division u

ν in
the standard interval arithmetic (SIA) setting are defined by

[µ+ ν]α = [µ]α + [ν]α, [λµ]α = λ [µ]α, ∀α ∈ [0, 1],

[uν]α = [min {ul, ανl, α,ul, ανr, α,ur, ανl, α,ur, ανr, α} , max {ul, ανl, α, ul, ανr, α,ur, ανl, α,ur, ανr, α}] ,[u
ν

]
α
=

[
min
{
ul, α
νl, α

,
ul, α
νr, α

,
ur, α

νl, α
,
ur, α

νr, α

}
, max

{
ul, α
νl, α

,
ul, α
νr, α

,
ur, α

νl, α
,
ur, α

νr, α

}]
, 0 /∈ [ν]α.

Definition 2.2. Let u, v be fuzzy numbers with [u]α = [ul, α, ur, α], [ν]α = [νl, α, νr, α], α ∈ [0, 1]. Then
we define the metric on the fuzzy numbers set as follows

D(u, v) = sup max {|ul, α − vl, α| , |ur, α − vr, α|} ,

where sup is taken for all α ∈ [0, 1]. Then (Rf,D) is a complete metric space. For future use we define
0̂ ∈ Rf as

0̂(x) =
{

1, x = 0,
0, x 6= 0.

Thus, [0̂]α = [0, 0], 0 < α 6 1.



C. Y. Wang, X. L. Su, P. Liu, X. H. Hu, R. Li, J. Nonlinear Sci. Appl., 10 (2017), 3303–3319 3306

Lemma 2.3. Let Ix, Iy be some intervals of real numbers and let f : Ik+1
x × Il+1

y → Ix, g : Ik+1
x × Il+1

y → Iy be
continuously differentiable functions. Then for every set of initial conditions (xi, yj) ∈ Ix × Iy, (i = −k,−k+
1, · · · , 0, j = −l,−l+ 1, · · · , 0), the following system of difference equations

xn+1 = f(xn, xn−1, · · · , xn−k, yn, yn−1, · · · , yn−l),

yn+1 = g(xn, xn−1, · · · , xn−k, yn, yn−1, · · · , yn−l),
n = 0, 1, 2, · · · , (2.1)

has a unique solution {(xi,yj)}
+∞, +∞
i=−k,j=−l.

Definition 2.4. A point (x̄, ȳ) ∈ Ix × Iy is called an equilibrium point of system (2.1) if

x̄ = f(x̄, x̄, · · · , x̄, ȳ, ȳ, · · · , ȳ), ȳ = g (x̄, x̄, · · · , x̄, ȳ, ȳ, · · · , ȳ) .

That is, (xn,yn) = (x̄, ȳ) for n > 0 is the solution of difference system (2.1), or equivalently, (x̄, ȳ) is a
fixed point of the vector map (f, g).

Definition 2.5. Assume that (x̄, ȳ) is an equilibrium point of the system (2.1). Then, we have

(i) An equilibrium point (x̄, ȳ) is called locally stable, if for every ε > 0, there exists δ > 0 such that
for any initial conditions (xi,yi) ∈ Ix × Iy, (i = −k, · · · , 0, j = −l, · · · , 0), with

∑0
i=−k |xi − x̄| <

δ,
∑0
j=−l

∣∣yj − ȳ∣∣ < δ, we have |xn − x̄| < ε, |yn − ȳ| < ε for any n > 0.

(ii) An equilibrium point (x̄, ȳ) is called attractor, if limn→∞xn = x̄, limn→∞yn = ȳ for any initial
conditions (xi,yi) ∈ Ix × Iy, (i = −k, · · · , 0, j = −l, · · · , 0).

(iii) An equilibrium point (x̄, ȳ) is called asymptotically stable, if it is stable, and is also attractor.

(iv) An equilibrium point (x̄, ȳ) is called unstable, if it is not locally stable.

Definition 2.6. Let (x̄, ȳ) be an equilibrium point of the vector map F = (f, xn, · · · , xn−k,g, yn, · · · ,yn−l),
where f and g are continuously differentiable functions at (x̄, ȳ). The linearized system of (2.1) about the
equilibrium point (x̄, ȳ) is Xn+1 = F(Xn) = Fj · Xn, where FJ is the Jacobian matrix of the system (2.1)
about (x̄, ȳ) and Xn = (xn, · · · , xn−k,yn, · · · ,yn−l)T .

Definition 2.7. let p,q, s, t be four nonnegative integers such that p + q = n, s + t = m. Split x =
(x1, x2, · · · , xn) into x = ([x]p, [x]q) and y = (y1, y2, · · · ,ym) into y = ([y]s, [y]t), where [x]σ denotes
a vector with σ-components of x. We say that the function f(x1, x2, · · · , xn, y1, y2, · · · ,ym) possesses
a mixed monotone property in subsets Inx × Imy of Rn × Rm, if f( [x]p, [x]q, [y]s, [y]t) is monotone
non-decreasing in each component of ([x]p, [y]s), and is monotone non-increasing in each component of
([x]q, [y]t) for (x,y) ∈ Inx × Imy . In particular, if q = 0, t = 0 , then it is said to be monotone non-decreasing
in Inx × Imy .

Lemma 2.8. Assume that X(n + 1) = F(X(n)), n = 0, 1, · · · is a system of difference equations and X̄ is the
equilibrium point of this system i.e., F(X̄) = X̄. Then we have

(i) If all eigenvalues of the Jacobian matrix JF about X̄ lie inside the open unit disk |λ| < 1, then X̄ is locally
asymptotically stable.

(ii) If one of eigenvalues of the Jacobian matrix JF about X̄ has norm greater than one, then X̄ is unstable.

Lemma 2.9. Assume that X(n+ 1) = F(X(n)), n = 0, 1, · · · , is a system of difference equations and X̄ is the
equilibrium point of this system, the characteristic polynomial of this system about the equilibrium point X̄ is
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P(λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an = 0, with the real coefficients and a0 > 0. Then all roots of the
polynomial P(λ) lie inside the open unit disk |λ| < 1 if and only if

∆k > 0, for k = 1, 2, · · · ,n,

where ∆k is the principal minor of order k of the n×n matrix

∆n =


a1 a3 a5 · · · 0
a0 a2 a4 · · · 0
0 a1 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an

 .

3. Main results

First we study the existence and uniqueness of the positive solutions of (1.1), we need the following
lemmas.

Lemma 3.1 ([19]). Let f be a continuous function from R+ × R+ × R+ into R+ and A,B,C be fuzzy numbers.
Then

[f(A, B, C)]α = f([A]α, [B]α, [C]α), α ∈ (0, 1].

Lemma 3.2 ([2, 31]). Let u ∈ Rf, write [u]α = [ul, α,ur, α], α ∈ (0, 1]. Then ul, α and ur, α can be regarded as
functions on (0, 1] which satisfy

(i) ul, α is nondecreasing and left continuous;

(ii) ur, α is nonincreasing and left continuous;

(iii) ul, α 6 ur, α.

Conversely for any functions a(α) and b(α) defined on (0, 1] which satisfy (i)-(iii) in the above, there
exists a unique u ∈ Rf such that u(α) = [a(α), b(α)], for any α ∈ (0, 1].

Theorem 3.3. Consider equation (1.1), where A,B,C,D are positive fuzzy numbers. Then for any positive fuzzy
numbers x−4, x−3, x−2, x−1, x0, there exists a unique positive solution xn of (1.1) with initial conditions
x−4, x−3, x−2, x−1, x0.

Proof. Suppose that there exists a sequence of fuzzy numbers {xn} satisfying (1.1) with initial conditions
x−4, x−3, x−2, x−1, x0. Consider the α-cuts, α ∈ (0, 1],

[A]α = [Al,α,Ar,α], [B]α = [Bl,α,Br,α], [C]α = [Cl,α,Cr,α],

[D]α = [Dl,α,Dr,α], [xn]α = [Ln,α,Rn,α], n = −4,−3, · · · . (3.1)

Then from (1.1), (3.1) and Lemma 3.1, it follows that

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Axn−1xn−2

D+Bxn−3 +Cxn−4

]
α

=
[Axn−1xn−2]α

[D+Bxn−3 +Cxn−4]α

=
[Al,α,Ar,α][Ln−1,α,Rn−1,α][Ln−2,α,Rn−2,α]

[Dl,α,Dr,α] + [Bl,α,Br,α][Ln−3,α,Rn−3,α] + [Cl,α,Cr,α][Ln−4,α,Rn−4,α]

=
[Al,αLn−1,αLn−2,α , Ar,αRn−1,αRn−2,α]

[Dl,α +Bl,αLn−3,α +Cl,αLn−4,α,Dr,α +Br,αRn−3,α +Cr,αRn−4,α]

=

[
Al,αLn−1,αLn−2,α

Dr,α +Br,αRn−3,α +Cr,αRn−4,α
,

Ar,αRn−1,αRn−2,α

Dl,α +Bl,αLn−3,α +Cl,αLn−4,α

]
,
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from the above equation, for α ∈ (0, 1], n = −4,−3, · · · , we have

Ln+1,α =
Al,αLn−1,αLn−2,α

Dr,α +Br,αRn−3,α +Cr,αRn−4,α
, Rn+1,α =

Ar,αRn−1,αRn−2,α

Dl,α +Bl,αLn−3,α +Cl,αLn−4,α
. (3.2)

Then from Lemma 2.3 it is obvious that for any (Lj,α,Rj,α), j = −4,−3,−2,−1, 0, there exists a unique
solution (Ln, α, Rn, α) of the systems (3.2) with initial conditions (Lj, α, Rj, α), j = −4,−3,−2,−1, 0, α ∈
(0, 1].

Conversely, we prove that (Ln, α, Rn, α), α ∈ (0, 1] where (Ln, α, Rn, α) is the solution of the system
(3.2) with initial conditions (Lj, α, Rj, α), j = −4,−3,−2,−1, 0 determines the solution {xn} of (1.1) with
initial conditions x−4, x−3, x−2, x−1, x0 such that

[xn]α = [Ln,α,Rn,α], α ∈ (0, 1], n = −4,−3, · · · . (3.3)

From Lemma 3.2 and since A,B,C,D, xj, j = −4,−3,−2,−1, 0 are positive fuzzy numbers for any α1, α2 ∈
(0, 1], α1 < α2, we have

0 < Al,α1 6 Al,α2 6 Ar,α2 6 Ar,α1 , 0 < Bl,α1 6 Bl,α2 6 Br,α2 6 Br,α1 ,

0 < Cl,α1 6 Cl,α2 6 Cr,α2 6 Cr,α1 , 0 < Dl,α1 6 Dl,α2 6 Dr,α2 6 Dr,α1 ,

0 < Lj,α1 6 Lj,α2 6 Rj,α2 6 Rj,α1 , j = −4,−3,−2,−1, 0.

(3.4)

We prove by mathematical induction that

0 < Ln,α1 6 Ln,α2 6 Rn,α2 6 Rn,α1 , n = 1, 2, · · · . (3.5)

From (3.4), we have that (3.5) holds for n = −4,−3, · · · , 0. Suppose that (3.5) are true for n 6 k, k ∈
{1, 2, · · · }, then from (3.3), (3.4), (3.5), it follows that for n = k+ 1

LK+1,α1 =
Al,α1LK−1,α1LK−2,α1

Dr,α1 +Br,α1RK−3,α1 +Cr,α1RK−4,α1

6
Al,α2LK−1,α2LK−2,α2

Dr,α2 +Br,α2RK−3,α2 +Cr,α2RK−4,α2

= LK+1,α2

6
Ar,α2RK−1,α2RK−2,α2

Dl,α2 +Bl,α2LK−3,α2 +Cl,α2LK−4,α2

= RK+1,α2

6
Ar,α1RK−1,α1RK−2,α1

Dl,α1 +Bl,α1LK−3,α1 +Cl,α1LK−4,α1

= RK+1,α1 .

Therefore (3.5) are true.
Moreover from (3.2), we have

L1,α =
Al,αL−1,αL−2,α

Dr,α +Br,αR−3,α +Cr,αR−4,α
, R1,α =

Ar,αR−1,αR−2,α

Dl,α +Bl,αL−3,α +Cl,αL−4,α
, α ∈ (0, 1]. (3.6)

Then since A,B,C,D, xj, j = −4,−3,−2,−1, 0 are positive fuzzy numbers, from Lemma 3.2, we have that
Al,α, Ar,α, Bl,α, Br,α, Cl,α, Cr,α, Dl,α, Dr,α, L−1,α, R−1,α, L−2,α, R−2,α, L−3,α, R−3,α, L−4,α, R−4,α are
left continuous. Thus, from (3.6) we have that L1,α,R1,α are also left continuous. Moreover, we can prove
that Ln,α,Rn,α, n = 1, 2, · · · , are left continuous by mathematical induction.

Now, we prove that the support of xn, Supp xn =
⋃
α∈(0,1][Ln,α,Rn,α] is compact. It is sufficient to

prove that
⋃
α∈(0,1] [Ln,α,Rn,α] is bounded.

Let n = 1. Since A,B,C,D, xj, j = −4,−3,−2,−1, 0 are positive fuzzy numbers, there exist constants
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Mi, Ni > 0, i = 1, 2, 3, 4 such that for all α ∈ (0, 1]

[Al,α,Ar,α] ⊂ [M1,N1], [Bl,α,Br,α] ⊂ [M2,N2],
[Cl,α, Cr,α] ⊂ [M3,N3], [Dl,α,Dr,α] ⊂ [M4,N4], (3.7)
[Lj,α,Rj,α] ⊂ [Mj,Nj], j = −4,−3,−2,−1, 0,

therefore from (3.6) and (3.7) we can prove that

[L1,α, R1,α] ⊂ [
M1M−1M−2

N4 +N2N−3 +N3N−4
,

N1N−1N−2

M4 +M2M−3 +M3M−4
], α ∈ (0, 1],

from which it is obvious that⋃
α∈(0,1] [L1,α,R1,α] ⊂ [

M1M−1M−2

N4 +N2N−3 +N3N−4
,

N1N−1N−2

M4 +M2M−3 +M3M−4
]. (3.8)

Relation (3.8) implies that
⋃
α∈(0,1][L1,α,R1,α] is compact and

⋃
α∈(0,1][L1,α,R1,α] ⊂ (0,∞). Thus, by math-

ematical induction we can prove that
⋃
α∈(0,1][Ln,α,Rn,α] is compact and⋃

α∈(0,1][Ln,α,Rn,α] ⊂ (0,∞), n = 1, 2, · · · . (3.9)

Therefore from Lemma 3.2, relations (3.5) and (3.9), and Ln,α,Rn,α are left continuous, we have that
[Ln,α, Rn,α] determines a sequence of positive fuzzy numbers {xn} such that (1.1) holds.

Now, we prove that {xn} is the solution of (1.1) with initial dates x−4, x−3, x−2, x−1, x0. Since for all

[xn+1]α = [Ln+1,α,Rn+1,α]

=

[
Al,αLn−1,αLn−2,α

Dr,α +Br,αRn−3,α +Cr,αRn−4,α
,

Ar,αRn−1,αRn−2,α

Dl,α +Bl,αLn−3,α +Cl,αLn−4,α

]
=

[
Axn−1xn−2

D+Bxn−3 +Cxn−4

]
α

,

we have that {xn} is the solution of (1.1) with initial dates x−4, x−3, x−2, x−1, x0.
Suppose that there exists another solution {x∗n} of (1.1) with initial conditions x−4, x−3, x−2, x−1, x0,

then we can easily prove by arguing as above that

[x∗n]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, · · · , (3.10)

then from (3.3) and (3.10) we have that

[xn]α = [x∗n]α, α ∈ (0, 1], n = −4,−3, · · · ,

from which it holds xn = x∗n, α ∈ (0, 1], n = −4,−3, · · · , and then the proof is completed.

In the following theorem we investigate the asymptotic behavior of the equilibrium point of (1.1).
If {xn} is the unique positive solution of (1.1) with the initial values x−4, x−3, x−2, x−1, x0 such that

[xn]α = [Ln,α,Rn,α], α ∈ (0, 1], n = 0, 1, · · · ,

then we obtain that (Ln,α, Rn,α) satisfies the family of systems of ordinary difference equations

Ln+1,α =
Al,αLn−1,αLn−2,α

Dr,α +Br,αRn−3,α +Cr,αRn−4,α
,

Rn+1,α =
Ar,αRn−1,αRn−2,α

Dl,α +Bl,αLn−3,α +Cl,αLn−4,α
, α ∈ (0, 1], n = 0, 1, · · · .

(3.11)
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In order to study the asymptotic behavior of (1.1), from (3.11), we will consider the following systems
of ordinary parametric difference equations

yn+1 =
ayn−1yn−2

h+ dzn−3 + fzn−4
,

zn+1 =
bzn−1zn−2

g+ cyn−3 + eyn−4
, n = 0, 1, · · · ,

(3.12)

where the parametric a,b, c,d, e, f,g,h are positive real constants and initial values y−4, y−3, y−2, y−1, y0,
z−4, z−3, z−2, z−1, z0 are also positive real constants. From Lemma 2.3, we know that the systems of
ordinary parametric difference equations (3.12) have a unique solutions (yn, zn) for any initial values.
Moreover, we can easily obtain that the systems (3.12) have three equilibrium points

X1 = (ȳ1, z̄1) = (0, 0), X2 = (ȳ2, z̄2) = (0,
g

b
), X3 = (ȳ3, z̄3) = (

h

a
, 0),

if ab > (c+ e)(d+ f), equation (3.12) has the fourth positive equilibrium point X4,

X4 = (ȳ4, z̄4) = (
bh+ g(d+ f)

ab− (c+ e)(d+ f)
,

ag+ h(c+ e)

ab− (c+ e)(d+ f)
).

Theorem 3.4. The equilibrium point X1 of (3.12) is locally asymptotically stable.

Proof. Let F : (R+)4 → R+, H : (R+)4 → R+ be multivariate function defined by

F(yn−1,yn−2, zn−3, zn−4) =
ayn−1yn−2

h+ dzn−3 + fzn−4
, H(zn−1, zn−2,yn−3,yn−4) =

bzn−1zn−2

g+ cyn−3 + eyn−4
,

thus, we have

Fyn−1 =
ayn−2

h+ dzn−3 + fzn−4
, Fyn−2 =

ayn−1

h+ dzn−3 + fzn−4
,

Fzn−3 = −
adyn−1yn−2

(h+ dzn−3 + fzn−4)
2 , Fzn−4 = −

afyn−1yn−2

(h+ dzn−3 + fzn−4)
2 ,

Hzn−1 =
bzn−2

g+ cyn−3 + eyn−4
, Hzn−2 =

bzn−1

g+ cyn−3 + eyn−4
,

Hyn−3 = −
bczn−1zn−2

(g+ cyn−3 + eyn−4)
2 , Hyn−4 = −

bezn−1zn−2

(g+ cyn−3 + eyn−4)
2 .

(3.13)

Moreover, we can easily obtain that the linearized equations of the system (3.12) about the equilibrium
point X1 is

ϕn+1 = D1ϕn, (3.14)

where

φn =



yn
yn−1
yn−2
yn−3
yn−4
zn
zn−1
zn−2
zn−3
zn−4


, D1 =



0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


,
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the characteristic equation with (3.14) is λ10 = 0, since we have |λ| < 1, from Lemma 2.8, we have that the
equilibrium point X1 of (3.12) is locally asymptotically stable, and then the proof is completed.

Theorem 3.5. The equilibrium point X2 of (3.12) is unstable.

Proof. From (3.13), we have that the linearized equations of (3.12) about the equilibrium point X2 is

ϕn+1 = D2ϕn, (3.15)

where

φn =



yn
yn−1
yn−2
yn−3
yn−4
zn
zn−1
zn−2
zn−3
zn−4


, D2 =



0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −

c

b
−
e

b
0 1 1 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


,

the characteristic equation of the systems (3.15) is

λ7 (λ3 − λ− 1) = 0. (3.16)

It is obvious that there exists |λ| > 1 so that λ7 (λ3 − λ− 1) = 0, therefore, one of the roots of characteristic
equation (3.16) lies outside unit disk, according to Lemma 2.8, we have that the equilibrium point X2 of
(3.12) is unstable, and then the proof is completed.

Theorem 3.6. The equilibrium point X3 of (3.12) is unstable.

Proof. From (3.13), we have that the linearized equation of (3.12) about the equilibrium point X3 is

ϕn+1 = D3ϕn, (3.17)

where

φn =



yn
yn−1
yn−2
yn−3
yn−4
zn
zn−1
zn−2
zn−3
zn−4


, D3 =



0 1 1 0 0 0 0 0 −
d

a
−
f

a
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


,

the characteristic equation of the systems (3.17) is

λ7 (λ3 − λ− 1) = 0,

which is the same with (3.16), therefore the equilibrium point X3 of (3.12) is unstable, and then the proof
is completed.
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Theorem 3.7. If ab > (c+ e)(d+ f), equation (3.12) has the positive equilibrium point X4, and the equilibrium
point is unstable.

Proof. From (3.13), we have that the linearized equation of (3.12) about the equilibrium point X4 is

ϕn+1 = D4ϕn, (3.18)

where

φn =



yn
yn−1
yn−2
yn−3
yn−4
zn
zn−1
zn−2
zn−3
zn−4


, D4 =



0 1 1 0 0 0 0 0 −
d

a
−
f

a
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −

c

b
−
e

b
0 1 1 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0



,

the characteristic equation of the systems (3.18) is

λ
10 −2 λ8 −2 λ7 + λ

6 +2 λ5 + λ
4 −
cd

ab
λ

2 −(
cf+ de

ab
) λ−

ef

ab
= 0, (3.19)

from (3.19), we have

∆10 =



0 −2 2 0 −
cf+ de

ab
0 0 0 0 0

1 −2 1 1 −
cd

ab
−
ef

ab
0 0 0 0

0 0 −2 2 0 −
cf+ de

ab
0 0 0 0

0 0 −2 1 1 −
cd

ab
−
ef

ab
0 0 0

0 0 0 −2 2 0 −
cf+ de

ab
0 0 0

0 0 0 0 1 1 −
cd

ab
−
ef

ab
0 0

0 0 0 0 0 2 0 −
cf+ de

ab
0 0

0 0 0 0 0 0 1 −
cd

ab
−
ef

ab
0

0 0 0 0 0 0 0 0 −
cf+ de

ab
0

0 0 0 0 0 0 0 0 −
cd

ab
−
ef

ab



.

We can see that not all ∆k > 0, k = 1, 2, · · · , 10, from Lemma 2.8 and Lemma 2.9, we obtain that the
equilibrium point X4 is unstable, and then the proof is completed.
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Theorem 3.8. Let Ix, Iy be some intervals of real numbers and assume that f : Ik+1
x × Il+1

y → Ix and g :

Ik+1
x × Il+1

y → Iy be continuously differentiable functions satisfying mixed monotone property. If there exists
m0 6 min{x−k, · · · , x0,y−l, · · · ,y0} 6 max{x−k, · · · , x0,y−l, · · · ,y0} 6M0,

n0 6 min{x−k, · · · , x0,y−l, · · · ,y0} 6 max{x−k, · · · , x0,y−l, · · · ,y0} 6 N0,

such that 
m0 6 f([m0]p, [M0]q, [n0]s, [N0]t) 6 f([M0]p, [m0]q, [N0]s, [n0]t) 6M0,

n0 6 g([m0]p1 , [M0]q1 , [n0]s1 , [N0]t1) 6 g([M0]p1 , [m0]q1 , [N0]s1 , [n0]t1) 6 N0,

then there exist (m,M) ∈ [m0,M0]
2 and (n,N) ∈ [n0,N0]

2 satisfying{
M = f([M]p, [m]q, [N]s, [n]t), m = f([m]p, [M]q, [n]s, [N]t),

N = g([M]p1 , [m]q1 , [N]s1 , [n]t1), n = g([m]p1 , [M]q1 , [n]s1 , [N]t1).

Moreover, if m = M, n = N, then (2.1) has a unique equilibrium point (x̄, ȳ) ∈ [m0,M0]× [n0,N0] and every
solution of (2.1) converges to (x̄, ȳ).

Proof. Usingm0,M0,n0 andN0 as two couples of initial iterations, we construct four sequences {mi}, {Mi},
{ni} and {Ni} (i = 1, 2, · · · ) from the following equations{

mi = f([mi−1]p, [Mi−1]q, [ni−1]s, [Ni−1]t), Mi = f([Mi−1]p, [mi−1]q, [Ni−1]s, [ni−1]t),

ni = g([mi−1]p1 , [Mi−1]q1 , [ni−1]s1 , [Ni−1]t1), Ni = g([Mi−1]p1 , [mi−1]q1 , [Ni−1]s1 , [ni−1]t1).

It is obvious from the mixed monotone property of f and g that the sequences {mi}, {Mi}, {ni} and {Ni},
possess the following monotone property{

m0 6 m1 6 · · · 6 mi 6 · · · 6Mi 6 · · · 6M1 6M0,
n0 6 n1 6 · · · 6 ni 6 · · · 6 Ni 6 · · · 6 N1 6 N0,

where i= 0, 1, 2, · · · , and

mi 6 xu 6Mi, ni 6 yv 6 Ni, for u > (k+ 1)i+ 1, v > (l+ 1)i+ 1, i = 0, 1, 2, · · · .

Set
m = lim

i→∞mi, M = lim
i→∞Mi, n = lim

i→∞ni, N = lim
i→∞Ni.

Then
m 6 lim

i→∞ inf xi 6 lim
i→∞ sup xi 6M, n 6 lim

i→∞ infyi 6 lim
i→∞ supyi 6 N.

By the continuity of f and g, one has{
M = f([M]p, [m]q, [N]s, [n]t), m = f([m]p, [M]q, [n]s, [N]t),

N = g([M]p1 , [m]q1 , [N]s1 , [n]t1), n = g([m]p1 , [M]q1 , [n]s1 , [N]t1).

Moreover, if m = M, n = N, then m = M = lim
i→∞ xi = x̄, n = N = lim

i→∞yi = ȳ, and then the proof is

completed.

Theorem 3.9. If a = b,h = g, c = d, e = f, then the equilibrium point (0, 0) of the system (3.12) is global
attractor for any conditions ( y−i, z−i) ∈ (0, h2a)× (0, h2a), i = −4, ,−3, · · · , 0.
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Proof. Since a = b,h = g, c = d, e = f, hence the system (3.12) is changed to

yn+1 =
ayn−1yn−2

h+ dzn−3 + fzn−4
,

zn+1 =
azn−1zn−2

h+ dyn−3 + fyn−4
, n = 0, 1, · · · .

Let (f,g) : (0, h2a)
10 × (0, h2a)

10 → (0,∞)× (0,∞) be a function defined by

f(yn,yn−1,yn−2,yn−3,yn−4,zn,zn−1,zn−2,zn−3,z−4) =
ayn−1yn−2

h+ dzn−3 + fzn−4
,

g(yn,yn−1,yn−2,yn−3,yn−4,zn,zn−1,zn−2,zn−3,z−4) =
azn−1zn−2

h+ dyn−3 + fyn−4
.

Set
f=

auv

h+ dw+ fs
, g=

au∗v∗

h+ dw∗ + fs∗
,

we can obtain that

fu =
av

h+ dw+ fs
> 0, fv =

au

h+ dw+ fs
> 0,

fw = −
aduv

(h+ dw+ fs)2 < 0, fs = −
afuv

(h+ dw+ fs)2 < 0,

gu∗ =
av∗

h+ dw∗ + fs∗
> 0, gv∗ =

au∗

h+ dw∗ + fs∗
> 0,

gw∗ = −
adu∗v∗

(h+ dw∗ + fs∗)2 < 0, gs∗ = −
afu∗v∗

(h+ dw∗ + fs∗)2 < 0,

which implies that f and g possess a mixed monotone property.
Let

M0 = N0 = max {y−4,y−3, · · · ,y0, z−4, z−3, · · · , z0} ,
aM0 − h

d+ f
< m0 = n0 < 0,

we have

m0 6
am2

0
h+ dN0 + fN0

6
aM2

0
h+ dn0 + fn0

6M0, n0 6
an2

0
h+ dM0 + fM0

6
aN2

0
h+ dm0 + fm0

6 N0.

It is obvious that mi = ni, Mi = Ni, i = 0, 1, · · · , then from the system (3.12) and Theorem 3.8, there
exist m, M ∈ [m0,M0], n = m, N =M, satisfying

m =
am2

h+ dN+ fN
, n =

an2

h+ dM+ fM
, M =

aM2

h+ dn+ fn
, N =

aN2

h+ dm+ fm
,

thus
[h− a(m+M)](m−M) = 0.

In view of 2aM0 < h, we have h− a(m+M) > 0. Then

M = m, N = n.

It follows by Theorem 3.8 that the equilibrium point (0, 0) of the system (3.12) is global attractor. The
proof is therefore completed.

Next, we develop stability results for the fuzzy difference equation (1.1) in terms of the stability of the
trivial solution of the ordinary difference equations (3.12). For that purpose we introduce the following
notion of stability for equation (1.1). It is obvious that (1.1) has the trivial solution 0̂.
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Definition 3.10 ([16]). The trivial solution x = 0̂ of (1.1) is said to be

(i) stable, if given ε > 0, there exists a δ(ε) > 0 with D(xi, 0̂) < δ, i = −4,−3, · · · , 0, implies D(xn, 0̂) <
ε, for any n > 0, such that for any xi ∈ Dδ, i = −4,−3, · · · , 0 the solution xn ∈ Dε,n > 0;

(ii) attractive, if there is a δ > 0 such that D(xi, 0̂) < δ, i = −4,−3, · · · , 0, one has

lim
n→∞D(xn, 0̂) = 0;

(iii) asymptotically stable, if (i) and (ii) hold simultaneously.

Theorem 3.11. If the parameters A,B,C,D are positive trivial fuzzy numbers, i.e., positive real numbers, and the
initial conditions are positive fuzzy numbers with [xi]α ⊂ (0, D/2A), i = −4, −3, · · · , 0,α ∈ (0, 1] then the
trivial solution x = 0̂ of (1.1) is asymptotically stable with respect to D as n→∞.

Proof. The result follows from Theorem 3.4 and Theorem 3.9.

4. Numerical simulation

In this section some numerical examples are given in order to confirm the results of the previous
sections and support our theoretical discussions. The example represents the asymptotically behavior of
solutions for the fuzzy difference system (1.1).

Example 4.1. Consider the following fuzzy difference equation

xn+1 =
Axn−1xn−2

D+Bxn−3 +Cxn−4
, n = 0, 1, 2, · · · , (4.1)

where A,B,C,D are positive trivial fuzzy numbers. By Theorem 3.11, we take [A]α = [A, A] = 0.3, [B]α =
[B, B] = 3, [C]α = [C, C] = 6, [D]α = [D, D] = 12, α ∈ (0, 1]. In addition, from Theorem 3.11, we denote the
initial conditions x−4, x−3, x−2, x−1, x0 with [xi]α ⊂ (0, D/2A), i = −4, −3, · · · , 0, α ∈ (0, 1] such that

x0(x) =

{ 1
5x− 1, 5 6 x 6 10,
−1

4x+
7
2 , 10 6 x 6 14,

x−1(x) =

{ 1
3x−

1
3 , 1 6 x 6 4,

−1
3x+

7
3 , 4 6 x 6 7,

x−2(x) =

{ 1
2x−

3
2 , 3 6 x 6 5,

−1
4x+

9
4 , 5 6 x 6 9,

x−3(x) =

{
x− 2, 2 6 x 6 3,
−1

5x+
8
5 , 3 6 x 6 8,

x−4(x) =

{ 1
5x−

6
5 , 6 6 x 6 11,

−1
2x+

13
2 , 11 6 x 6 13.

(4.2)

In view of (4.2), we get

[x0]α = [5 + 5α, 14 − 4α], [x−1]α = [1 + 3α, 7 − 3α], [x−2]α = [3 + 2α, 9 − 4α],

[x−3]α = [2 +α, 8 − 5α], [x−4]α = [6 + 5α, 13 − 2α].
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From (4.1), it results in a coupled system of difference equation with parameter α,

Ln+1,α =
0.3 Ln−1,αLn−2,α

12 + 3Rn−3,α + 6 Rn−4,α
,

Rn+1,α =
0.3 Rn−1,αRn−2,α

12 + 3Ln−3,α + 6 Ln−4,α
, α ∈ (0, 1], n = 0, 1, · · · .

(4.3)

It is easy to prove that [xi]α ⊂ (0, D/2A), i = −4, −3, · · · , 0, for α ∈ (0, 1], namely, the conditions of Theorem
3.11 are satisfied. So from Theorem 3.11, we have that the trivial solution x = 0̂ of (1.1) is asymptotically stable
with respect to D as n→∞ (see Figure 1-4).
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Figure 1: The dynamics of system (4.3).
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Figure 2: The solution of system (4.3) when α = 0.
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Figure 3: The solution of system (4.3) when α = 0.5.
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Figure 4: The solution of system (4.3) when α = 1.

5. Conclusion

This paper presents the use of a variational iteration method for systems of nonlinear fuzzy difference
equations. This technique is a powerful tool for solving various fuzzy difference equations and can also
be applied to other nonlinear differential equations or difference equation in mathematical physics. The
numerical simulations show that this method is an effective and convenient one. The variational iteration
method provides an efficient method to handle the nonlinear structure. Computations are performed
using the software package MATLAB 2014 (a).

In this paper, we have dealt with the dynamics behavior for a class of nonlinear high order fuzzy
difference equations. Firstly, the existence and uniqueness of positive fuzzy solutions is proved. Secondly,
we also obtain that the nonzero equilibrium points of the corresponding ordinary difference equations
(3.12) is unstable by using linearization method. Finally, we find that the trivial solution 0̂ of (1.1) is
stable when the parameters A,B,C,D are positive trivial fuzzy numbers. In particular, some illustrative
examples are given to show the effectiveness of the obtained results. In addition, the sufficient conditions
that we obtained are very simple, which provide flexibility for the application and analysis of nonlinear
fuzzy difference equation.
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