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Abstract

This paper deals with the synchronization control of Chen chaotic system using a hybrid control which includes continuous
state feedback control, the impulsive control and the nonlinear feedback law. To this end, a hybrid controller based on linear
matrix inequality (LMI) and average dwell time (ADT) is derived by employing impulsive control theory. The main advantage
of the result lies in that, for one thing, they are complementary to each other, that is, when the impulse inputs occur in terms of
disturbances which do harm to the synchronization, the continuous state feedback control will cover the weakness and stabilize
the error system, and conversely, when the continuous state feedback control is given in terms of external disturbances which
do harm to the synchronization, the impulsive control input will stabilize the error system; for another, the developed result
is based on ADT condition and dropped the restriction on the upper and lower bounds of the impulsive intervals. Finally,
numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme. c©2017 All rights
reserved.
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1. Introduction

Chaos is an interesting phenomenon in nonlinear dynamical systems. Since Edward Lorenz found the
first chaotic attractor in a three-dimensional system [26], the chaos theory has been intensively researched
because of its wide applications in various areas such as secure communication [33], neural networks [16],
laser physics [30] and chemical reactor[9], finance [1], economy [13], etc.. Chaotic systems are nonlinear
aperiodic systems with high sensitivity to initial conditions which leads to unpredictability of its long
term dynamic behavior. Chen system, was found by Chen and Ueta in 1999 [2], which is similar but
topological nonequivalent to Lorenz-like systems, such as Chua’s circuit [3], Lü system [22], and the
Lorenz system family [20].

Chaos synchronization has been widely studied over decades since it was first proposed by Pecora
and Carrol in 1990 [24]. Generally, chaos synchronization is to design a system to imitate the dynamical
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behavior of another chaotic system, that is, the dynamic behavior of the designed system must converge
to the chaotic behavior. The system with coupled inputs is called the slave (response) system, which
is designed to synchronize the chaotic behavior of a system called the master (drive) system. Lots of
methods have been proposed to achieve the synchronization of chaotic systems, such as adaptive control
[21, 27], fuzzy control [34], backstepping control [11, 25, 31], sliding mode control [8], digital redesign
control [4], and impulsive control [15, 17].

As we know, impulsive control as a class of discontinuous control methods has been widely used to
synchronize and stabilize various systems [6, 10, 14, 18, 19, 23, 35]. For example, Lu et al. [23] studied the
globally exponential synchronization of impulsive dynamical networks in which the synchronizing im-
pulses and desynchronizing impulses were considered; Hespanha et al. [6] considered the input-to-state
stability of impulsive systems based on ADT method and [19, 35] handled with input-to-state stability of
systems with delayed impulses; Li et al. [14] dealt with the complete synchronization of delayed chaotic
neural networks by intermittent control with two switches in a control period. The main thought of im-
pulsive control is changing the states of continuous dynamic systems by discontinuous control input at
certain time instants. Impulsive control is effective and robust, from the control point of view, since only
small control gains are needed [12]. Moreover, impulsive control has great advantages over general con-
tinuous control schemes due to reduced control cost and simple structure [29]. Furthermore, impulsive
control can greatly reduce the information redundancy of the transmitted signal and increase robustness
of the system against the disturbances [5, 28, 32]. Sometimes when the continuous control input does not
work well, even for the case that there exists external disturbances, we can use the impulsive control to
cover the weakness and achieve the desired performance; conversely, if the impulse inputs occur in terms
of disturbances instead of the control effect, we can use the continuous control to balance it. Hence, the
hybrid control including continuous control and impulsive control is of great significance.

This paper investigates the synchronization control of Chen chaotic system via a hybrid controller.
The controller proposed consists of continuous state feedback controller, impulsive controller and the
nonlinear feedback law. Especially, the continuous state feedback controller and the impulsive controller
are complementary to each other, when one of them does not work well, the other one will balance it.
In addition, we develop the ADT [7, 19, 35] method to the design of hybrid controller and drop the
restriction on the lower and upper bounds of the impulsive intervals. The rest of the paper is organized
as follows. Section 2 briefly introduces some notations and preliminary works. Section 3 presents the
control laws to ensure the synchronization of Chen system via the proposed hybrid controller. Section 4
presents numerical examples of the proposed control laws. Concluding remarks are given in Section 5.

2. Preliminaries

Notations. Let R denote the set of real numbers, Rn and Rn×m the n-dimensional and n×m-dimens-
ional real spaces equipped with the Euclidean norm | · |, respectively, Z+ the set of positive integer
numbers, and A > 0 or A < 0 denotes that the matrix A is a symmetric and positive or negative definite
matrix. The impulse time sequence {tn} ∈ z if it satisfies 0 6 t0 < t1 < · · · < tk → +∞ as k→ +∞. Let
N(t, s) denote the number of the impulsive time instances in the semi-open time interval [ s, t ), and I
denotes the identity matrix with appropriate dimension. Moreover, the notation ? denotes the symmetric
block in one symmetric matrix.

Chen system which was created by Chen and Ueta in 1999 [2], can be described by the following set
of ordinary differential equations 

ẋ1 = a(x2 − x1),
ẋ2 = (c− a)x1 − x1x3 + cx2,
ẋ3 = x1x2 − bx3,

(2.1)

where x1, x2, x3 are state variables and a, b, c are system parameters. When a = 35, b = 3, and c = 28,
the system (2.1) exhibits chaotic behavior [2].
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To investigate the synchronization control of the Chen chaotic systems, we choose (2.1) as the drive
system and the corresponding response system is given by

ẏ1 = a(y2 − y1) + u1, t 6= tn,
ẏ2 = (c− a)y1 − y1y3 + cy2 + u2 +α(t), t 6= tn,
ẏ3 = y1y2 − by3 + u3 +β(t), t 6= tn,
y(t) = u0(t

−) + x(t−), t = tn,

(2.2)

where u = (u1, u2, u3)
T is the state feedback control input or external disturbance when t 6= tn; u0 is

the impulsive control input or impulsive perturbation when t = tn; α(t), β(t) are the secondary control
input to deal with nonlinearity in the system.

Define the error variable as e(t) = (e1, e2, e3)
T, ei = yi − xi, i = 1, 2, 3. We consider u(t) = Ke(t),

K = (kij)3×3, i.e., ui(t) = ki1e1 + ki2e2 + ki3e3, i = 1, 2, 3 and u0 = K0e(t
−
k ), K0 ∈ R3×3. Then the error

system can be rewritten as {
ė(t) = Ae(t) + f(t, e) +Bu(t) +G(t), t 6= tn,
e(t) = K0e(t

−), t = tn,
(2.3)

where

A =

 −a a 0
c− a c 0

0 0 −b

 , B =

 1 0 0
0 1 0
0 0 1

 , u(t) =

 u1

u2

u3

 , G(t) =

 0
α(t)

β(t)

 ,

f(t, e) =

 0
−y1y3

y1y2

−

 0
−x1x3

x1x2

 =

 0
−y1e3 − x3e1

y1e2 + x2e1

 .

Definition 2.1. Systems (2.1) and (2.2) are said to be exponentially synchronized if there exist constants
λ > 0 and M > 1 such that |e(t)| 6 M|x0 − y0|e

−λt for all t > 0, where x0 and y0 are the initial values of
the state variables x and y, respectively. Here, λ is called the convergence rate (or degree) of exponential
synchronization.

3. Main results

The purpose of this section is to construct a hybrid controller for the error system (2.3) such that it
is globally exponential stable. The controller consists of three parts. One part is the continuous state
feedback controller u, the secondary is the nonlinear feedback law G for handling the nonlinear term,
and the third one is the impulsive controller u0. First, we design the secondary control input G as

G(t) =

 0
α(t)

β(t)

 =

 0
y1e3 + x3e1

−y1e2 − x2e1

 . (3.1)

Then to find out the state feedback control gain K and the impulsive control gain K0, we present the
following theorem.

Theorem 3.1. Assume that there exist matrices P > 0, W, W0 ∈ R3×3, constants ρ ∈ R, d ∈ R such that

(i) ATP+ PA+W +WT + ρP 6 0;
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(ii)

[
−e−dP WT

0

? −P

]
6 0;

(iii) for any constants c > 0, λ > 0, let z[c, λ] denote the class of impulse time sequence {tn} satisfying

−dN(t, s) − (ρ− λ)(t− s) 6 c, ∀t > s > t0. (3.2)

Then the error system (2.3) is globally exponentially stable over class z[c, λ], that is, the drive system (2.1) can be
exponentially synchronized by the response system (2.2), where control gains are designed by

K = P−1W, K0 = P−1W0.

Proof. Choose the candidate Lyapunov function be in the form of

V(t) = eT(t)Pe(t).

The derivative of V(t) along the solutions of the error system is given by

V̇(t) = ėT(t)Pe(t) + eT(t)Pė(t)

= eT(t)(A+K)TPe(t) + eT(t)P(A+K)e(t)

= eT(t)(PA+ATP+ PK+KTP)e(t)

6 −ρV(t), t 6= tn,

V(tn) = e
T(tn)Pe(tn)

= eT(t−n)K̄
TPK̄e(t−n)

6 e−deT(t−n)Pe(t
−
n) 6 e

−dV(t−n).

It then follows from (i) and (ii) that {
V̇(t) 6 −ρV(t), t 6= tn,
V(t) 6 e−dV(t−), t = tn.

When t ∈ [t0, t1), it follows that

V(t) 6 e−ρ(t−t0)V(t0), V(t−1 ) 6 e−ρ(t1−t0)V(t0).

When t ∈ [t1, t2), we have

V(t1) 6 e
−de−ρ(t1−t0)V(t0),

V(t) 6 e−ρ(t−t1)V(t1) 6 e
−de−ρ(t1−t0)V(t0)e

−ρ(t1−t0)V(t0),

V(t−2 ) 6 e−de−ρ(t2−t0)V(t0).

By simple induction, it can be deduced that

V(t) 6 e−nde−ρ(t−t0)V(t0), t ∈ [tn, tn+1),

which together with (3.2) yields that

V(t) 6 ec−λ(t−t0)V(t0), t > t0.

It implies that the error system (2.3) is globally exponentially stable at the origin, that is, the drive system
(2.1) is synchronized by the response system (2.2).
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Remark 3.2. One may observe from Theorem 3.1 that we do not impose any positive or negative restriction
on constants ρ and d, which implies that it admits the existence of not only the synchronizing impulses
and desynchronizing impulses, but also the synchronizing continuous state feedback and desynchroniz-
ing continuous state feedback. Exactly speaking, when d < 0, the impulses can potentially destroy the
stability of the error system, and usually we require that they do not happen too frequently. Note that
condition (3.2) enforces an upper bound on the number of impulses times, but it may be large enough
since that it is ρ-dependent. Because the continuous state feedback is imposed to achieve the stabiliza-
tion of error system through condition (i), which will be helpful to the choice of constant ρ. Conversely,
when d > 0, the impulses can potentially benefit the stability of the error system. In this case, when
there is no continuous state feedback or the external input is a kind of disturbances, the impulsive control
can be used to stabilize the error system and achieve the synchronization. By the above discussions, it
can be analytically concluded that our synchronization criterion is less conservative than the results in
[5, 6, 12, 14, 15, 23, 29, 32].

Assume that u(t) is not the control input but the bounded external disturbance which maybe destroy
the synchronization, that is, assume that u(t) = Ke(t), K is pre-given. Based on Theorem 3.1 and the
average dwell-time (ADT) analysis method for switched systems proposed by Hespanha and Morse [7],
one may derive the following ADT-like conditions.

Corollary 3.3. If there exist matrices P > 0, W0 ∈ R3×3, constants ρ ∈ R− and d ∈ R+ such that
(i) ATP+KTP+ PA+ PK+ ρP 6 0;

(ii)

[
−e−dP WT

0

? −P

]
6 0,

and let zr−avg[N0, τ?] ⊆ z denote the class of reverse average dwell-time impulse time sequence satisfying

N(t, s) > N0 +
t− s

τ?
, ∀t > s > t0,

where N0 > 0, τ? < d
|ρ| , then the drive system (2.1) can be synchronized by the response system (2.2) over the class

zr−avg[N0, τ?]. The impulsive control gain is designed by

K0 = P−1W0.

On the other hand, we consider the case that u0(t) is not the impulsive control input but the bounded
impulsive perturbations, assume that u0(t) = K0e, K0 is pre-given. Then based on Theorem 3.1, we can
design the continuous state feedback controller u as follows.

Corollary 3.4. If there exist matrices P > 0, W ∈ R3×3, constants ρ ∈ R+ and d ∈ R− such that
(i) ATP+ PA+W +WT + ρP 6 0;

(ii)

[
−e−dP KT

0P

? −P

]
6 0,

and let zavg[N0, τ?] ⊆ z denote the class of average dwell-time (ADT) impulse time sequence satisfying

N(t, s) 6 N0 +
t− s

τ?
, ∀t > s > t0,

where N0 > 0, τ? > |d|
ρ , then the drive system (2.1) can be synchronized by the response system (2.2) over the class

zavg[N0, τ?]. The continuous state feedback control gain is designed by

K = P−1W.

Corollary 3.5. Assume that there exist matrices P > 0, W,W0 ∈ R3×3, and constants ρ ∈ R+ and d ∈ R+ such
that (i) and (ii) hold. Then the drive system (2.1) can be synchronized by the response system (2.2) for any impulsive
sequence.
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Figure 1: The chaotic behavior of the Chen system (2.1) with a = 35, b = 3, and c = 28.

4. Numerical simulations

We consider the Chen system (2.1) with a = 35, b = 3, and c = 28. Fig. 1 shows the chaotic behavior.
Assume that the nonlinear feedback law G is given in (3.1). Now we consider the synchronization control
of systems (2.1) and (2.2) with three cases.
Case I. Hybrid control. We will design the continuous state feedback controller u and the impulsive
controller u0. In this case, we choose ρ = 1 and d = 0.48. Then the LMIs in Theorem 3.1 have feasible
solutions and the control gains K and K0 can be derived such as

K =

 34.0458 −18.3778 0
−9.6222 −28.9542 0

0 0 2.0458

 , K0 = 0.3028I.

Then based on the hybrid control, the error system (2.3) is globally exponentially stable, see Fig. 2 (a).
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Figure 2: (a). Trajectories of error variable ei based on the hybrid control; (b). Trajectories of error variable ei when there is no
control input (i.e.,u = 0) but with the impulsive perturbation u0; (c). Trajectories of error variable ei when there is continuous
state feedback control u; (d). Trajectories of error variable ei with impulsive control input u0.
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Case II. Continuous feedback control. u is the control input which will be designed and u0 is the impulsive
perturbation. Assume that u0 = K0e, K0 = 0.2I, is the impulsive perturbation. The impulsive sequence is
considered by

t4n−3 = 2n− 1.9, t4n−2 = 2n− 1.7, t4n−1 = 2n− 1, t4n = 2n,

n ∈ Z+, which satisfies τ? = 0.5 > 0.48 = |d|/ρ. In this case, when there is no control input (i.e., u = 0),
the error system (2.3) with impulsive perturbation u0 is not stable, see Fig. 2 (b). We consider ρ = 1,
d = −0.5, then it is easy to derive that

K =

 33.3906 −8.3349 0
−19.6651 −29.6094 0

0 0 1.3906

 .

Then the error system with control gain K is globally exponentially stable, see Fig. 2 (c).
Case III. Impulsive control input. When there is no continuous control input, i.e., u = 0, we can design the
impulsive controller. Consider the impulsive sequence

t2n−1 = 0.16n− 0.11, t2n = 0.16n, n ∈ Z+,

which satisfies τ? = 0.08 < 0.0833 = d/|ρ|. Choose ρ = −48 and d = 4, then the control gain can be
derived by

K0 =

 0.8440 0.0422 0
0.0549 0.3937 0

0 0 0.5506

 .

Then the error system is globally exponentially stable, see Fig. 2 (d).

5. Conclusion

The synchronization problem of Chen chaotic systems via a hybrid controller was investigated in
this paper. The proposed hybrid controller which combined the continuous state feedback controller,
the impulsive controller, and the nonlinear feedback law was derived, which was presented in terms of
LMI and ADT conditions. Finally, numerical simulations were provided to show the effectiveness of the
proposed method. In our study, we note that the ADT like condition is based on the fact that the nonlinear
feedback law is pre-given, but it is unclear whether the conditions derived can be developed to the cases
that there is no nonlinear feedback. Investigating this issue is a topic for future research. Another topic is
to develop the hybrid controller, especially ADT like method, in this paper, to delayed chaotic systems.
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