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Abstract

An integrable coupling hierarchy of Dirac integrable hierarchy is presented by means of zero curvature representation.
A Hamiltonian operator involving two parameters is introduced, and it is used to derive a pair of Hamiltonian operators.
A bi-Hamiltonian structure of the obtained integrable coupling hierarchy is constructed with the aid of Magri pattern of bi-
Hamiltonian formulation. Moreover, we prove the Liouville integrability of the obtained integrable coupling hierarchy and
establish a Darboux transformation of the integrable coupling. As an application, an exact solution of the integrable coupling of
Dirac equation is given. (©2017 All rights reserved.
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1. Introduction

In recent years, the investigation of the integrable couplings of soliton equations has received con-
siderable attention. The integrable couplings originate from the work on perturbations around solutions
of evolution equations [18] and the perturbation bundle [1]. A few methods of constructing integrable
couplings are proposed. Many problems of the integrable couplings have been studied [3, 6-12, 20].

For a given integrable evolution equation

ue = K(u), (1.1)

we actually want to construct a new bigger, triangular integrable system as follows:

u _ K(u) 12
v t_ x(u,v) /- (12)

In Eq. (1.2), x(w,V) is a real function defined over R?, and it should satisfy the non-triviality condition

% # 0, where [u] = (u, uy, uxx, ---). This statement means that the second equation in the

*Corresponding author
Email address: xixiang_xu@sohu.com (Xi-Xiang Xu)

doi:10.22436 /jnsa.010.06.42
Received 2017-04-13


http://dx.doi.org/10.22436/jnsa.010.06.42

X.-X. Xu, Y.-P. Sun, J. Nonlinear Sci. Appl., 10 (2017), 3328-3343 3329

bigger system (1.2) involves the dependent variable u of the original integrable system (1.1). The Eq.
(1.2) is called an integrable coupling of Eq. (1.1). In the theory of the integrable couplings, an important
subject is to establish their bi-Hamiltonian structures. If an integrable coupling hierarchy possesses bi-
Hamiltonian structure, then we can derive a hereditary recursion operator and infinitely many conserved
functionals. Thus, the Louville integrability of the integrable coupling hierarchy can be deduced. Usually,
bi-Hamiltonian structures of integrable systems may be establish by using the trace identity [19]. However,
it can not be used in the case of integrable couplings. We find that Magri pattern of bi-Hamiltonian
formulation is very effective way to establish bi-Hamiltonian structure of the integrable hierarchy [13—
15, 17].

In addition, we know that Darboux transformation is a purely algebraic, powerful method to construct
solutions of the integrable systems. The Lax pair plays a key role in the method of Darboux transformation
[2, 16]. To the best of our knowledge, in soliton theory, Darboux transformation of Lax pairs of the
integrable couplings composed by triangular integrable system Eq. (1.2) has not been studied. In this
paper, we are going to establish Darboux transformation of Lax pair for the integrable coupling of Dirac
equation, which has the form of the Eq. (1.2).

It is well-known that the Dirac integrable system

_ 1 2 3
{qt = —jrxx—l—q T+T7, (13)

T = 30— 42 — ¢,
is an important soliton equation. Its corresponding integrable hierarchy have been researched in Refs.
[3, 5]. In the following, we would like to research the integrable coupling of Dirac integrable system (1.3)

qt = _%Txx + qu + T3,

Ty = %qxx - q3 - qT.Z’

St = —%(rm + Wyx) + (W+ 1) (g% +12) + 2qrs + 2r%w,
Wi = 3 (Gex + 5xx) = (4 +5)(@2 +12) = 2¢%s —2qTw.

(1.4)

Obviously, Eq. (1.4) has the form of the Eq. (1.2). In addition, if we set the Dirac integrable system (1.3)
in the following form
Uy = K(u)/

where u = (q,7)7, then the integrable coupling system (1.4) may be represented as

uy = K(u),
v = K(u) + K’ (u)v].

Here v = (s,w)T, K’/(u)[v] denotes the Gateaux derivative of K(u) with respect to u in a direction v,
ie, K'(up] = % (W+ ev)|e=o. In view of perturbation theory [10], the integrable coupling (1.4) is
first-order perturbation system of the Dirac integrable system (1.3).

This paper is organized as follows. In Section 2, we consider the spectral problem

q A+T s w
—A+1r  —¢ w —s
0 0 —A+r —q

Locality of solution of the related stationary zero curvature equation is proved. An integrable coupling
hierarchy of Dirac integrable hierarchy is deduced by using the zero curvature representation. In Section
3, a pair of Hamiltonian operators is presented by the aid of a Hamiltonian operator containing two ar-
bitrary constants. A bi-Hamiltonian structure of obtained integrable coupling hierarchy is constructed by
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using the Magri pattern [13-15, 17]. Then Liouville integrability of the obtained integrable coupling hier-
archy is demonstrated. In Section 4, a Darboux transformation of Lax pair of the Eq. (1.4) is established
by means of a gauge transformation. In Section 5, as an application of Darboux transformation, an exact
solution of the Eq. (1.4) is given. Finally, we give some conclusions and remarks.

2. An integrable coupling hierarchy of Dirac integrable hierarchy
First of all, we consider the stationary zero curvature equation associated with spectral problem (1.5)
Vy=I[U V] =Uv-Vl, (2.1)

with
c a+b h f+g

The equation (2.1) implies
Cx +2rb—2aA =0,
ax +bx —2(a+b)q+2rc+2cA =0,
hy +2rg+2wb —2fA =0,

2.2
fx +9x —2q(f+ g) —2s(a+b) +2rh 4+ 2wc + 2hA =0, (2.2)
ax —bx +2q(a—b) —2rc+2cA =0,
fx —gx +2q(f —g) +2s(a—b) —2rh — 2wc + 2hA = 0.
From (2.2), we get
2aA = 2rb + ¢y,
bx =2qa—2rc,
2cA = —ay +2qb,
x (2.3)

2fA =2wb +2rg + hy,
gx = 2sa—2wc +2qf —2rh,
2hA = 2sb —f, +2qg.
By substituting expansions

o o o0 o o0 o0
a=) anA N b=) bad M e=) cnd L f=) fad T, g=) gad L, h=) haAh,
n=0 n=0 n=0 n=0 n=0 n=0
into (2.3), we obtain the initial conditions:

ap =0, boy =2qag—2rcg, cp =0, fo =0, gox = 25ap —2wcg + 2qfy —2rhg, hp =0, (2.4)

and the recursion relations
an+1 == Tbn + Ecnxr
n= 6_1(2qan —2rcn),
1
Cntl = —50nx T qbn/

2 n>o0. (2.5)

1
far1 =wbn +71gn + Ehnx’

gn = 0 1 (2san —2wen + 2qfn —2rhy),

1
hnt1=sbn +dqgn — Efnx/
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Next, we discuss the locality of solution of (2.1) (or (2.5)).

Proposition 2.1. In (2.4), if the initial values are selected as follows
byg =1, go = 1,

then an, bn, cn, fn, gn, hn, n > 1 which are solved by (2.5), are all local, and they only depend on q, v, s, w
and their spatial derivatives up to some finite order.

Proof. Using first and third equations in (2.5), we see that a,, 1 and c,, 1 can be determined locally by
an, bn, and cn, n > 0. Similarly, from fourth and sixth equations in (2.5), we know that f,,; and gn1
can be determined locally by a,,, bn, ¢n, fn, gn and hy, n > 0. When by, 1 and gn 41 are derived from
second and fifth equations in (2.5), we need to use operator 3! to solve the corresponding differential
equations. Hereinafter, we are going to show that b, 1 and g,,,1 may be deduced through an algebraic
method rather than by solving the differential equations.

A direct verification can show

a?—b%4c2 0 2(af —bg+ch) 0
, 0 a? —b%+4c? 0 2(af —bg +ch)
V2 = ,
0 0 a’?—b%+c? 0
0 0 0 a?—b%+c?

and
(V?), = [U, V2] =0.

From above two equations, we have
2 2., .2 _ _
a®—b +c” =vyi(t), (af —bg+ch) =ya(t),

where v1(t) and y2(t) are arbitrary functions of time variable t only. We then deduce two recursion
relations for by, 11 and gn 41:

1 n n n
bni1 = E(Z QjQn—ji1— Z bjbn i1+ Z Cicn—j+1—Y1(t)),
=1 i—1 i—1
n n n
In+1 = Z ajfn_ji1— Z bjgn_jr1+ Z Cihn_j+1—bni1—v2(t).
=1 i—1 i—1

Further, we select y1(t) = y2(t) = 0. Then, we obtain that an, by, ¢n, fn, gn, hn, 1 > 1 can be solved
successively through the algebraic method. This completes the proof. O

The first few terms are given by a; =1, by =0, ¢1 =q, f1 = (r+w), g1 =0, hy = (q+s), ap =
Yoo ba=4@+1), o=—dr, b=+ an), = (as+mw) + 1+ 12 o =L b wi), @ =
It 3412, by = Arax, —dary, ea = —Laut Ja(@ 472, f3 = —Lira i) + S0+ ) (62 +
%) +qrs + 17w, g3 = %(qu — qWx + 7Gx — qrx +T8x —sTx), h3 = —%(qxx +8xx) + 5(q +8)(g* +71%) +
q%s + qrw,--- . Now we set

—_

—_

Cj aj + bj h)' fj + gj

—b - fi—g N -
0

vn:i R

j=0 0 ¢j  aj+b;

0 0 Cl)' — bj *Cj
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To obtain the related integrable coupling hierarchy, we take the time evolution of the eigenfunction of the
spectral problem (1.5) obeys the differential equation

@, = Vno, n2=0. (2.6)
Then the compatibility conditions of (1.5) and (2.6) are
utn — VYnx + [u/ VTL] - 0/ n 2 0/ (2.7)

which give rise to the following hierarchy of integrable equations

qtn - 2an+1/

Ttp, = _2CTL+1/

\
o

2.8)
Stn = 2fn+1/

th == _Zhn+1/
Eq. (2.7) is the zero curvature representations of Eq. (2.8). The spectral problem (1.5) and the (2.6)

compose Lax pairs of (2.8). It is easy to verify that the first nonlinear differential equation in (2.8), when
n =1, under t; = t, is the differential equation

gt = —%Txx +1q%+13,

Tt = %qu —q>—qr?,

St = —%(TXX + W) + (W +1)(q +712) +2qrs + 217w,
Wi = 3 (Gux + 5x) — (4 +5)(q2 +12) = 2¢%s —2qTw.

(2.9)

Because first two differential equations in (2.9) form the Dirac integrable system (1.3), (2.9) is an integrable
coupling of the Dirac integrable system (1.3). The time part of the Lax pair of the integrable coupling (2.9)
may be given by

Vii Viz Viz Vi

Vor Va2 Va3 Vu

o = V1o, V) = , (2.10)
‘ oo v v

0 0 Vyu Va

1

where Vi1 = qA — 315, Vip = A2+ 1A+ 5(ax + q?+712), Viz = (q+s)A— %( wy), Via = A2+ 1A+
1

T+
WA + %(Sx +qx) + (gs +Tw) + %qz + %T2, Vo = A+ 1A+ 5(4x — 2 —1%), Voo = —qA+ 3y, Vas =

A2+ (T+ WA+ %(s,d—gx) —(gs+1w) —% 2 %rz, Vos = —(q +s)7\—|—%(rx+wx).

3. A bi-Hamiltonian structure and Liouville integrability of the integrable coupling hierarchy (2.8)

In this section, we are going to establish bi-Hamiltonian structure of the integrable coupling hierarchy
(2.8). First, let us introduce some concepts for further discussion. The variational derivative and the inner
product are defined respectively by

5H ., OH s o ~ A
= > ot ), ™ =omy,  (f,9) = J(f,g)wdxr
n>0

where f, § are required to be rapidly vanished at the infinity, and (f, §)gs denotes the standard inner
product of f and § in the Euclidean space R*. Operator J* is defined by (J*f, §) = ( f,]g), it is called
adjoint operator of | with respect to above inner product. If an operator has the property ] = —J*, then J is
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called to be skew-symmetric. A linear operator ] is called a Hamiltonian operator, if | is a skew-symmetric
operator, and satisfies the Jacobi identity, i.e., it satisfies

(J'(W)Jflg, k) + Cycle(f, g, ) =0. (3.1)
Based on a given Hamiltonian operator J, we can define a corresponding Poisson bracket [4, 9, 17]

A 5 89

of 89
(.90 = (o Jo) = [(5y Vo sdx. 62)

su’ ' du
If J, M are Hamiltonian operators, and «J + 3M is still a Hamiltonian operator for all real-values of « and
3, then ] and M form a pair of Hamiltonian operators. By means of the pair of Hamiltonian operators,

we can obtain the bi-Hamiltonian structure of the related integrable system.
From the Egs. (2.5) and Eq. (2.8), we get

2an+1 h‘rl+1 hn
—2Cn41 fnt1 fn
= = M ,
2fn+1 ] Cn+1 Cn
—2hn 41 an+1 an
where
0 0 0 2
0O 0 —2 0
= , 3.3
J 0 2 0 O (3:3)
-2 0 0 O
0 0 0—4rd~Ir 410 1q
" 0 0 4q0~1r 9 —4qdq
S lo—arar ardlq —4rd'w—4wd !t 413~ ls+4wd g
4q0~r  0-4qd'q 4qd'w+4sd'r  —4qd's—4sd7!q
Denote
Mo, B) = o] + BM, o, B, € R. (3.4)

Proposition 3.1. The operator I'(«, ) is Hamiltonian operator for all values of two constants « and f3.

Proof. 1t is easy to see that the operator I'(«, ) is a skew-symmetric operator. Namely,

Moreover, we can prove that the operator I'(«, 3) satisfies the Jacobi identity (3.1). The concrete check is

given in the appendix. The proof is completed. O

Proposition 3.2. The operators ] and M are all Hamiltonian operators, and they constitute a pair of Hamiltonian
operator.

Proof. Obviously I'(1,0) =], I'(0,1) =M, o] + M =T'(«, ), thus, operators ] and M constitute a pair of
Hamiltonian operators. The proof is completed. O
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In addition, it is easy to verify that | is reversible, and

|
S P~ e
o O O N

O N O O

Setting
y=7J"IM,

and using the bi-Hamiltonian theory [14, 15, 17], we know that its adjoint operator

219 1q 9 —2r0 1y 0 0
) ~9+2q07'q 2q0r 0 0
O =Y = 0
—2wdlq—2r9~1s —2wdolr—2ro~'w —2r371q > —2r97 Ir

250 1q+2q0 s 250 'r+2q0 'w  —9+2qd7'q  2q0 v

is a hereditary operator.
Furthermore, from the Magri pattern, we can obtain the following bi-Hamiltonian initial equality

5Ys B 8Y;
5w = M50
namely
5Ys 8Y;
o _ o
Su Su’

where two Hamiltonian functionals are Y; = JYi(u(x))dx (1<i<2)and

1 1 1
Y; =—(qs+rw) + qu + §r2, Ya = =1 (Wax = qWx +Tqx — qry + TSy — 7).

At present, from Eq. (2.8) and Eq. (3.3), we find that the integrable coupling hierarchy (2.8) can be

rewritten as follows
U, =Wy, > 1, (3.5)

where y; := % =(q+s, r+w, q, 7,y =Wy, = %

Note that ] and M constitute a pair of Hamiltonian operators. y;, yz are gradients. According to
the theory of bi-Hamiltonian operators, all vector functions ¥Y™yj(n > 1) are gradients [17]. Thus the
equation hierarchy (3.5) (or (2.8)) has the following bi-Hamiltonian structure

8Vn _ MéYn_ll

du du n>1

ug, =]J

where the Hamiltonian functions Y, (n > 1) are given by

1

¥ = JYn(u)dx, Yo :J W (Wyy) (1) dy, 1> 1.
0

Proposition 3.3. The Hamiltonian functionals Yn, (n > 1) are all common conserved functionals of the whole
integrable coupling hierarchy (2.8) and commute with each other under the Poisson bracket (3.2).
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Proof. Because the operator M is skew-symmetric, namely M* = —M, then J¥ = ®]. Therefore, we have
Yo, ih=(—, | —)=Wm"—, JV" —) = (yMm— Yy
Ym, Yiy <6u' 6u> < 6u'J 6u> < du’ J 6u>

5Y _,0Y - . - .
= <WmT:, i 257111> ={Ymi,Yiealy = ={Ymi1-1, Y1}y
Similarly, we can also get
i, Yty = (Yims1-1, Y1l
Thus, we have
{YTTLI Vl}] = 0/ mll’ 2 1/

and . .

~ 6Yn 6Yn 6Yﬂl \/ \V/

Yntm, < 6u /untm> < 6u /I 6u > {YTII Ym}] 0/ n/m
The proof is completed. O

Based on Proposition 3.3, we can obtain the following theorem.

Theorem 3.4. The integrable couplings in (2.8) are all Liouville integrable bi-Hamiltonian systems.

4. Darboux transformation

It is well-known that Darboux transformations are a purely algebraic, powerful method to find explicit
solutions of many soliton equations. Lax pair of the integrable system plays a key role [2, 16]. We know
that a gauge transformation of a matrix spectral problem is called Darboux transformation if it transforms
the spectral problems into another spectral problems of the same type.

In what follows, we proceed to search for the Darboux transformation of the integrable coupling (1.4).
We introduce a gauge transformation

¢ =TTNg (4.1)
Here, we assume TT(N) is of the form
N-—-1 . N-—-1 ) N-—-1 ) N-—-1 .
> ANt AN+ Y B > R AN+ 3 Gt
i=0 1i=0 1=0 1=0
N—-1 ) N-—-1 ) N-—-1 ) N-—-1 )
AN Y ciab Y DAt AN+ Y H > Ll
1=0 1=0 N_li:O 1',:(])\1_1 , (4'2)
0 0 > AN AN 4+ 3 B
1=0 1=0
N-—1 ) N-—1 )
0 0 AN+ Y Gl > Db
i=0 i=0

where N is a natural number, and A;, B;, C;, D;, Fi, G;, Hi, Li, 1=0,1,--- ,N —1 are undetermined
functions of variables x and t. Eq. (4.1) can transform two spectral problems (1.5) and (2.10) into

where

(P~x = u(b/

(pt = Vl@/

U= (MM, ™My =1 v = (N £ TN vy Ny =1,

(4.3)

(4.4)

In what follows, we determine TTtN) such that U and V; in the Eq. (4.4) have the same form with U

and Vj, respectively.
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Let & = (&1,8,83,&4)T, 1 = (M1,M2,M3,M4)" be two real linear independent solutions of Eq. (1.5)
and Eq. (2.10), and use them to define the following four linear algebraic systems for A;, Bi, Ci, Dy,
Fi/ Gi/ Hi/ and Ll(l < i < ZN),

N—1
(Ai + oBi + BjFi +viGA] = —ogAN — AN, 1<j<2N, (4.5)
i=0
N—1 )
(Ci+ 05D+ BiHi + LA} = AN + B;AN, 1< <2N, (4.6)
i=0
N—-1 )
(BjAL +ViBi)A, = —y;AY, 1<j<2N, (4.7)
i=0
N—-1 )
(BjCi+v;Da)A; = BiA)Y, 1<j<2N, (4.8)
i=0
with . . ‘£,
2 — KjT2 3 — Kjn3 — KjT4 .
= e BT e VT E ey J=120 N, (49)
i 1 i 1 in1

and A;j, kj (1 <j < 2N) are suitably chosen such that all the determinants of coefficients in (4.5) ~ (4.9) are
nonzero.

Therefore, Ay, Bi, Ci, Dy, Fi, Gi, Hi and L; (0 <j < N —1) are uniquely determined. From (4.5) ~
(4.8), it is easy to get that det(TT(N)) is 4N th-order polynomial of A, and A; (1 < j < 2N) are all its roots.

Thus, we have
2N

det(M™) =TT(A =%

j=1

Proposition 4.1. The matrix u defined by (4.4) has the same form as U, in which the old potentials q, r, s, and w
are mapped into new potentials §, ¥, 3, and W according to

d=—-q9+An-1—Dn-1,
F=-—14+Bn_1+CNn_1,
4.1
§=—s—An-1+Dn1+Fno1—Dnoa, (4.10)
W=-—-w-—-Bn_1—Cn_1+Gn_1+HNot
N—1 . N-1 N-1 N—1 . N-1
Proof Let A= Y A, B=AN+> BAL C=-AN+) CGAL D=) DA, F=) FAl, G=
i=0 i=0 i=0 i=0 i=0
N—1 _ N—1 _ N-1
AN+ Y GAL H=—AN+ ) HAL, L= ) LAl and
i=0 i=0 i=0
Mi(A) T2(A) Tiz(A) Tis(A)
1(A) T2(A) Tas(A) Ta(A)
TN+ TNy Ny = | 72 , 411
0 0 Txn(A) Ta(A)

where (TTIN))=1 = (MT(N))* / det(TTN)) | From (4.11), we have

M1(A) = (AD —BC)(—BxC + A D + qBC + qAD —rAC 4+ rBD + ACA — BDA),
Mo(A) = (BC —AD)(AxB —A(Bx —2qB) +B2(r —A) — A%(r+ 7)),
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lM3(A) = (AD —BC)(DFx — CGx + qDF—qCG —rCF 4+ rDG + sBC + sAD —wAC +wBD — CFA — DGA)
+ (Bx — qB + 1A + AA)(CDF— C2G — ADH + ACL)
+ (Ax + qA + 1B 4+ BA)(—D?F+ CDG + BDH — BCL),
M4(A) = (AD —BC)(—BFy + AGyx — qBF— qAG + rAF — rBG — 2sAB + wA%Z —wB? + AFA + BGA)
+ (Bx — qB + 1A + AA)(—BCF+ ACG + ABH — A1)
+ (Ax + qA +7B +BA)(BDF — ADG — B?H + ABL),
M (A) = (BC—AD)(—CxD 4 C(Dyx —2qD) + D*(—r +A) + C3(r + 1)),
Ma(A) = (BC —AD)(B(Cx +qC+D(r—2A)) —A(Dyx — qD + C(r +A)),
M3(A) = (AD —BC)(DH, — CL, + qDH — qCL — rCH + DL +2sCD — wC? + wD? — CHA — DLA)
+ (Dx — gD +7C + CA)(CDF— C2G —ADH + ACL)
+(Cx + qC+ 1D — DA)(—D?*F 4+ CDG + BDH — BCL),
M4(A) = (AD —BC)(AL, — BH, — qBH — qAL + TAH — rBL — sSAD — sBC + wAC —wBD + AHA + BLA)
+ (Dx — qD 4 7C 4 CA)(—BCF+ ACG 4+ ABH — A%L)
+(Cx+qC+ 7B —DA)(BDF— ADG — B?H + ABL).

We find that I'1(A), T13(A), and I35 (A) are (4N + 1)th-order polynomials in A, and T'2(A), Ti3(A), Tia(A),
21(A), T2(A), and T4(A) are 4N th-order polynomials in A. Through a direct verify, we have

Nj(A)=0,1=12,j=123,4 k=1,--- ,2N.

Then, we deduce

with (0) (1) (0) (0) (0)
T I S i
M= | M At My mp My m
0 0 mﬁ)) mg)k + mig)
0 0 mg)?\ + mgl)) még)

where mg), mg), and mg))( i=1,2,j=1,2,3,4) are all independent of A\. Hence we get

(MM +TTMNU) = MmN | (4.12)

Equating the coefficients of AN+T (1 = 0,1) in (4.12), we obtain that mi?) = —q+An-1—Dn_1 =

~ 1 0 ~ 0 ~ 0
q, m&z) =1, m§2) = —7T+BNn_1+CNnip =T, m§3) = —s—AN_1+Dn_1+Fno1—LInog =35, 1TL§4J =

_ 1 0 - 0
—Wn —Bno) —Cno1+ G HHNor = W, mél) = -1, mél) = —T+Bn_1+Cno1 = F, méz) =q—

N 0 " 0
ANn-1+Dn-o1 = —0Q, még,) = —wn —Bno1 —Cno1 + Gt +Hyor =W, m£4) =s+ANn-1—Dn_1—

Fn—1+ Ln—1 = —5. The proof is completed. O
Proposition 4.2. The matrix Vy defined by (4.4) has the same form as Vy under the transformation (4.10), i.e.,
Vin Vio Vi3 Vi

v, — Vo Vo, \:/23 \n
! 0 0 Vii Vi’
0 0 Vy Vp

where Vi1 = G\ — 3¥, Vip = )\2+f>\+%(qx+q2+f2), Vis (q+§)7\—%(fx+17vx), Vig = N2+ (F+

WA+ 5(8x + Gx) + (35 +T0) + 382+ 37, Vo = N +7A+ 3(ax — 32— ), Voo = —qA + 3T, Va3 =
N+ (F WA+ 5 (55 + Gx) — (45 +F9) — (3 +72), Yoy = —(@+ I+ 5 (F +705).
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Proof. Let
Inn(A) Zp(A) Z(A) Zu(A)
(N) | +(N) (N | Z21(A) Z:2(A) Zoz(A) Zaa(A)
(M VO™ = 1 7507 707 1000 2
0 0 (A Zn(A)

We obtain that X11(A), Zi3(A), Z2(A), and Zo4(A) are (4N + 1)th-order polynomials in A, and X2(A),
Z14(A), Z21(A), and Xp3(A) are (4N + 2)th-order polynomials in A. By a direct check, we get

Lij(M)=0,1=1,2,j=1,2,3,4, k=1,--- ,2N.
Therefore, the following equation is established
(N TNV TN * = det(TN)y, (4.13)

with

) )

ng\ + zig) ZS)AZ + zﬁ)?\ + ZS

el

(1) (0) (2)42 (1) (0
zy A+ zqq 23 N+ z Atz

zé??\z + ng\ + zé(l)) zg)k + zég) z%)?\z + zg)?\ + zég

0 0 zﬁ)?\ + zi(l)) ZS)AZ + ZS)A + zg)

) (0)

0 0 zg)?\z + 22)7\ 4 zé? ng\ + 2z,

where zg), zﬁ), zg), Zg’), zgq, (1, = 1,2,3,4, k = 0,1) are all independent of A. Due to (4.13), we
obtain

MmN LNy ) =y, (4.14)
Comparing the coefficients of A in (4.14), we have

Zﬁ) =—q+ANn-1—Dn_1=17,

1 1,
Zg(l)) = —5(—& +Brn_1x + Cnoix) = 5T

(2)
z, =1,
Zg) =—1"T+Bn_1+CNni1 =F,
0 1
252) = 5(—% +AN-1x —Dno1x + (=@ +AN—1 —Dn_1)?+ (=T +Bn_1+ Cn-1)?) =
1 L
zig,) =(—q+An-1—Dn-1)+(=s—An_1+Dn-1+Fno1—Inat) = (G +3),

0 1 1.
ZggJ = _5(—Tx +BN-1,x + Cno1x) + (Wx = Bno1,x — Cne1x + GNo1x T HNC1x) = _E(rx +Wx),

(2)
21y =1,
1 L
254) = (=Tx +Bno1x F Cneoix) + (—Wx = Bn—1,x — Cn—1x + GN—1,x + HNo1x) = Tx + Wy,
0 1
254) = E(_SX —AN-1,x FDno1x FFPncx — En—1x)
+(—gqx +An—1,x —Dn-1x) + (—q+ANn—1 —Dn-1)(—s —An—1+Dno1 +Fnor — In-a)
+(—r+Bno1+Cno1) (W —Bno1 — Cno1 + Gt + Hat))
1 1 . 1, .,
+5((=a+An-1 - Dn-1)*+ (—T+Bn_1+ Cn1)?) = 5 (8x 4 0x) + (45 +TW) + E(qZ +7),
(2)
zy =1
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2V = —r+Bn_1+Cno1 =T,

1 1, _ 2 .
zﬁﬁ” = E(_qx +AN—1x —Dnoix — (=@ +AN—1 —Dno1)? = (=7 + Bnot + Cne1)?) = = (6x — §° — ),

2 = —(—q+An_1—Dn_1) = —4,

7,52) - %(—rx +BN_1x+CN_1x) = S xg) _—

Z%) =(—r+Bn1+Cnot + (W —Bno1 —Cno1 + Gt +HHa)) =F4W,

Zég) — %((_Sx —AN-1x +DN_1x FFNC1x — Incix) + (—dx + AN—1x — DN_1x))
—((—q4+AN—1—Dn_1)(—s —An_1 +Dn_1+Fn_1—Ln_1) + (—7+Bn_g
+Cn-1)(—w—Bn1—Cno1+G6no1+HN1)) — %((*q +An—1—Dn_1)?

(B + O ) = 5 (6 +83) — (454 7) — o (@4 7)

zg_i) = —(—q+An_1—Dn_1)+(—s—An_1+Dn_1+Fno1—LIno1) = (G43),

zég) — %((—rx +BN_1x+ CON_1x) F (—Wx —Bn_1x — Cnoix F Grn_1x F HNo 1)) = %(?x + Wy ).

The proof is completed. -

Hence, we conclude that the transformations (4.3) and (4.4) can change the Lax pair Eq. (1.5) and
Eq. (2.10) into another Lax pair with same form. Thus both of the Lax pairs lead to the same integrable
coupling (1.4).

As usual, the gauge transformation (4.3), (4.4), and (4.10),

(¢;q,7,5,W)—> (Pn,q,T,5W) (4.15)

is a Darboux transformation of (1.5) and (2.10). Eq. (4.10) is so-called a Backlund transformation (BT)
between new solution (§,¥,3, W) and old solution (q,r,s,w)'.
In conclusion, according to propositions 4.1 and 4.2, we have the following theorem.

Theorem 4.3. Each solution (q,, s,w)T of (1.4) is mapped into new solution (g, T, 3, W) under the transforma-
tion (4.10).
5. Explicit solution

In what follows, we will apply Darboux transformation (4.15) to give explicit solution of (1.4). We
choose a seed solution of (1.4) (i.e., a simple special solution) (q, T, s,w)T =(0,0,1,1)T and N =1 in (4.2).
Substituting this solution into the (1.5) and (2.10), we can obtain the following Lax pair

o A 1 1 0 A 1 A+1

20 1 4 A0 A1 1
>Z1o 00 A" ®Tlo o o Ao

0 0 - 0 0 0 —A 0
Solving above two equations, we have
Atcos(A(x +1t)) + w Atsin(A(x +t)) — w
b= —At sin(?\(x +1t)) — Sln()\()\ix—’_t)) L= At COS()\(X +1))— sm(?\()\ix—kt)) )

sin(A(x + 1)) —cos(A(x+1))

cos(A(x +t)) sin(A(x +t))
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Ajt(—=sin(A;(x +t)) — k5 cos(Aj(x +t)) 4 (=1 + Kj)%.)\(?ﬂ

% = N e
Ajt(cos(Aj(x + 1)) — kj sin(Aj(x +t)) + (1 + Kj)Q)\j—
sin(A;j(x + 1)) + kj cos(Aj(x +t))
Pi = sty )
Ajt(cos(Aj(x +t)) — Kk sin(Aj(x +t)) + (1 + K])Q)\_—
j
v = cos(Aj(x +t)) — kj sin(A;(x + t)) =12
j = e
Ajt(cos(Aj(x + 1)) — kj sin(Aj(x + 1)) + (1 + KJ)%M
j
The Eq. (4.2) becomes
Ag A+ By Fo A+ Gy
—A+Cp Do —A+Hp Lo
m —
0 0 Ao A+ By
0 0 A+ Cy Do
From Eq. (4.5) ~ Eq. (4.9), we have
A — Y1Y2A2 —Y1Y2M B — B1y2A2 — BaviM Co— B1y2A1 — BoyiAe Do — B1B2A1 — B1B2A2
0 — ; b0 = ; 0 — s 0=
B1yv2 — Bav1 B2v1 — B1v2 B1v2 — B2v1 B1yv2 — B2v1
Al—A
Fo= 2 (aaBay? —ya2louBrv2 +v1(v1 — Bavi + (1 + B1)v2))),
(B2v1— B1v2)
1
Go = m(-ﬁ%v%h + a2 B1B2v1(—A1 +A2) + Brya(vidr — (v1 + B1y2)A2)
+ Bava(oaBr(A1 —A2) +v1((—=1+ B1)A + A2+ B1A2))),
1
Ho = —————(BTV3A + caB1Bava(M — A2) + caB1Bay1(—A + A2) — Bryrva((—1 4 B2)A + Az

(B2v1 — B1Yy2)
+ B2A2) + B2v1(B2v1iA2 + v2(—A1 +A2))),

A1 —
L0 — W(“ZB%BZ + B3 (—cu B +v1+ Bry) — BT(1+ Ba)ya).

Eq. (4.10) becomes

=—g+ Ag— Do,
=—1+4+Bg+ Cy,
=—s—Ap+ Do+ Fg— Ly,
W =—w—Bg— Cy+ Go + Hp.

I e (=]

By the aid of Darboux transformation (4.15), we obtain new explicit solution of (1.4):

4= Yivoha —vivah  BiPodi — Bifode o Brvade — BaviM n B1v2A — BaviAz
B1y2— B2v1 Bry2a—B2v1 B2v1 — B1v2 B1y2 — B2v1
y Y1Y2A2 —v1v2A1 | Bi1B2A1 — P12 AL —A2 2
§=-1-— + + x; —v2(a + —
B1v2 — B2v1 B1v2 — B2v1 (BzYl—Bﬂ/z)z( 2b2v1 —valoaPrv2 +vilva = Pom
AL—A
+(=1+B1)v2))) — mmﬁ%ﬁz +B3(—ou 1 +v1 + Bry1) — BI(1+ B2)v2),
_ B1v2A2 — Bavid  B1vaAd — BaviAe 1 2.2
W=-—1— — B3V + A+ A
B2v1— B1v2 B1v2 — B2va (B2v1— Bﬂ/z)z( Bavidi + cabfayi{=Ai+ o)

+ B1y2(vid — (Y1 + Bry2)A2) + Bava (e B1(Ar —A2) +v1((—1+ B1)A1 + A2 + B1A2)))



X.-X. Xu, Y.-P. Sun, J. Nonlinear Sci. Appl., 10 (2017), 3328-3343 3341

1
* (B2v1 — B1Y2)?
—Bry1va((=1+ B2)A1 + A2 + BoA2) + Bovi(B2yiAz +va(—A1 +A2))).

(B3Y3A1 + 0 B1Bava(Ar — A2) + 02B1B2yi(—A1 + A2)

6. Conclusions and remarks

Starting from a four-by-four matrix spectral problem, we derived an integrable coupling hierarchy of
Dirac integrable hierarchy by means of zero curvature equation. A bi-Hamiltonian structure of the ob-
tained integrable coupling hierarchy was established by the Magri pattern of bi-Hamiltonian formulation.
A hereditary operator of the obtained integrable coupling hierarchy was presented. Liouville integrability
of the obtained Hamiltonian systems is demonstrated. With the help of a gauge transformation of the
Lax pair, we establish a Darboux transformation of the Lax pair of obtained integrable coupling (1.4). Ul-
timately, as an application of the Darboux transformation, an explicit solution of the resulting integrable
coupling is given.

From the obtained explicit solution, we apply the Darboux transformation (4.15) once again, then other
new solution of Eq. (1.4) is obtained. This process can be done continually. Therefore, we can obtain a lot
of explicit solutions for the resulting integrable coupling system of the Dirac integrable system.

In addition, many interesting problems deserve further investigation for the integrable coupling hi-
erarchy (2.8). For example, inverse scattering transformation, nonlinearization of Lax pairs, constructing
complexion solutions by the Wronskian determinant, conservation laws, and so on.

Appendix: The proof of the Jacobi identity in Proposition 3.1
We would like to give a detailed check of the Jacobi identity

(M(o, B) (WM (ex, B)flg, ) + Cycle(f, g, h) =0,

in which the operator I'(«, 3) is defined by (3.4). u = (q, ™, s,w)T

f=(f, 2,135,107, §=1(61,62,83,84)7, h = (hy, ho, hi3, hy) T,

where f; = fi(x, 1), §i = §i(x, 1), hy = hi(x,1), i = 1,2,3,4. They are arbitrary functions, which are
required to be rapidly vanishing at the infinity. We combine the terms in (I'(«x, B) (W, B)flg,R) +
Cycle(f, g, h) containing a3, B2 respectively. Note that

(@ =-0""1, (af)(@ 'g)hk =fig;(d "hi), 1, §, k=1,2,3,4.
Through a tediously but direct computation, the coefficients of o3, B2 can be obtained as follows.

A

xp: SJ{ﬂ(a_l(TQs))ﬁl — 138300 (rh1)) — 307" (q§a) 1 — 4G4(0 71 (rha)) + f4(2 7 (rg3) o

+f393((07" (qh2)) — (071 (q8a)) 2 + £404(0 " (qh2)) + f3(0 " (rg1) ) hs — 381 (2" (vha))
—f3(07(q82))hs — f462(0 ' (vha)) + f3(0 ' (was ))%—16193(5_1“33))+131(a_1(T§3))ﬁ3
— 39307 (Wha)) — £284(07 " (tha)) — f3(0 " (s84) )3 — f484(0 " (Wh3)) — f1(07 " (qd4))Paa
+ (071 (rg1)) R+ 31 (07" (qha)) — F4(07 (q82) R + f482(0 " (qha)) + F183(0 ' (qha))
+f4(07 1 (w@s) ) s + f383(0 ' (sha)) + F2(0 1 (r83)) s — £4(0 ' (584) ) ha + £284(3 " (qha))
—2(07(q84))ha + F494 (9! (sha))Jdx.

p?: 4J{—T134Q3(31F11) + 11401 g3) R + qfada(d Th) — 130 ga) Ry +1385(0 Thy)

— (07 g3)ho — qf364(0 o) + 7f394(0 Tho) — 7f4§1(0 Ths) + T4 (31 gu) s
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+qf182(0 "hs) — vf3(07 " go) s — wisg3(0hs) + rf2(0 ' §3)hs — rf2gs (0 ' ha)

+ Wiy (071 gs)hs — f2(07"g3)hs + 54840 " hs) — wiz(0 " ga)hs + qf204(0 7 ha)
—7f391(07 "hy) — qf3(d (1) s — qf392(0 'hy) — qf3(0 " g2) s — qf2(0 ' g3) Ry
+whhd3(d hy) — sf2(d7 1 a3) Ry + 11830 Tha) — sT394(0 TRy + qf1 (071 gu) ha)

— qf184(0 Thy) + sf3(0 " g4) ha}dx.

+ 16J{q(61(qf4))(61(r93))ﬁl — (07" (rf3)) (07" (rgs))hu + q(37 ! (rf3)) g3 (0" (vha))

'(rg
—q(0 " (qfs))g3(0 7" (rhn)) + 4@~ 'rf3) (07" qga)) ha — (07 (qfa)) (07 (qGa)) P
1

A

+7(01rf3)84(0 7 rhy) — (07 (1)) 44 (07 (thy)) — 7@ 'rf3) (0 'rgs) e
+7(07(qf1)) (0 'rg3))ha — 40 'rf3))43(0 " (qha)) +r(0 ' (qfs))g3(3 (gh2))
+7(@ 7 (rf3)) (07 (qga))h2 — (37 (qfs)) (071 (qg4))h2 — (371 (rf3))84(0 ' (qh2))
+7(07(qf4))84(07 " (qh2)) — q(0'rf3)) (0 (rg1))hs + q(0 ' (qfs)) (0 (rg1hs))
+q(071(rf3))a1(0 " (vhs)) — q(@ " (qf4)) a1 (3" (vhs)) + q(@'vf3)) (9 ' (q42))hs
—q(0'(qfs)) (@' (q82))ha + (07 (rf3))82(d " (vhs)) — (071 (qfs))§2(0 " (vh3))
—q(d 1 (rf3))(d 1 (was))hs + q(0(qfs)) (01 (was))hs + q(0~'rf1))ga(d " (vhs))
—q(07'(qf2))43(07 " (vh3)) + q(3 1 (wf3))d3(0 " (rhs)) +s(0 ' (rf3))§30 ' (rha)
—q(97"(sf4))@3(d 'rhs) —s(d7! (qf3)) 43(0~ " (rh3)) — q(@'rf1)(9 ' (vd3))h3)
+q(0 1 (qf2) (071 (rg3))hs — q(d ' (wf3)) (0" (rgs))hs — s(d ' (rf3)) (97! (rd3))hs
+q(07'(s£4)) (0 (rg3))hs + s (qfs)) (@ (rd3))hs + q(d 'rf3)§3(0 " (Wha))
—q(07'(qfs))g3(d " (wha)) +7(0~ Y1?1)Q3(a (ths)) —r(d7'(qf2))g3(0 ' (vhs))
+ 70 (wf3))g4(07 (vhs)) + w(d " (rf3))g3(d ! (ths)) — r(9 ' (sf4))d3(d ' (rhs))
—w(0 ' (qfs))d3(d " (rhs)) + q(d 'rf3)) (9 (s84) )3 — q(3 ' (qfs)) (0" (sg3)) s
+7(07'rf3)84(0 7 (Wha)) — 70" (qf4))84(d " (Wh3)) + q(@'rf1) (9" (qd4) s

—q(@ ' (qf2))(d7(qds)hs+ q(d ' (wf3)) (0" (qda))hs + s(37 1 (rf3)) (371 (rd4) ) P3
—q(07"(sf4)) (0 (qda))ha — s(07 ' (qfs)) (3" (qda) ) hs — 1(d ' (rf3)) (2" (rd1) ) hs

53— q(071(rf3))81(0 7 (qha)) + (071 (qf4))§3(0 " (qha))
4 =107 qfs)) (071 (qg2))hs — T(d 'rf3)g2(0 7 (qh4))

2(07
2(07(qh4)) — q(d~'rf1))83(0 1 (qhs)) + q(0 " (qf2)) g

+1(07 (afs)) g2 ( (0" (qh4))
—q(07 (wf3))§5(0 1 (qha)) — (0 (vf3))§30 (qha)) + q(d ' (sf4))g3(0 ' qha)
+5(07(qfa))g3(0 7 (qha)) — (01 (r3)) (3 (W) R + (3 (qf4)) (37 (Wds) ) s
—q(afl(fa))ga(afl(sﬁm ( L(qf)) g0~ (sha)) + (0 1)) (07 (rg3) ) ha
+71(07 " (qf2)) (0~ 1( f3)) (07" (rgs) )Ry —w(d " (rf3))(

)

wi3))G4(0 " (qha)) —w(d7(rf3))g4(0
1
(

)
+w(d (qfe))ga) (@ ' (qh) + (3 1) (3 (qga)) s — (3 (qF2)) (3 (qGa) ) Fa
+1(d 1 (wf3)) (0 1 (qda))hu +w(d 1 (rf3)) (0 (qda) ) hu —1(d 1 (s4)) (07 (qGa) ) s
—w(@ (qfe)) (@ (qga)) s — (3 rf3)a(d " (sha)) + (0 (qfs))§4 (0" (qha))}dx.
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Through a direct calculation, we obtain that above three sums with a cycle of f, §, and h are all equal

to zero.
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