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Abstract
In this paper we present Lyapunov inequality for the following fractional boundary value problem

d

dt

(1
2a
D

−β
t u ′(t) +

1
2 t
D

−β
b u ′(t)

)
+ω(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,

where aD
−β
t and tD

−β
b are the left and right Riemann-Liouville fractional integrals of order 0 6 β < 1, respectively, and

ω ∈ L1([a,b], R). Using the obtained inequality, we provide lower bounds for the first eigenvalue of the fractional differential
equations with homogeneous Dirichlet boundary problem. c©2017 All rights reserved.

Keywords: Lyapunov type inequality, fractional differential equations, boundary value problem, eigenvalue.
2010 MSC: 15A42, 34A08, 35P15.

1. Introduction

The classical Lyapunov inequality states that, if u is a nontrivial solution of the following linear
boundary value problem {

u ′′(t) +ω(t)u(t) = 0, a < t < b,
u(a) = u(b) = 0, (1.1)

where ω : [a,b]→ R is a continuous function, then∫b
a

|ω(t)|dt >
4

b− a
. (1.2)
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Inequality (1.2) has been proved to be very useful in various applications including oscillation theory,
stability criteria for periodic differential equations, estimates for intervals of disconjugacy, and eigenvalue
bounds for ordinary differential equations. Many improvements and generalizations have been obtained,
meanwhile, different proofs of this inequality have appeared in the literature. We refer the reader to
[1, 17] and the references therein.

For the nonlinear case, Elbert [5] firstly extended the inequality (1.2) to the following p-Laplacian
problem {

(|u ′|p−2u ′) ′ +ω(t)|u|p−2u = 0, a < t < b,
u(a) = u(b) = 0,

where ω ∈ L1([a,b], R) and 1 < p <∞, and obtained the following inequality∫b
a

|ω(t)|dt >
2p

(b− a)p−1 . (1.3)

For p = 2, then the linear problem (1.1) is recovered. Nápoli and Pinasco [4] extended the inequality (1.3)
to the following more generalized nonlinear problems{

(ψ(u ′)) ′ +ω(t)ψ(u) = 0, a < t < b,
u(a) = u(b) = 0,

where ψ : R→ R is a convex nondecreasing function satisfying a certain condition. For a review of recent
developments in these problems, we refer the reader to the book [15].

Instead of the (classical) ordinary derivative in (1.1), recently, many researchers have focused their
attention on the Lyapunov-type inequalities for one-dimensional fractional boundary value problems.
In this direction, Ferreira [6] for the first time established a fractional version of inequality (1.2) for the
following boundary value problem{

(aD
αu)(t) +ω(t)u(t) = 0, a < t < b, 1 < α 6 2,

u(a) = u(b) = 0, (1.4)

where aDα denotes the Riemann-Liouville fractional derivative of order α. Explicitly, the author showed
that if the above problem (1.4) has a nontrivial solution, then∫b

a

|ω(t)|dt > Γ(α)
( 4
b− a

)α−1
, (1.5)

which yields the standard Lyapunov inequality (1.2) if we take α = 2 in (1.5), where Γ is the gamma
function. From then on, some Lyapunov-type inequalities for other fractional boundary value problems
were established, see, for example, [7, 10, 11, 14, 16] and the references listed therein. On the other hand,
there are some papers on Lyapunov-type inequalities for partial differential equations, we refer the reader
to [2, 3, 9] for related results.

Motivated by the above works, in present paper, we focus our attention the following fractional bound-
ary value problem 

d

dt

(1
2a
D

−β
t u ′(t) +

1
2t
D

−β
b u ′(t)

)
+ω(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(1.6)

where aD
−β
t and tD

−β
b are the left and right Riemann-Liouville fractional integrals of order 0 6 β <

1, respectively, and ω ∈ L1([a,b], R). To the best of our knowledge, there is no literature to discuss
the Lyapunov type inequality for fractional differential equations with left and right Riemann-Liouville
fractional integrals. The purpose of this paper is to address this issue for the BVP (1.6) and establish the
following result.
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Theorem 1.1. Let ω ∈ L1([a,b], R) be nonnegative. Suppose that BVP (1.6) has a nontrivial solution. Then∫b
a

|ω(t)|dt >
(2(b− a)(α−

1
2 )

Γ(α)(2α− 1)
1
2

1

|cos(πα)|
1
2

)−2
. (1.7)

The paper is organized as follows. In Section 2, we recall some basic concepts and properties of the
Riemann-Liouville fractional integral and the Caputo fractional derivative of order α > 0 which will be
used further in this paper. In Section 3, we prove the Lyapunov-type inequality (1.7) for the BVP (1.6),
and give the lower bound for the first eigenvalue of the homogeneous Dirichlet boundary value problem.

2. Preliminary results

In this section, for the reader’s convenience, we collect some basic definitions and properties that will
be used in the sequel, see [12].

Definition 2.1 (Left and Right Riemann-Liouville fractional integrals). Let u be a function defined on
[a,b]. The left and right Riemann-Liouville fractional integrals of order α > 0 for function u denoted by
aD

−α
t u(t) and tD

−α
b u(t), respectively, are defined by

aD
−α
t u(t) =

1
Γ(α)

∫t
a

(t− s)α−1u(s)ds, t ∈ [a,b],

and

tD
−α
b u(t) =

1
Γ(α)

∫b
t

(s− t)α−1u(s)ds, t ∈ [a,b],

provided the right-hand sides are pointwise defined on [a,b], where Γ > 0 is the gamma function.

Definition 2.2 (Left and Right Riemann-Liouville fractional derivatives). Let u be a function defined on
[a,b]. The left and right Riemann-Liouville fractional derivatives of order α > 0 for function u denoted
by aDαt u(t) and tD

α
bu(t), respectively, are defined by

aD
α
t u(t) =

dn

dtn
aD

α−n
t u(t),

and

tD
α
bu(t) = (−1)n

dn

dtn
tD
α−n
b u(t),

where t ∈ [a,b], n− 1 6 α < n and n ∈N.

The left and right Caputo fractional derivatives are defined via the above Riemann-Liouville fractional
derivatives. In particular, they are defined for the function belonging to the space of absolutely continuous
functions, which is denoted by AC([a,b], R). ACk([a,b], R) (k = 1, 2, · · · ) is the space of functions u such
that u ∈ Ck−1([a,b], R) and u(k−1) ∈ AC([a,b], R). Especially, AC([a,b], R) = AC1([a,b], R).

Definition 2.3. Let α > 0 and n ∈ N. If α ∈ (n− 1,n) and u ∈ ACn([a,b], R), then the left and right
Caputo fractional derivatives of order α for function u denoted by c

aD
α
t u(t) and c

tD
α
bu(t), respectively,

exist almost everywhere on [a,b]. caDαt u(t) and c
tD
α
bu(t) are represented by

c
aD

α
t u(t) = aD

α−n
t u(n)(t) =

1
Γ(n−α)

∫t
a

(t− s)n−α−1u(n)(s)ds,

and
c
tD
α
bu(t) = (−1)ntDα−nb u(n)(t) =

(−1)n

Γ(n−α)

∫b
t

(s− t)n−α−1u(n)(s)ds,
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respectively, where t ∈ [a,b]. In particular, if 0 < α < 1, then

c
aD

α
t u(t) = aD

α−1
t u ′(t) =

1
Γ(1 −α)

∫t
a

(t− s)−αu ′(s)ds, t ∈ [a,b], (2.1)

and
c
tD
α
bu(t) = −tD

α−1
b u ′(t) =

−1
Γ(1 −α)

∫b
t

(s− t)−αu ′(s)ds, t ∈ [a,b]. (2.2)

If α = n− 1, u ∈ ACn−1([a,b], R), then caD
n−1
t u(t) and c

tD
n−1
b u(t) are represented by

c
aD

n−1
t u(t) = u(n−1)(t) and c

tD
n−1
b u(t) = (−1)(n−1)u(n−1)(t), t ∈ [a,b].

Based on the above definitions, we recall some of the properties of the Riemann-Liouville integral and
derivative operators.

Property 2.4. The left and right Riemann-Liouville fractional integral operators have the property of a semigroup,
that is, for all α1,α2 > 0,

aD
−α1
t

(
aD

−α2
t u(t)

)
= aD

−α1−α2
t u(t),

and
tD

−α1
b

(
tD

−α2
b u(t)

)
= tD

−α1−α2
b u(t),

in any point t ∈ [a,b] for continuous function u and for almost every point in [a,b] if the function u ∈ L1([a,b], R).

Property 2.5. The left and right Riemann-Liouville fractional integral operators have the following property∫b
a

[aD
−γf(t)]g(t)dt =

∫b
a

[tD
−γ
b g(t)]f(t)dt, γ > 0,

provided that f ∈ Lp([a,b], R), g ∈ Lq([a,b], R) and p > 1, q > 1, 1
p + 1

q 6 1
γ or p 6= 1, q 6= 1, 1

p + 1
q = 1 + γ.

The composition of the Riemann-Liouville fractional integration operator with the Caputo fractional
differentiation operator is given by the following result.

Property 2.6. Let n ∈N and n− 1 < γ 6 n. If u ∈ ACn([a,b], R) or u ∈ Cn([a,b], R), then

aD
−γ
t (caD

γ
t u(t)) = u(t) −

n−1∑
j=0

u(j)(a)

j!
(t− a)j,

and

tD
−γ
b (ctD

γ
bu(t)) = u(t) −

n−1∑
j=0

(−1)ju(j)(b)
j!

(b− t)j,

for t ∈ [a,b]. In particular, if 0 < γ 6 1, and u ∈ AC([a,b], R) or u ∈ C1([a,b], R), then

aD
−γ
t (caD

γ
t u(t)) = u(t) − u(a), and tD

−γ
b (ctD

γ
bu(t)) = u(t) − u(b).

Property 2.7. Let n ∈ N, and n− 1 < γ < n. If f is a function defined on [a,b] for which the Caputo frac-
tional derivatives caD

γ
t f(t) and ctD

γ
bf(t) of order γ exist together with the Riemann-Liouville fractional derivatives

aD
γ
t f(t) and tD

γ
bf(t), then

c
aD

γ
t f(t) = aD

γ
t f(t) −

n−1∑
j=0

f(j)(a)

Γ(j− γ+ 1)
(t− a)j−γ, t ∈ [a,b],
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and
c
tD
γ
bf(t) = tD

γ
bf(t) −

n−1∑
j=0

f(j)(b)

Γ(j− γ+ 1)
(b− t)j−γ, t ∈ [a,b].

In particular, when 0 < γ < 1, we have

c
aD

γ
t f(t) = aD

γ
t f(t) −

f(a)

Γ(1 − γ)
(t− a), t ∈ [a,b], (2.3)

and
c
tD
γ
bf(t) = tD

γ
bf(t) −

f(b)

Γ(1 − γ)
(b− t), t ∈ [a,b]. (2.4)

3. Proof of the main result

The purpose of this section is to finish the proof of Theorem 1.1. For the convenience, we firstly recall
some fractional spaces, see [8] for more details. To this end, denote by Lp([a,b], R) (1 < p < +∞) the
Banach space of functions on [a,b] with values in R under the norm

‖u‖p =
(∫b
a

|u(t)|pdt
)1/p

,

and L∞([a,b], R) is the Banach space of essentially bounded functions from [a,b] into R equipped with
the norm

‖u‖∞ = ess sup {|u(t)| : t ∈ [a,b]} .

For 0 < α 6 1 and 1 < p < +∞, the fractional derivative space Eα,p
0 is defined by

E
α,p
0 = {u ∈ Lp([a,b], R) : aD

α
t u ∈ Lp([a,b], R) and u(a) = u(b) = 0}

= C∞0 ([a,b], R)
‖·‖α,p ,

where ‖ · ‖α,p is defined as follows

‖u‖α,p =
(∫b
a

|u(t)|pdt+

∫b
a

|aD
α
t u(t)|

pdt
)1/p

. (3.1)

Then Eα,p
0 is a reflexive and separable Banach space. Moreover, Eα,p

0 ∈ C([a,b], R).

Lemma 3.1 ([8, Proposition 3.2]). Let 0 < α 6 1 and 1 < p < +∞. For all u ∈ Eα,p
0 , if α > 1

p , we have

‖u‖p 6
(b− a)α

Γ(α+ 1)
‖0D

α
t u‖p. (3.2)

Remark 3.2. According to (3.1) and (3.2), we can consider the following norm in Eα,p
0

‖u‖α,p = ‖0D
α
t u‖p,

which is equivalent to (3.1).

In what follows, we treat BVP (1.6) in the space Eα,p
0 with p = 2 and 1

2 < α 6 1 with α = 1 − β
2 .

According to Remark 3.2, for any u ∈ Eα,2
0 , the corresponding norm can be defined by ‖u‖α,2 = ‖0D

α
t u‖2.

Lemma 3.3. For any u ∈ Eα,2
0 , we have

|u(t2) − u(t1)| 6
2(t2 − t1)

(α− 1
2 )

Γ(α)(2α− 1)
1
2
‖u‖α,2, a 6 t1 < t2 6 b.
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Proof. The proof can be found in [8, Proposition 3.3], so we omit its details.

Lemma 3.4 ([8, Proposition 4.1]). For any u ∈ Eα,2
0 , we have

|cos(πα)|‖u‖2
α,2 6 −

∫b
a
aD

α
t u(t) tD

α
bu(t)dt 6

1
|cos(πα)|

‖u‖2
α,2.

Now we are in the position to prove Theorem 1.1.

Proof. Let u be a nontrivial solution of BVP (1.6). Then, multiplying by u and integrating by parts, we
obtain, in view of Properties 2.4 and 2.5, that∫b

a

ω(t)u2(t)dt = −
1
2

∫b
a

d

dt

(
aD

−β
t u ′(t) + tD

−β
b u ′(t)

)
u(t)dt

=
1
2

∫b
a

(aD
−β
t u ′(t) + tD

−β
b u ′(t))u ′(t)dt

=
1
2

∫b
a

(aD
−β

2
t u ′(t) tD

−β
2

b u ′(t) + tD
−β

2
b u ′(t) aD

−β
2

t u ′(t))dt.

(3.3)

In addition, due to the fact that u(a) = u(b) = 0 and on account of (2.1), (2.2), (2.3), (2.4), one deduces
that

aD
−β

2
t u ′(t) = aD

1−β
2 u(t) and tD

−β
2

b u ′(t) = −tD
1−β

2
b u(t). (3.4)

Substituting (3.4) into (3.3), we have∫b
a

ω(t)u2(t)dt = −

∫b
a
aD

1−β
2 u(t) tD

1−β
2

b u(t)dt. (3.5)

On the other hand, since u(t) is continuous, let us choose c ∈ [a,b] where |u(t)| achieves its maximum.
Then, according to Lemma 3.3, we conclude that, for t1 = c and t2 = b,

|u(c)| 6
2(t2 − c)

(α− 1
2 )

Γ(α)(2α− 1)
1
2
‖u‖α,2,

which, combining with Lemma 3.4 and (3.5), yields that

|u(c)| 6
2(t2 − c)

(α− 1
2 )

Γ(α)(2α− 1)
1
2

1

|cos(πα)|
1
2

(
−

∫b
a
aD

1−β
2 u(t)tD

1−β
2

b u(t)dt
) 1

2

=
2(t2 − c)

(α− 1
2 )

Γ(α)(2α− 1)
1
2

1

|cos(πα)|
1
2

(∫b
a

ω(t)u2(t)dt
) 1

2

6
2(b− a)(α−

1
2 )

Γ(α)(2α− 1)
1
2

1

|cos(πα)|
1
2

(∫b
a

ω(t)u2(t)dt
) 1

2

6
2(b− a)(α−

1
2 )

Γ(α)(2α− 1)
1
2

|u(c)|

|cos(πα)|
1
2

(∫b
a

ω(t)dt
) 1

2
.

Therefore, the conclusion is proved.

In what follows, using the above obtained inequality (1.7), we give lower bounds for the first eigen-
value of the following eigenvalue problem

d

dt

(1
2a
D

−β
t u ′(t) +

1
2t
D

−β
b u ′(t)

)
+ λu(t) = 0, a < t < b,

u(a) = u(b) = 0,
(3.6)
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depending on the parameter λ ∈ R. If problem (3.6) has a nontrivial weak solution in Eα, then λ is an
eigenvalue of problem (3.6) and uλ is a eigenvalue function associated to λ. From [13, Theorem 3.1], we
know that

λ1 = inf
u∈Eα\{0}

−
∫b
aD

α
t u(t) tD

α
bu(t)dt∫b

a u
2(t)dt

. (3.7)

In the following conclusion, we provide lower bounds for λ1.

Corollary 3.5. Let λ1 be the first eigenvalue of problem (3.6) given by (3.7). Then, we have

λ1 >
(2(b− a)(α−

1
2 )

Γ(α)(2α− 1)
1
2

1

|cos(πα)|
1
2

)−2
.

Proof. It follows from Theorem 1.1 by taking ω = λ1.
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