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Abstract
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1. Introduction and preliminaries

The theory of Zadeh’s fuzzy sets [14] continues to be applied in many areas of mathematics. One of
these is the study of Kramosil and Michálek, in which the concept of fuzziness is applied to the classical
notions of metric spaces [7]. Later, George and Veeramani defined it again by making some modifications
and gave some new results [5, 6]. They associated the distance between two points of a set with a single
non-negative real number, which is denoted by t. On the other hand, the notions of vector metric spaces
in which the metric takes values of a Riesz space was firstly defined in [4]. Then, continuous functions
between any two vector metric spaces were studied [3]. Our aim in this paper is to enrich the concept
of fuzzy metric that is in the sense of George and Veeramani. Instead of the number t we take in this
paper any element of a Riesz space [2, 8], namely any vector. In the space of continuous functions which
is a Riesz space if we take the vector t as a constant function, in this case every fuzzy metric is a fuzzy
vector metric. To support our study in non-stationary fuzzy metric examples we consider normed Riesz
spaces. Moreover, through lattice norm condition we can switch from order convergence in domain of the
membership function to convergence in its range. Thus, we updated the continuity for the relevant fuzzy
metric condition. Towards the end of the paper we define the concept of fuzzy vector diameter based
on [11, 12] to give proof of some theorems in a different way from [5, 6]. These theorems are located in
functional analysis and topological spaces [1, 9, 10, 13] such as Cantor’s intersection theorem and Baire’s
theorem.

Firstly we present basic concepts and results of [2, 8].
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Definition 1.1. Let E be a real vector space. If E has an order relation 6 (i.e., 6 is a reflexive, antisymmetric
and transitive binary relation on E) which is compatible with the algebraic structure of E in the sense that
it satisfies the following conditions:

(1) if s 6 t, then s+ v 6 t+ v holds for all v ∈ E;

(2) if s 6 t, then αs 6 αt holds for all α ∈ R+,

then E is called ordered vector space.

For any two vectors s and t in E we write s < t to indicate s 6 t but s 6= t. The notation s > t is t 6 s
and the other notation s > t is t < s. A vector t in ordered vector space E is called positive if t > θ holds.
We denote the set of all positive vectors of E with E+.

An ordered vector space E is called Riesz space if E has the supremum and the infimum of the set
{s, t} for s, t ∈ E. We show the classical notation as follows:

s∨ t = sup{s, t} and s∧ t = inf{s, t}.

The absolute value of any vector t in a Riesz space E is defined by |t| = t∨ (−t).
Function spaces are the important examples of Riesz spaces. A function space is an ordered vector

space E of real-valued functions on a set Ω with the pointwise ordering, that is f 6 g holds in E if and
only if f(x) 6 g(x) for all x ∈ Ω. The lattice operations in any function spaces E for each pair f,g ∈ E is
denoted by

(f∨ g)(x) = max{f(x),g(x)} and (f∧ g)(x) = min{f(x),g(x)}.

A sequence (tn) in a Riesz space is called decreasing, which is denoted by tn ↓ if n > m implies
tn 6 tm. The symbol tn ↓ t means that tn ↓ and inf{tn} = t both hold. The meanings of tn ↑ and tn ↑ t
are similar.

Definition 1.2. Let E be a Riesz space. A sequence (tn) in E is order convergent to some vector t, denoted
tn

o→ t, if there exists another sequence (sn) satisfying |tn − t| 6 sn ↓ θ.

Definition 1.3. Let E be a Riesz space. A norm ‖·‖ on E is called lattice norm if |t| 6 |s| implies ‖t‖ 6 ‖s‖.
A Riesz space with lattice norm is said to be a normed Riesz space.

Vector metric spaces are first introduced in [4]. The values of the distance function are taken in a Riesz
space.

Definition 1.4. Let X be a non-empty set and E be a Riesz space. The function d : X× X → E is called
vector metric (or E-metric) if it satisfies the following conditions:

(vm1) θ 6 d(x,y);

(vm2) d(x,y) = θ if and only if x = y;

(vm3) d(x,y) = d(y, x);

(vm4) d(x, z) 6 d(x,y) + d(y, z),

for all x,y, z ∈ X. Then (X,d) is called vector metric space.

Because the set of real numbers R with the usual order 6 is a Riesz space, every metric space is a
vector metric space. Let E be a Riesz space. The function d : E× E → E defined as d(x,y) = |x− y| is a
vector metric. Hence, every Riesz space is a vector metric space.
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2. Fuzzy vector metric spaces

Definition 2.1 ([11]). A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous t-norm if ∗ satisfies the
following conditions:

(ct1) ∗ is associative and commutative;

(ct2) ∗ is continuous;

(ct3) a ∗ 1 = a, for all a ∈ [0, 1];

(ct4) a ∗ b 6 c ∗ d whenever a 6 c and b 6 d,

for all a, b, c, d ∈ [0, 1].

To establish the concept of fuzzy vector metric space we utilize the definition of fuzzy metric space
that is in the sense of George and Veeramani.

Definition 2.2 ([5]). Let X be a non-empty set and ∗ be a continuous t-norm. The triple (X,M, ∗) is called
a fuzzy metric space if the fuzzy set M on X×X× (0,∞) satisfies the following conditions:

(fm1) M(x,y, t) > 0;

(fm2) M(x,y, t) = 1 if and only if x = y;

(fm3) M(x,y, t) =M(y, x, t);

(fm4) M(x,y, t) ∗M(y, z, s) 6M(x, z, t+ s);

(fm5) M(x,y, .) : (0,∞)→ [0, 1] is continuous,

for all x,y, z ∈ X and all t, s > 0. If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) or simply M
is a fuzzy metric on X.

Let us give the continuity for functionals defined on a Riesz space.

Definition 2.3. Let E be a Riesz space a map ϕ from E to R is called continuous if for any sequence (tn)

and t ∈ E, tn
o→ t implies ϕ(tn)→ ϕ(t) in R.

We can now offer the fuzzy vector metric space concept based on the above definition.

Definition 2.4. Let X be a non-empty set, E be a Riesz space and ∗ be a continuous t-norm. The triple
(X,ME, ∗) is called a fuzzy vector metric space if the fuzzy set ME on X× X× E+ satisfies the following
conditions:

(fvm1) ME(x,y, t) > 0;

(fvm2) ME(x,y, t) = 1 if and only if x = y;

(fvm3) ME(x,y, t) =ME(y, x, t);

(fvm4) ME(x,y, t) ∗ME(y, z, s) 6ME(x, z, t+ s);

(fvm5) ME(x,y, .) : E+ → [0, 1] is continuous,

for all x,y, z ∈ X and all t, s ∈ E+. If (X,ME, ∗) is a fuzzy vector metric space, we will say that (ME, ∗) or
simply ME is a fuzzy vector metric on X.

It is obvious that both fuzzy metric spaces and vector metric spaces are fuzzy vector metric spaces.
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Lemma 2.5. ME(x,y, .) : E+ → [0, 1] is nondecreasing for all x,y ∈ X.

Example 2.6. Let X be a non-empty set and E be a normed Riesz space and d : X× X → E be a vector
metric on E. Define a ∗ b = min{a,b} and

ME(x,y, t) =
‖t‖

‖t‖+ ‖d(x,y)‖
,

for all x,y ∈ X and t ∈ E+. Then (X,ME, ∗) is a fuzzy vector metric space.

Proof. We only show the fifth condition. Let (tn) be an order convergent sequence to t. Then, there
exists another sequence (sn) satisfying |tn − t| 6 sn ↓ 0. From the lattice norm condition and the inverse
triangle inequality of norm we obtain

|‖tn‖− ‖t‖| 6 ‖tn − t‖ 6 ‖sn‖ ↓ 0,

for all n ∈N+. So we get

lim
n→∞ME(x,y, tn) =

lim
n→∞ ‖tn‖

lim
n→∞ ‖tn‖+ ‖d(x,y)‖

=
‖t‖

‖t‖+ ‖d(x,y)‖
=ME(x,y, t).

Example 2.7. Let X = R\{0} and E be a Riesz space. Define a ∗ b = a.b and

ME(x,y, t) =
{

|x| / |y| , |x| 6 |y| ,
|y| / |x| , |y| 6 |x| ,

for all x,y ∈ X. Then (X,ME, ∗) is a fuzzy vector metric space.

Example 2.8. Let X be a non-empty set, E be a normed Riesz space and ϕ : (0,∞) → [0, 1] an increasing
continuous function. Define a ∗ b = a.b and

ME(x,y, t) =
{

1, x = y,
ϕ(‖t‖), x 6= y,

for all x,y ∈ X and t ∈ E+. Then (X,ME, ∗) is a fuzzy vector metric space.

Example 2.9. Let X be a normed Riesz space and E be a Riesz space. Define a ∗ b = a.b and

ME(x,y, t) =
{

1, x = y,
‖x∨ y‖ / ‖|x| ∨ |y|‖ , x 6= y,

for all x,y ∈ X and t ∈ E+. Then (X,ME, ∗) is a fuzzy vector metric space.

Now let us introduce some topological concepts for fuzzy vector metric spaces.

Definition 2.10. Let (X,ME, ∗) be a fuzzy vector metric space. We define open ball BE(x, r, t) and closed
ball BE[x, r, t] for t ∈ E+ with centre x ∈ X and radius r, 0 < r < 1 as

BE(x, r, t) = {y ∈ X :ME(x,y, t) > 1 − r},

BE[x, r, t] = {y ∈ X :ME(x,y, t) > 1 − r},

respectively.
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Definition 2.11.

(a) Let (X,ME, ∗) be a fuzzy vector metric space and A ⊆ X. Then A is called FE-bounded if for every
x,y ∈ A and t ∈ E+ there exists an r ∈ (0, 1) such that ME(x,y, t) > 1 − r. Furthermore, a sequence
(xn) in X is said to be FE-bounded if for all t ∈ E+ and for all n ∈N+ there exists an r ∈ (0, 1) such
that (xn) ⊆ BE[x, r, t].

(b) A sequence (xn) in fuzzy vector metric space (X,ME, ∗) converges to x ∈ X if for each ε ∈ (0, 1) and
t ∈ E+ there exists n0 = n0(ε) ∈N such that ME(xn, x, t) > 1 − ε for all n > n0 and it is denoted by

lim
n→∞ME(xn, x, t) = 1 or xn

ME

→ x.

(c) A sequence (xn) in a fuzzy vector metric space (X,ME, ∗) is called Cauchy if for each ε ∈ (0, 1) and
t ∈ E+ there exists n0 ∈N such that ME(xn, xm, t) > 1 − ε for all n,m > n0.

(d) A fuzzy vector metric space (X,ME, ∗) is called complete if every Cauchy sequence in X converges.

(e) A subset Y of a fuzzy vector metric space (X,ME, ∗) is called closed if (xn) ⊆ Y and xn
ME

→ x imply
x ∈ Y.

Theorem 2.12. Let (X,ME, ∗) be a fuzzy vector metric space and (xn) be a convergent sequence in X. Then

(i) (xn) is FE-bounded and its limit is unique;
(ii) (xn) is a Cauchy sequence in X;

(iii) every subsequence of (xn) converges to the same limit.

Proof.

(i) First, we show that the convergent sequence (xn) is FE-bounded. Suppose that xn
ME

→ x. Then, for each
ε ∈ (0, 1) and t ∈ E+, there exists n0 ∈N such that ME(xn, x, t/2) > 1 − ε for all n > n0. Now, for x0 ∈ X
and s ∈ (0, 1), let ME(x0, x, t/2) > 1 − s and, for k ∈ (0, 1), let

min{ME(xn, x, t/2) : n = 1, 2, · · · ,n0} = 1 − k.

Then we can find a number r ∈ (0, 1) such that

min{(1 − s) ∗ (1 − k), (1 − s) ∗ (1 − ε)} = 1 − r.

So, for all n ∈N+ we have

ME(x0, xn, t) >ME(x0, x, t/2) ∗ME(xn, x, t/2) > 1 − r.

Thus, for all n ∈N+, (xn) ⊆ BE[x0, r, t], that is, (xn) is FE-bounded.
Now, we show that the limit of (xn) is unique. We assume that the convergent sequence (xn) has two

different limits x and y. For any t ∈ E+ and any ε ∈ (0, 1), we can find a number r ∈ (0, 1) such that
(1 − r) ∗ (1 − r) > 1 − ε. Let ε = 1 −ME(x,y, t). According to our assumption there exists n1 ∈ N such
that ME(xn, x, t/2) > 1 − r, for all n > n1 and there exists n2 ∈N such that ME(xn,y, t/2) > 1 − r, for all
n > n2. When we take n0 = max{n1,n2}, then for n > n0 we have

ME(x,y, t) >ME(xn, x, t/2) ∗ME(xn,y, t/2) > (1 − r) ∗ (1 − r) > 1 − ε =ME(x,y, t),

that is, ME(x,y, t) > ME(x,y, t), which is not possible.



Ş. Eminoğlu, C. Çevik, J. Nonlinear Sci. Appl., 10 (2017), 3429–3436 3434

(ii) Let t ∈ E+ and ε ∈ (0, 1). We can find a number r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > (1 − ε). Since
(xn) is a convergent sequence, there exists n0 ∈N such that ME(xn, x, t/2) > 1 − r, for all n > n0. For all
n,m > n0 we get

ME(xn, xm, t) >ME(xn, x, t/2) ∗ME(x, xm, t/2) > (1 − r) ∗ (1 − r) > (1 − ε).

(iii) Let (xnk
) be a subsequence of (xn). If xn

ME

→ x, then for each ε ∈ (0, 1) and t ∈ E+, there exists
n0 ∈ N such that ME(xn, x, t/2) > 1 − ε, for all n > n0. If k > n0, then n0 6 k 6 nk and hence
ME(xnk

, x, t) > 1 − ε.

Proposition 2.13. Suppose that (X1,ME
1 , ∗) and (X2,ME

2 , ∗) are two fuzzy vector metric spaces. The fuzzy set
ME defined as

ME((x1, x2), (y1,y2), t) =ME
1 (x1,y1, t) ∗ME

2 (x2,y2, t),

for (x1, x2), (y1,y2) ∈ X1 ×X2, t ∈ E+ is a fuzzy vector metric on X1 ×X2.

Therefore, we can give the following result.

Theorem 2.14. Let (X1,ME
1 , ∗) and (X2,ME

2 , ∗) be two fuzzy vector metric spaces and ME be the fuzzy vector

metric as in Proposition 2.13. For any two sequences (xn) and (yn), if xn
ME

1→ x in X1 and yn
ME

2→ y in X2, then

(xn,yn)
ME

→ (x,y) in X1 ×X2.

Proof. Let t ∈ E+ and ε ∈ (0, 1). We can find a number r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > (1 − ε).
Then, there exists n1 ∈N such that ME

1 (xn, x, t) > 1 − r, for all n > n1 and there exists n2 ∈N such that
ME

2 (yn,y, t) > 1 − r, for all n > n2. Choosing n0 = max{n1,n2}, we have

ME((xn,yn), (x,y), t) =ME
1 (xn, x, t) ∗ME

2 (yn,y, t) > (1 − r) ∗ (1 − r) > (1 − ε).

This completes the proof of theorem.

Theorem 2.15. For the fuzzy vector metric space (X,ME, ∗) the followings hold:

(i) every convergent sequence is a Cauchy sequence;
(ii) every Cauchy sequence is FE-bounded;

(iii) if a Cauchy sequence (xn) in X has a subsequence (xnk
) such that xnk

ME

→ x, then xn
ME

→ x.

Proof.

(i) Let t ∈ E+ and ε ∈ (0, 1). We can find a number r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > 1 − ε. If xn
ME

→ x,
then there exists n0 ∈N such that ME(xn, x, t/2) > 1 − r, for all n > n0. Hence for n,m > n0, we have

ME(xn, xm, t) >ME(xn, x, t/2) ∗ME(xm, x, t/2) > (1 − r) ∗ (1 − r) > 1 − ε.

(ii) Let (xn) be a Cauchy sequence in X. Then, for each ε ∈ (0, 1) and t ∈ E+, there exists n0 ∈ N such
that ME(xn, xm, t) > 1 − ε, for all n,m > n0. So, for n > n0 we have ME(xn, xn0 , t) > 1 − ε. Let

r = 1 − min{ME(xn, xn0 , t) : n = 1, 2, · · · ,n0 − 1},

and choose s = max{ε, r}. Then {xn : n = 1, 2, · · · } ⊆ B(xn0 , s, t), that is, (xn) is FE-bounded.

(iii) Let t ∈ E+ and ε ∈ (0, 1). We can find r ∈ (0, 1) such that (1 − r) ∗ (1 − r) > 1 − ε. Since (xn) is a
Cauchy sequence in X, there exists n0 ∈ N such that ME(xn, xm, t/2) > 1 − r, for all m,n > n0. From

xnk

ME

→ x there exists positive integer ik such that ik > n0 and ME(xik , x, t/2) > 1 − r. For every n > n0,
we have

ME(xn, x, t) >ME(xn, xip , t/2) ∗ME(xip , x, t/2) > (1 − r) ∗ (1 − r) > 1 − ε,

and so, xn
ME

→ x.
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Definition 2.16. Let (X,ME, ∗) be a fuzzy vector metric space and A be a non-empty subset of X. We
define fuzzy vector diameter DE

A as

DE
A = sup

t∈E+

{infME(x,y, t) : x,y ∈ A}.

Theorem 2.17. The fuzzy vector diameter DE
A has the following properties.

(i) DE
A = 1 if and only if A is a singleton set.

(ii) If A ⊆ B, then DE
A > DE

B.
(iii) For any x,y ∈ A, ME(x,y, t) > DE

A holds.

(iv) If A = {x,y}, then DE
A =ME(x,y, t).

(v) If A∩B is nonempty set, then DE
A∪B > DE

A ∗DE
B.

Definition 2.18. Let (X,ME, ∗) be a fuzzy vector metric space and (An) be a sequence of non-empty
subsets in X. We call the sequence (An) has appearing fuzzy vector diameter if

lim
n→∞DE

An
= 1.

Then, for each r ∈ (0, 1) and t ∈ E+, there exists n0 ∈N such that ME(x,y, t) > 1 − r, for all x,y ∈ An0 .

Theorem 2.19 (Cantor’s intersection theorem). Let (X,ME, ∗) be a fuzzy vector metric space and (An) be any
decreasing sequence of nonempty closed subsets of X with appearing fuzzy vector diameter. X is complete if and only
if there is exactly one point x ∈ X such that

⋂∞
n=1An = {x}.

Proof. Let the fuzzy vector metric space X be complete. We can form a sequence (xn) by taking a point
xn ∈ An for each n ∈ N. If we choose m > n, we get Am ⊆ An, so that all points {xm : m > n} of
the sequence belong to the set An. So, for each t ∈ E+ we obtain ME(xm, xn, t) > DE

An
for all m > n

and, consequently lim
n,m→∞ME(xm, xn, t) = 1. In this case (xn) is a Cauchy sequence. Since X is complete,

there exists a point x ∈ X, such that lim
n→∞ME(xn, x, t) = 1. We take a set An0 . The limit of the sequence

{xn : n > n0} ⊂ An0 is of course the same point x. Furthermore, since An0 is closed, x ∈ An0 . This means
that x belongs to every member of the sequence (An). Hence we get x ∈

⋂∞
n=1An. Now we consider

another point x′ ∈
⋂∞

n=1An. Then, for all t ∈ E+ the relation ME(x, x′, t) > DE
An

must hold and, this
implies that ME(x, x′, t) = 1. This means that

⋂∞
n=1An = {x} because of x = x′.

Conversely, let (xn) be a Cauchy sequence in X and for n ∈ N, An = {xm : m > n} be a closed,
nonempty subset of X. Since the sequence (An) is decreasing and since (xn) is a Cauchy sequence, we
must have lim

n→∞DE
An

= 1. To our assumption the intersection of all these sets contains only a single point

of the space X. Let us assume that
⋂∞

n=1An = {x}. For each ε ∈ (0, 1), there exists n0 ∈ N such that
DE

An0
> 1 − ε. We know that x ∈ An0 , thus for each ε ∈ (0, 1) and t ∈ E+ we get ME(xn, x, t) > 1 − ε for

all n > n0. Therefore, the arbitrary Cauchy sequence (xn) converges to the point x. This means that the
fuzzy vector metric space X is complete.

Theorem 2.20 (Baire’s theorem). Let X be a complete fuzzy vector metric space and let {An ⊂ X : n = 1, 2, · · · }
be a countable family of open subsets which are dense in X. Then the set

⋂∞
n=1An is also dense in X.

Proof. In order to prove the theorem, we have to show, for all x ∈ X, 0 < r < 1 and t ∈ E+, the intersection
of open ball BE(x, r, t) with the set

⋂∞
n=1An is not empty. First we take the set A1. Since A1 is dense in

X, BE(x, r, t)∩A1 is open and non-empty. Let x1 ∈ BE(x, r, t)∩A1, then there exist r1 ∈ (0, 1) and t1 ∈ E+
such that BE[x1, r1, t1] ⊂ BE(x, r, t) ∩A1. Let BE

1 = BE(x1, r1, t1). Since A2 is dense in X, BE
1 ∩A2 is open

and nonempty. Let x2 ∈ BE
1 ∩A2, then there exist r2 ∈ (0, 1

2) and t2 ∈ E+ such that BE[x2, r2, t2] ⊂ BE
1 ∩A2.
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Let BE
2 = BE(x2, r2, t2). If we proceed inductively, we obtain a sequence (xn) in X and a sequence (rn) of

positive real numbers such that

BE[xn+1, rn+1, tn+1] ⊂ BE
n ∩An+1 ⊂ BE[xn, rn, tn] and rn ∈

(
0,

1
n

)
,

for all n ∈N. Theorem 2.19 guarantees that
⋂∞

n=1 B
E[xn, rn, tn] is a singleton. From

∞⋂
n=1

BE[xn, rn, tn] ⊂ BE(x, r, t)∩

( ∞⋂
n=1

An

)
,

we obtain that BE(x, r, t)∩ (
⋂∞

n=1An) 6= ∅.
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