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Abstract
We provide sufficient conditions under which the set of common fixed points of two self-mappings f,g : X→ X is nonempty,

and every common fixed point of f and g is the zero of a given function ϕ : X → [0,∞). Next, we show the usefulness of our
obtained result in partial metric fixed point theory. c©2017 All rights reserved.
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1. Introduction and preliminaries

Recently, Karapınar et al. [6] studied the following problem: for a given mapping T : X → X and a
given function ϕ : X→ [0,∞), find sufficient conditions for which the set of fixed points of T is nonempty,
and every fixed point of T is a zero of the function ϕ. In order to solve the above problem, the following
concepts were introduced in [6]. Let FT be the set of fixed points of T , that is,

FT = {x ∈ X : Tx = x},

and Zϕ be the set of zeros of ϕ, that is,
Zϕ = ϕ−1 ({0}) .

The set FT is said to be ϕ-admissible iff FT 6= ∅ and FT ⊆ Zϕ.
Let F be the set of functions F : [0,∞)3 → [0,∞) satisfying the following conditions:

(F1) max{a,b} 6 F(a,b, c) for all a,b, c > 0;

(F2) F(a, 0, 0) = a for all a > 0;

(F3) F is continuous.

∗Corresponding author
Email addresses: erdalkarapinar@yahoo.com (Erdal Karapınar), bsamet@ksu.edu.sa (Bessem Samet),

priya.thaparian@gmail.com (Priya Shahi)

doi:10.22436/jnsa.010.07.09

Received 2017-04-02

http://dx.doi.org/10.22436/jnsa.010.07.09


E. Karapınar, B. Samet, P. Shahi, J. Nonlinear Sci. Appl., 10 (2017), 3447–3455 3448

For examples of functions F : [0,∞)3 → [0,∞) that belong to the set F, we refer to [6].
Let Ψ be the set of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(Ψ1) ψ is upper semi-continuous from the right;

(Ψ2) ψ(t) < t for all t > 0.

Let (X,d) be a metric space. For given functions ϕ : X→ [0,∞), F ∈ F, and ψ ∈ Ψ, let T(ϕ, F,ψ) be the
class of mappings T : X→ X satisfying

F(d(Tx, Ty),ϕ(Tx),ϕ(Ty)) 6 ψ(F(d(x,y),ϕ(x),ϕ(y))), (x,y) ∈ X×X.

The following theorem is the main result obtained in [6].

Theorem 1.1. Let (X,d) be a complete metric space and T : X→ X be a given operator. Suppose that the following
conditions are satisfied:

(i) there exist ϕ : X→ [0,∞), F ∈ F, and ψ ∈ Ψ such that T ∈ T(ϕ, F,ψ);

(ii) ϕ is lower semi-continuous.

Then the set FT is ϕ-admissible. Moreover, the mapping T has a unique fixed point.

It was proved in [6] that Theorem 1.1 generalizes several theorems from the literature, including a
partial metric version of Boyd-Wong fixed point theorem [3].

Motivated by the contribution [6], in this paper we study the following problem: for given mappings
f,g : X → X and a given function ϕ : X → [0,∞), find sufficient conditions for which the set of common
fixed points of f and g is nonempty, and every common fixed point of f and g is a zero of the function ϕ.

Let us denote by Cf,g the set of common fixed points of f,g : X→ X, that is,

Cf,g = {x ∈ X : x = fx = gx}.

Definition 1.2. Let f,g : X → X be two given mappings, and let ϕ : X → [0,∞). We say that Cf,g is
ϕ-admissible iff Cf,g 6= ∅ and Cf,g ⊆ Zϕ.

Let (X,d) be a metric space. For given functions ϕ : X → [0,∞), F ∈ F, and ψ ∈ Ψ, we denote by
T2(ϕ, F,ψ) the set of pair of mappings f,g : X→ X satisfying:

F(d(fx, fy),ϕ(fx),ϕ(fy)) 6 ψ(F(d(gx,gy),ϕ(gx),ϕ(gy))), (x,y) ∈ X×X. (1.1)

The aim of this paper is to study the ϕ-admissibility of the set Cf,g, where the pair of mappings
f,g : X → X belongs to the set T2(ϕ, F,ψ), F ∈ F, ψ ∈ Ψ. Next, we show the usefulness of our obtained
result in partial metric fixed point theory.

2. A ϕ-admissibility result

The following theorem, which is the main result in this paper, provides sufficient conditions for the
ϕ-admissibility of the set Cf,g.

Theorem 2.1. Let (X,d) be a complete metric space, ϕ : X → [0,∞) be a given function, and f,g : X → X be a
given pair of mappings. Suppose that

(i) f and g are weakly compatible mappings, that is,

fx = gx, x ∈ X =⇒ fgx = gfx.
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(ii) f(X) ⊆ g(X) and g(X) is closed.

(iii) there exist F ∈ F and ψ ∈ Ψ such that the pair (f,g) ∈ T2(ϕ, F,ψ).

(iv) ϕ is lower semi-continuous.

Then the set Cf,g is ϕ-admissible. Moreover, the mappings f and g have a unique common fixed point.

Proof. Let ξ be an arbitrary element of the set Cf,g, that is,

ξ ∈ X, fξ = gξ = ξ.

Taking x = y = ξ in (1.1), we obtain

F(0,ϕ(ξ),ϕ(ξ)) 6 ψ(F(0,ϕ(ξ),ϕ(ξ))).

If ψ(F(0,ϕ(ξ),ϕ(ξ))) 6= 0, from property (Ψ2), we have

ψ(F(0,ϕ(ξ),ϕ(ξ))) < F(0,ϕ(ξ),ϕ(ξ)),

which yields
F(0,ϕ(ξ),ϕ(ξ)) < F(0,ϕ(ξ),ϕ(ξ)),

a contradiction. Then F(0,ϕ(ξ),ϕ(ξ)) = 0, which implies from (F1) that

ϕ(ξ) 6 F(0,ϕ(ξ),ϕ(ξ)) = 0,

and hence, ξ ∈ Zϕ. Therefore, we proved that Cf,g ⊆ Zϕ.
Next, we have to prove that the set Cf,g is nonempty. Taking y0 = fx0, where x0 is an arbitrary point

in X, from (ii), there exists x1 ∈ X such that

y0 := fx0 = gx1.

Again, from (ii), there exists x2 ∈ X such that

y1 := fx1 = gx2.

Continuing this process, by induction we may construct two sequences {xn}, {yn} ⊂ X defined by

yn = fxn = gxn+1, n > 0.

We distinguish two cases.

Case 1. There exists n0 > 0 such that yn0 = yn0+1.
Taking (x,y) = (xn0+1,yn0+1) in (1.1), we obtain

F(d(fxn0+1, fyn0+1),ϕ(fxn0+1),ϕ(fyn0+1)) 6 ψ(F(d(gxn0+1,gyn0+1),ϕ(gxn0+1),ϕ(gyn0+1))). (2.1)

On the other hand, from yn0 = yn0+1, we have

fxn0+1 = yn0+1 = yn0 and fyn0+1 = fyn0 . (2.2)

Again, from yn0 = yn0+1, we have

yn0 = yn0+1 = fxn0+1 = gxn0+1,

which from (i) yields
gyn0+1 = gfxn0+1 = fgxn0+1 = fyn0 .
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Hence,
gxn0+1 = yn0 and gyn0+1 = fyn0 . (2.3)

Substituting (2.2) and (2.3) into (2.1), we obtain

F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0)) 6 ψ(F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0))).

Therefore, if F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0)) 6= 0, from property (Ψ2), we obtain

F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0)) < F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0)),

which is a contradiction. Hence, we have

F(d(yn0 , fyn0),ϕ(yn0),ϕ(fyn0)) = 0,

which implies from (F1) that
d(yn0 , fyn0) = 0,

that is,
yn0 = fyn0 = gyn0 .

Then we have yn0 ∈ Cf,g.

Case 2. yn 6= yn+1, for every n > 0.
In view of (1.1), for all n > 1,

F(d(fxn+1, fxn),ϕ(fxn+1),ϕ(fxn)) 6 ψ(F(d(gxn+1,gxn),ϕ(gxn+1),ϕ(gxn))),

that is,
F(d(yn+1,yn),ϕ(yn+1),ϕ(yn)) 6 ψ(F(d(yn,yn−1),ϕ(yn),ϕ(yn−1))), n > 1. (2.4)

If for some N > 1, we have
F(d(yN,yN−1),ϕ(yN),ϕ(yN−1)) = 0,

then in view of property (F1), we get d(yN,yN−1) = 0, that is, yN = yN−1, which is a contradiction with
the fact that yn 6= yn+1 for every n > 0. Therefore,

F(d(yn,yn−1),ϕ(yn),ϕ(yn−1)) > 0, n > 1.

Hence, by property (Ψ2), we obtain

F(d(yn+1,yn),ϕ(yn+1),ϕ(yn)) < F(d(yn,yn−1),ϕ(yn),ϕ(yn−1)), n > 1.

As consequence, there exists some c > 0 such that

lim
n→∞ F(d(yn,yn−1),ϕ(yn),ϕ(yn−1)) = c

+.

Let us suppose that c > 0. Therefore, passing to the lim sup as n→∞ in (2.4) and using properties (Ψ1)
and (Ψ2), we obtain

c 6 lim sup
n→∞ ψ(F(d(yn,yn−1),ϕ(yn),ϕ(yn−1))) 6 ψ(c) < c,

which is a contradiction. Then, we deduce that c = 0, that is,

lim
n→∞ F(d(yn,yn−1),ϕ(yn),ϕ(yn−1)) = 0,

which yields from (F1) that
lim
n→∞d(yn−1,yn) = lim

n→∞ϕ(yn) = 0. (2.5)

Now, we shall prove that {yn} is a Cauchy sequence in the metric space (X,d). Suppose that it is not the
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case. Then, there exists ε > 0 for which we can find two sequences of positive integers {m(k)} and {n(k)}
such that for all k > 0,

n(k) > m(k) > k, d(ym(k),yn(k)) > ε, d(ym(k),yn(k)−1) < ε. (2.6)

Using (2.6), for all k > 0, we have

ε 6 d(ym(k),yn(k)) 6 d(ym(k),yn(k)−1) + d(yn(k)−1,yn(k)) < ε+ d(yn(k)−1,yn(k)),

which yields
ε 6 d(ym(k),yn(k)) < ε+ d(yn(k)−1,yn(k)), k > 0.

Passing to the limit as k→∞ and using (2.5), we obtain

lim
k→∞d(ym(k),yn(k)) = ε

+. (2.7)

From (2.5) and (2.7), and in view of properties (F1), (F2), and (F3), we get

lim
k→∞ F(d(yn(k),ym(k)),ϕ(yn(k)),ϕ(ym(k))) = F(ε, 0, 0) = ε+.

Hence, by property (Ψ1), we obtain

lim sup
k→∞ ψ(F(d(yn(k),ym(k)),ϕ(yn(k)),ϕ(ym(k)))) 6 ψ(ε). (2.8)

On the other hand, using (1.1) and (F1), for all k > 0, we have

ε 6 d(yn(k),ym(k))

6 d(yn(k),yn(k)+1) + d(yn(k)+1,ym(k)+1) + d(ym(k)+1,ym(k))

= d(yn(k),yn(k)+1) + d(fxn(k)+1, fxm(k)+1) + d(ym(k)+1,ym(k))

6 d(yn(k),yn(k)+1) + F(d(fxn(k)+1, fxm(k)+1),ϕ(fxn(k)+1),ϕ(fxm(k)+1)) + d(ym(k)+1,ym(k))

6 d(yn(k),yn(k)+1) +ψ(F(d(gxn(k)+1,gxm(k)+1),ϕ(gxn(k)+1),ϕ(gxm(k)+1))) + d(ym(k)+1,ym(k))

= d(yn(k),yn(k)+1) +ψ(F(d(yn(k),ym(k)),ϕ(yn(k)),ϕ(ym(k)))) + d(ym(k)+1,ym(k)),

which yields

ε 6 d(yn(k),yn(k)+1) +ψ(F(d(yn(k),ym(k)),ϕ(yn(k)),ϕ(ym(k)))) + d(ym(k)+1,ym(k))

for all k > 0. Passing to lim sup as k→∞, using (2.5), (2.8), and property (Ψ2), we obtain

ε 6 ψ(ε) < ε,

which is a contradiction. As consequence, we deduce that {yn} is a Cauchy sequence in the metric space
(X,d).

Due to the fact that (X,d) is a complete metric space, there is some z ∈ X such that

lim
n→∞yn = lim

n→∞gxn = lim
n→∞ fxn = z. (2.9)

Now, from lower semi-continuity of ϕ, and using (2.5), we obtain

0 6 ϕ(z) 6 lim inf
n→∞ ϕ(yn) = 0,

which implies that
z ∈ Zϕ. (2.10)
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On the other hand, Since g(X) is a closed set, there exists some p ∈ X such that z = gp. Then, In view of
(1.1) and (2.10), we obtain

F(d(fp,yn+1),ϕ(fp),ϕ(yn+1)) 6 ψ(F(d(z,yn), 0,ϕ(yn))), n > 1,

which yields from (F1)
d(fp,yn+1) 6 ψ(F(d(z,yn), 0,ϕ(yn))), n > 1.

Passing to the limit as n → ∞, using the continuity of F, properties (F2) and (Ψ2), (2.9) and (2.5), we
obtain

d(fp, z) = lim
n→∞d(fp,yn+1) = 0,

which yields
z = fp = gp.

Now, we shall prove that z is a common fixed point of f and g. Since f and g are weakly compatible,
therefore, fgp = gfp, i.e.,

fz = gz. (2.11)

From (1.1), we have
F(d(fz, fp),ϕ(fz),ϕ(fp)) 6 ψ(F(d(gz,gp),ϕ(gz),ϕ(gp))),

that is,
F(d(fz, z),ϕ(fz),ϕ(z)) 6 ψ(F(d(fz, z),ϕ(fz),ϕ(z))).

Therefore, F(d(fz, z),ϕ(fz),ϕ(z)) = 0. Otherwise, from property (Ψ2), we obtain F(d(fz, z),ϕ(fz),ϕ(z)) <
F(d(fz, z),ϕ(fz),ϕ(z)), which is a contradiction. Hence, by property (F1), we get d(fz, z) = 0, that is,

z = fz. (2.12)

Next, it follows from (2.11) and (2.12) that
z = fz = gz,

which yields z ∈ Cf,g. As consequence, we deduce that the set Cf,g is ϕ-admissible.
Finally, we have to prove that z is the unique common fixed point of f and g. Let us assume that

w ∈ Cf,g, that is,
w = fw = gw.

Since the set Cf,g is ϕ-admissible, we have z,w ∈ Zϕ, that is,

ϕ(z) = ϕ(w) = 0.

Now, taking (x,y) = (z,w) in (1.1), we obtain

F(d(fz, fw),ϕ(fz),ϕ(fw)) 6 ψ(F(d(gz,gw),ϕ(gz),ϕ(gw))),

that is,
F(d(z,w), 0, 0) 6 ψ(F(d(z,w), 0, 0)),

which yields F(d(z,w), 0, 0) = 0. Otherwise, from property (Ψ2), we obtain

F(d(z,w), 0, 0) < F(d(z,w), 0, 0),

which is a contradiction. Therefore, by property (F1), we obtain d(z,w) = 0, that is, z = w. As conse-
quence, we deduce that z ∈ X is the unique common fixed point of f and g.

We present the following example in order to illustrate the result given by Theorem 2.1.
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Example 2.2. We endow the finite set X = {0, 1, 2} with the standard metric

d(x,y) = |x− y|, (x,y) ∈ X×X.

Let f,g : X→ X be the mappings defined by

f =

(
0 1 2
0 1 0

)
, g =

(
0 1 2
0 2 1

)
.

We observe easily that the mappings f and g satisfy conditions (i) and (ii) of Theorem 2.1. Let ϕ : X →
[0,∞) be the function defined by

ϕ(x) = x2, x ∈ X.

Let F : [0,∞)3 → [0,∞) be the function defined by

F(a,b, c) = a+ b+ c, a,b, c > 0.

Let ψ : [0,∞)→ [0,∞) be the function defined by

ψ(t) =
3
4
t, t > 0.

It can be easily seen that F ∈ F and ψ ∈ Ψ.
We claim that the pair of mappings (f,g) ∈ T2(ϕn, F,ψ), that is,

|fx− fy|+ (fx)2 + (fy)2 6
3
4
(
|gx− gy|+ (gx)2 + (gy)2) , (x,y) ∈ X×X. (2.13)

In order to prove our claim, we discuss different cases.

Case 1. (x,y) = (0, 1).
In this case, we have

|fx− fy|+ (fx)2 + (fy)2 = |0 − 1|+ 0 + 1 = 2

and
3
4
(
|gx− gy|+ (gx)2 + (gy)2) = 3

4
(|0 − 2|+ 0 + 4) =

9
2

.

Therefore, (2.13) is satisfied.

Case 2. (x,y) = (0, 2).
In this case, we have

|fx− fy|+ (fx)2 + (fy)2 = 0.

Therefore, (2.13) is satisfied.

Case 3. (x,y) = (1, 2).
In this case, we have

|fx− fy|+ (fx)2 + (fy)2 = |1 − 0|+ 1 + 0 = 2

and
3
4
(
|gx− gy|+ (gx)2 + (gy)2) = 3

4
(|2 − 1|+ 4 + 1) =

9
2

.

Therefore, (2.13) is satisfied. The other cases follow by symmetry. Then (f,g) ∈ T2(ϕn, F,ψ).
Next, by Theorem 2.1, the set Cf,g is ϕ-admissible, and the mappings f and g have a unique common

fixed point. In this example, we have
Cf,g = {0} = Zϕ.

Remark 2.3. Taking g = IX (the identity mapping) in Theorem 2.1, we obtain the ϕ-admissibility result
given by Theorem 1.1.
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3. Applications to partial metric fixed point theory

The notion of a partial metric space was introduced in 1994 by Matthews [7] as a part of the study of
denotational semantics of data-flow networks, showing that Banach contraction principle can be general-
ized to the partial metric context for applications in program verification. In this section, as an application
of Theorem 2.1, we obtain a common fixed point theorem for two mappings satisfying a Boyd-Wong type
contraction on a complete partial metric space. The obtained result is not new (see for instance [1]), how-
ever our used techniques are different to those in [1]. More precisely, our main idea consists to rewrite
Boyd-Wong contraction on a partial metric space in the form of a generalized Boyd-Wong contraction on
a metric space. Next, by applying Theorem 2.1, we deduce the existence and uniqueness of a common
fixed point. Our strategy can be used also for different types of contractions defined on a partial metric
space.

We suppose that the reader is familiarized with the basic concepts of partial metric spaces and we
address him to the classic literature to clarify the doubts, in particular the papers [1, 2, 4, 5, 7–12]. We just
recall the following result, which is the main key of our approach.

Lemma 3.1 ([6]). Let (X,p) be a partial metric space. Let dp : X×X→ [0,∞) be the mapping defined by

dp(x,y) = 2p(x,y) − p(x, x) − p(y,y), (x,y) ∈ X×X. (3.1)

Then

(i) dp is a metric on X;
(ii) (X,p) is a complete partial metric space if and only if (X,dp) is a complete metric space;

(iii) the function X 3 x 7→ p(x, x) is continuous on X with respect to the topology induced by the metric dp;
(iv) A subset M ⊆ X is closed with respect to the topology induced by the partial metric p if and only if it is closed

with respect to the topology induced by the metric dp.

Let (X,p) be a partial metric space. For a given function ψ ∈ Ψ, let T2(ψ) be the set of pair of mappings
f,g : X→ X satisfying the following Boyd-Wong type contraction

p(fx, fy) 6 ψ(p(gx,gy)), (x,y) ∈ X×X. (3.2)

We have the following observation.

Lemma 3.2. There exist F ∈ F and ϕ : X→ [0,∞) such that

T2(ψ) ⊂ T2(ϕ, F,ψ), ψ ∈ Ψ.

Proof. The proof follows from Lemma 3.1. Indeed, let f,g : X→ X be such that (f,g) ∈ T2(ψ) for a certain
function ψ ∈ Ψ. Therefore, (3.2) holds for every (x,y) ∈ X×X. On the other hand, from (3.1) we have

p(x,y) =
dp(x,y)

2
+
p(x, x)

2
+
p(y,y)

2
, (x,y) ∈ X×X.

Hence, we obtain

dp(fx, fy)
2

+
p(fx, fx)

2
+
p(fy, fy)

2
6 ψ

(
dp(gx,gy)

2
+
p(gx,gx)

2
+
p(gy,gy)

2

)
for every (x,y) ∈ X×X. Next, let us define the functions F : [0,∞)3 → [0,∞) and ϕ : X→ [0,∞) by

F(a,b, c) = a+ b+ c, a,b, c > 0,

and

ϕ(x) =
p(x, x)

2
, x > 0. (3.3)
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We obtain

F(Dp(fx, fy),ϕ(fx),ϕ(fy)) 6 ψ(F(Dp(gx,gy),ϕ(gx),ϕ(gy))), (x,y) ∈ X×X,

where Dp is the metric on X defined by

Dp(x,y) =
dp(x,y)

2
, (x,y) ∈ X×X.

Remark 3.3. Note that from Lemma 3.1 (iii), the function ϕ defined by (3.3) is continuous on Xwith respect
to the topology induced by the metric Dp.

Now, using Lemma 3.1, Lemma 3.2, Remark 3.3, and Theorem 2.1, we deduce immediately the follow-
ing common fixed point result on a partial metric space.

Corollary 3.4. Let (X,p) be a complete metric space, and let f,g : X → X be a given pair of mappings. Suppose
that

(i) f and g are weakly compatible mappings;
(ii) f(X) ⊆ g(X) and g(X) is closed;

(iii) there exists ψ ∈ Ψ such that the pair (f,g) ∈ T2(ψ).

Then f and g have a unique common fixed point x∗ ∈ X. Moreover, we have p(x∗, x∗) = 0.
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