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Abstract
For 0 < p < 1, Haberl and Ludwig defined the notions of symmetric and asymmetric Lp-intersection bodies. Recently,

Wang and Li introduced the general Lp-intersection bodies. In this paper, we give the Lp-dual geominimal surface area forms
for the extremum values and Brunn-Minkowski type inequality of general Lp-intersection bodies. Further, combining with the
Lp-dual geominimal surface areas, we consider Busemann-Petty type problem for general Lp-intersection bodies. c©2017 All
rights reserved.
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1. Introduction and main results

Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Eu-
clidean space Rn. For the set of convex bodies containing the origin in their interiors and the set of
origin-symmetric convex bodies in Rn, we write Kno and Knos, respectively. Let Sno denote the set of star
bodies (about the origin) in Rn. Let Sn−1 denote the unit sphere in Rn and V(K) denote the n-dimensional
volume of a body K. For the standard unit ball B in Rn, its volume is written by ωn = V(B).

The notion of intersection body was introduced by Lutwak (see [14]): For K ∈ Sno , the intersection body,
IK, of K is a star body whose radial function in the direction u ∈ Sn−1 is equal to the (n− 1)-dimensional
volume of the section of K by u⊥, the hyperplane orthogonal to u, i.e., for all u ∈ Sn−1,

ρ(IK,u) = Vn−1(K∩ u⊥),

where Vn−1 denotes (n− 1)-dimensional volume.
In 2006, Haberl and Ludwing ([5]) introduced the Lp-intersection body as follows: For K ∈ Sno , 0 < p <

1, the Lp-intersection body, IpK, of K is the origin-symmetric star body, whose radial function is defined
by

ρ
p
IpK

(u) =
1
2

∫
K

|u · x|−pdx = 1
2(n− p)

∫
Sn−1

|u · v|−pρn−pK (v)dS(v), (1.1)
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for all u ∈ Sn−1. For the convenient of this paper, here we add a coefficient 1/2 in (1.1).
Meanwhile, they ([5]) gave the following notion of asymmetric Lp-intersection body. For K ∈ Sno ,

0 < p < 1, the asymmetric Lp-intersection body, I+pK, of K is defined by

ρ
p

I+pK
(u) =

∫
K∩u+

|u · x|−pdx, (1.2)

for all u ∈ Sn−1, where u+ = {x : u · x > 0, x ∈ Rn} and u · x denotes the standard inner product of u and
x. From (1.2), it follows that for all u ∈ Sn−1,

ρ
p

I+pK
(u) =

1
n− p

∫
Sn−1

⋂
u+

|u · v|−pρn−pK (v)dS(v). (1.3)

Further, the authors ([5]) also defined that

I−pK = I+p (−K).

This together with (1.3) yields that

ρ
p

I−pK
(u) = ρp

I+p (−K)
(u) =

1
n− p

∫
Sn−1

⋂
u+

|u · v|−pρn−p−K (v)dS(v). (1.4)

Recently, Wang and Li ([26, 27]) introduced the notion of general Lp-intersection body with a param-
eter τ as follows: For K ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1], the general Lp-intersection body, IτpK ∈ Sno , of K
is defined by

ρ
p
IτpK

(u) = f1(τ)ρ
p

I+pK
(u) + f2(τ)ρ

p

I−pK
(u), (1.5)

for all u ∈ Sn−1, where

f1(τ) =
(1 + τ)p

(1 + τ)p + (1 − τ)p
, f2(τ) =

(1 − τ)p

(1 + τ)p + (1 − τ)p
. (1.6)

Obviously, (1.6) deduces
f1(−τ) = f2(τ), f2(−τ) = f1(τ), (1.7)

f1(τ) + f2(τ) = 1. (1.8)

In the meantime, they ([26, 27]) also showed that if τ = 0, then I0pK = IpK and

ρ
p
IpK

(u) =
1
2
ρ
p

I+pK
(u) +

1
2
ρ
p

I−pK
(u), (1.9)

for all u ∈ Sn−1.
From (1.4), (1.5) and (1.7), we easily obtain for τ ∈ [−1, 1] (see [27]),

I−τp K = Iτp(−K) = −IτpK. (1.10)

For the general Lp-intersection bodies, Wang and Li in [27] obtained the following extremum values
of volume and a Brunn-Minkowski type inequality with respect to Lq (q > 0) radial combinations of star
bodies, respectively.

Theorem 1.1. If K ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1], then

V(IpK) 6 V(I
τ
pK) 6 V(I

±
pK).

If K is not origin-symmetric, equality holds in the left inequality if and only if τ = 0 and equality holds in the right
inequality if and only if τ = ±1.
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Theorem 1.2. If K,L ∈ Sno , 0 < p < 1 and 0 < q < n− p, then for τ ∈ [−1, 1],

V(Iτp(K+̃qL))
pq

n(n−p) 6 V(IτpK)
pq

n(n−p) + V(IτpL)
pq

n(n−p) ,

with equality if and only if K and L are dilates.

Here K+̃qL denotes the Lq (q > 0) radial combination of star bodies K and L.
Further, Wang and Li in [26] researched the Busemann-Petty type problem for general Lp-intersection

bodies, they respectively gave an affirmative and a negative form as follows:

Theorem 1.3. Let K,L ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1]. If K is a general Lp-intersection body, then

IτpK ⊆ IτpL,

implies
V(K) 6 V(L).

The equality holds only if K = L.

Theorem 1.4. Let K ∈ Sno , 0 < p < 1 and τ ∈ (−1, 1). If K is not origin-symmetric, then there exists L ∈ Sno ,
such that

IτpK ⊂ IτpL.

But
V(K) > V(L).

The general Lp-intersection bodies belong to a new and rapidly evolving asymmetric Lp-Brunn-
Minkowski theory that has its own origin in the work of Ludwig, Haberl and Schuster (see [4–7, 12, 13]).
For the further researches of asymmetric Lp-Brunn-Minkowski theory, also see [1, 8, 11, 17–20, 22, 23, 25–
32, 34, 35, 38].

Associated with Lp-mixed volumes, Lutwak ([16]) introduced the notion of Lp-geominimal surface
area. For K ∈ Kno and p > 1, the Lp-geominimal surface area, Gp(K), of K is defined by

ω
p
n
nGp(K) = inf{nVp(K,Q)V(Q∗)

p
n : Q ∈ Kno }.

Here Vp(M,N) denotes Lp-mixed volume of M,N ∈ Kno (see [15, 16]). Obviously, if p = 1, Gp(K) is
just the geominimal surface area G(K) which was given by Petty (see [21]). Some affine isoperimetric
inequalities related to the Lp-geominimal surface areas can be found in [36, 37, 39–41].

Together with the Lp-dual mixed volumes, Wan and Wang ([24]) gave the notion of Lp-dual geomin-
imal surface area. For K ∈ Sno and p > 0, the Lp-dual geominimal surface area, G̃p(K), of K is defined
by

ω
p
n
n G̃p(K) = sup{nṼp(K,Q)V(Q∗)

p
n : Q ∈ Knos}. (1.11)

Here Ṽp(M,N) denotes Lp-dual mixed volume of M,N ∈ Sno . For the studies of Lp-dual geominimal
surface areas, also see [2, 10, 33].

In this paper, associated with the Lp-dual geominimal surface area, we continuously study general
Lp-intersection bodies. First, corresponding to Theorem 1.1, we give Lp-dual geominimal surface area
forms for the extremum values of general Lp-intersection bodies.

Theorem 1.5. If K ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1], then

G̃p(IpK) 6 G̃p(I
τ
pK) 6 G̃p(I

±
pK). (1.12)

If K is not origin-symmetric, equality holds in the left inequality if and only if τ = 0 and equality holds in the right
inequality if and only if τ = ±1.
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Next, the Lp-dual geominimal surface area version of Theorem 1.2 is established as follows:

Theorem 1.6. If K,L ∈ Sno , n > 2, 0 < p < 1, 0 < q < n− p and τ ∈ [−1, 1], then

G̃p(I
τ
p(K+̃qL))

pq

(n−p)2 6 G̃p(I
τ
pK)

pq

(n−p)2 + G̃p(I
τ
pL)

pq

(n−p)2 , (1.13)

with equality if and only if K and L are dilates.

Further, similar to Theorems 1.3–1.4, we give an affirmative and a negative form of the Lp-dual ge-
ominimal surface area for the Busemann-Petty type problems of general Lp-intersection bodies. Let Znp
denote the set of general Lp-intersection bodies. If M ∈ Znp in (1.11), then we write G̃◦p(K) by

ω
p
n
n G̃
◦
p(K) = sup{nṼp(K,M)V(M∗)

p
n :M ∈ Znp }. (1.14)

Here, associated with (1.14), we obtain an affirmative form of the Busemann-Petty type problem for
general Lp-intersection bodies.

Theorem 1.7. If K,L ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1], then

IτpK ⊆ IτpL,

implies
G̃◦p(K) 6 G̃

◦
p(L).

The equality holds only if K = L.

Finally, according to (1.11), we give a negative form of the Busemann-Petty type problem for general
Lp-intersection bodies as follows:

Theorem 1.8. Let K ∈ Sno , 0 < p < 1 and τ ∈ (−1, 1). If K is not origin-symmetric, then there exists L ∈ Sno ,
such that

IτpK ⊂ IτpL.

But
G̃p(K) > G̃p(L).

2. Lp-dual mixed volumes and general Lp-dual Blaschke bodies

In order to complete the proofs of Theorems 1.5–1.8, we will require the following two notions.

2.1. Lp-dual mixed volumes
If K is a compact star shaped (about the origin) in Rn, then its radial function, ρK = ρ(K, ·) : Rn \ {0}→

[0,∞), is defined by (see [3])

ρ(K,u) = max{λ > 0 : λ · u ∈ K}, u ∈ Sn−1.

For K,L ∈ Sno , p > 0 and λ,µ > 0 (not both zero), the Lp-radial combination, λ · K+̃pµ · L ∈ Sno , of K
and L is defined by (see [4])

ρ(λ ·K+̃pµ · L, ·)p = λρ(K, ·)p + µρ(L, ·)p, (2.1)

where λ ·K denotes the Lp-radial scalar multiplication, and we easily know λ ·K = λ
1
pK.

Associated with the Lp-radial combinations of star bodies, Haberl ([4]) introduced the notion of Lp-
dual mixed volume as follows: For K,L ∈ Sno , p > 0 and ε > 0, the Lp-dual mixed volume, Ṽp(K,L), of K
and L is defined by

n

p
Ṽp(K,L) = lim

ε→0+

V(K+̃pε · L) − V(K)
ε

.

From above definition, the integral representation of the Lp-dual mixed volume can be given by (see [26])

Ṽp(K,L) =
1
n

∫
Sn−1

ρ
n−p
K (u)ρpL(u)dS(u), (2.2)

where the integration is with respect to spherical Lebesgue measure S on Sn−1 .
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2.2. General Lp-dual Blaschke bodies
The notion of dual Blaschke combination was given by Lutwak (see [14]). For K,L ∈ Sno , λ,µ > 0 (not

both zero), n > 2, the dual Blaschke combination, λ ◦K⊕ µ ◦ L ∈ Sno , of K and L is defined by

ρ(λ ◦K⊕ µ ◦ L, ·)n−1 = λρ(K, ·)n−1 + µρ(L, ·)n−1,

where the operation ”⊕” is called dual Blaschke addition and λ ◦K denotes dual Blaschke scalar multipli-
cation.

In 2015, Wang and Wang ([29]) introduced the notion of Lp-dual Blaschke combination as follows: For
K,L ∈ Sno , λ,µ > 0 (not both zero), n > p > 0, the Lp-dual Blaschke combination, λ ◦K⊕p µ ◦ L ∈ Sno , of K
and L is defined by

ρ(λ ◦K⊕p µ ◦ L, ·)n−p = λρ(K, ·)n−p + µρ(L, ·)n−p, (2.3)

where the operation ”⊕p” is called Lp-dual Blaschke addition and λ ◦K = λ
1

n−p .
Let λ = µ = 1

2 and L = −K in (2.3), then the Lp-dual Blaschke body, ∇pK, of K ∈ Sno is given by

∇pK =
1
2
◦K⊕p

1
2
◦ (−K). (2.4)

According to (2.3), Wang and Li in [26] (also see [29]) defined general Lp-dual Blaschke bodies as
follows: For K ∈ Sno , n > p > 0 and τ ∈ [−1, 1], the general Lp-dual Blaschke body, ∇τpK, of K is defined
by

ρ(∇τpK, ·)n−p = f1(τ)ρ(K, ·)n−p + f2(τ)ρ(−K, ·)n−p, (2.5)

where f1(τ), f2(τ) satisfy (1.6).
Associated with the definition of Lp-dual Blaschke combination, it easily follows that

∇τpK = f1(τ) ◦K⊕p f2(τ) ◦ (−K). (2.6)

Besides, by (1.6), (2.4) and (2.6), we may get that if τ = 0, then ∇0
pK = ∇pK, if τ = ±1, then

∇+1
p K = K, ∇−1

p K = −K. (2.7)

3. Proofs of Theorems 1.5–1.6

In this section, we shall complete the proofs of Theorems 1.5–1.6. The proof of Theorem 1.5 requires
the following lemmas.

Lemma 3.1. If K,L ∈ Sno , 0 < p < n
2 and λ,µ > 0 (not both zero), then for any Q ∈ Sno ,

Ṽp(λ ·K+̃pµ · L,Q)
p
n−p 6 λṼp(K,Q)

p
n−p + µṼp(L,Q)

p
n−p , (3.1)

with equality if and only if K and L are dilates.

Proof. Since 0 < p < n
2 , thus n−pp > 1. Hence by (2.1), (2.2) and the Minkowski integral inequality (see

[9]), we have for any Q ∈ Sno ,

Ṽp(λ ·K+̃pµ · L,Q)
p
n−p =

[
1
n

∫
Sn−1

ρ(λ ·K+̃pµ · L,u)n−pρ(Q,u)pdS(u)
] p
n−p

=

[
1
n

∫
Sn−1

(
ρ(λ ·K+̃pµ · L,u)pρ(Q,u)

p2
n−p

)n−p
p

dS(u)

] p
n−p

=

[
1
n

∫
Sn−1

(
(λρ(K,u)p + µρ(L,u)p)ρ(Q,u)

p2
n−p

)n−p
p

dS(u)

] p
n−p
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6 λ

[
1
n

∫n−1

S

ρ(K,u)n−pρ(Q,u)pdS(u)
] p
n−p

+ µ

[
1
n

∫
Sn−1

ρ(L,u)n−pρ(Q,u)pdS(u)
] p
n−p

6 λṼp(K,Q)
p
n−p + µṼp(L,Q)

p
n−p .

According to the equality condition of Minkowski integral inequality, we see that equality holds in (3.1)
if and only if K and L are dilates.

Lemma 3.2. If K,L ∈ Sno , 0 < p < n
2 and λ,µ > 0 (not both zero), then

G̃p(λ ·K+̃pµ · L)
p
n−p 6 λG̃p(K)

p
n−p + µG̃p(L)

p
n−p , (3.2)

with equality if and only if K and L are dilates.

Proof. From definition (1.11) and inequality (3.1), and notice p
n−p > 0, we have

[ω
p
n
n G̃p(λ ·K+̃pµ · L)]

p
n−p = sup{[nṼp(λ ·K+̃pµ · L,Q)V(Q∗)

p
n ]

p
n−p : Q ∈ Knos}

= sup{[nṼp(λ ·K+̃pµ · L,Q)]
p
n−p [V(Q∗)

p
n ]

p
n−p : Q ∈ Knos}

6 sup{[λ(nṼp(K,Q))
p
n−p + µ(nṼp(L,Q))

p
n−p ][V(Q∗)

p
n ]

p
n−p : Q ∈ Knos}

6 sup{λ(nṼp(K,Q))
p
n−p [V(Q∗)

p
n ]

p
n−p : Q ∈ Knos}

+ sup{µ(nṼp(L,Q))
p
n−p [V(Q∗)

p
n ]

p
n−p : Q ∈ Knos}

= λ[ω
p
n
n G̃p(K)]

p
n−p + µ[ω

p
n
n G̃p(L)]

p
n−p .

Thus
G̃p(λ ·K+̃pµ · L)

p
n−p 6 λG̃p(K)

p
n−p + µG̃p(L)

p
n−p .

According to the equality condition of (3.1), we see that equality holds in (3.2) if and only if K and L are
dilates.

Lemma 3.3 ([27]). If K ∈ Sno and 0 < p < 1, then I+pK = I−pK if and only if K is origin-symmetric.

Lemma 3.4 ([27]). If K ∈ Sno , 0 < p < 1, τ ∈ [−1, 1] and τ 6= 0, then IτpK = I−τp K if and only if K is
origin-symmetric.

Proof of Theorem 1.5. Since K ∈ Sno , 0 < p < 1, by (1.5) and (3.2), we have

G̃p(I
τ
pK)

p
n−p = G̃p(f1(τ) · I+pK+̃pf2(τ) · I−pK)

p
n−p

6 f1(τ)G̃p(I
+
pK)

p
n−p + f2(τ)G̃p(I

−
pK)

p
n−p .

(3.3)

Since I+pK = −I−pK and notice that Q ∈ Knos implies ρ(Q,u) = ρ(−Q,u) = ρ(Q,−u) for all u ∈ Sn−1, thus
by (2.2) we get that

Ṽp(I
−
pK,Q) = Ṽp(−I

+
pK,Q) = Ṽp(I

+
pK,Q).

Therefore, from definition (1.11), it follows that

G̃p(I
+
pK) = G̃p(I

−
pK). (3.4)

Combining with (3.3), (3.4), and (1.8), we can get

G̃p(I
τ
pK)

p
n−p 6 G̃p(I

±
pK)

p
n−p ,
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i.e.,
G̃p(I

τ
pK) 6 G̃p(I

±
pK). (3.5)

According to the equality condition of inequality (3.2), we know that equality holds in (3.5) if and only if
I+pK and I−pK are dilates. Since I+pK = −I−pK, this means I+pK = I−pK. Hence from Lemma 3.3, we see that
if K is not origin-symmetric, then equality holds in (3.5) if and only if τ = ±1.

Now, we prove the left inequality of (1.12). By (2.1), (1.5), (1.7), and (1.8), we have

ρ(IτpK, ·)p + ρ(I−τp K, ·)p = f1(τ)ρ(I
+
pK, ·)p + f2(τ)ρ(I

−
pK, ·)p + f1(−τ)ρ(I

+
pK, ·)p + f2(−τ)ρ(I

−
pK, ·)p

= f1(τ)ρ(I
+
pK, ·)p + f2(τ)ρ(I

−
pK, ·)p + f2(τ)ρ(I

+
pK, ·)p + f1(τ)ρ(I

−
pK, ·)p

= ρ(I+pK, ·)p + ρ(I−pK, ·)p.

(3.6)

Therefore, (3.6) can be written as

1
2
ρ(IτpK, ·)p + 1

2
ρ(I−τp K, ·)p =

1
2
ρ(I+pK, ·)p + 1

2
ρ(I−pK, ·)p.

This together with (1.9) yields

ρ(IpK, ·)p =
1
2
ρ(IτpK, ·)p + 1

2
ρ(I−τp K, ·)p,

so by (2.1) we have

IpK =
1
2
· IτpK+̃p

1
2
· I−τp K.

Thus from inequality (3.2), we obtain

G̃p(IpK)
p
n−p = G̃p

(
1
2
· IτpK+̃p

1
2
· I−τp K

) p
n−p

6
1
2
G̃p(I

τ
pK)

p
n−p +

1
2
G̃p(I

−τ
p K)

p
n−p .

(3.7)

Due to I−τp K = −IτpK by (1.10), similar to the proof of (3.4), we have

G̃p(I
τ
pK) = G̃p(−I

τ
pK). (3.8)

From (3.7) and (3.8), we deduce
G̃p(IpK) 6 G̃p(I

τ
pK). (3.9)

Using IτpK = −I−τp K and the equality condition of inequality (3.2), we know that equality holds in (3.9) if
and only if IτpK = I−τp K. By Lemma 3.4, we see that if K is not origin-symmetric, then equality holds in
(3.9) if and only if τ = 0.

In order to prove Theorem 1.6, the following lemmas are essential.

Lemma 3.5 ([27]). If K,L ∈ Sno , 0 < p < 1, 0 < q < n− p and τ ∈ [−1, 1], then for all u ∈ Sn−1,

ρ
pq
n−p

Iτp(K+̃qL)
(u) 6 ρ

pq
n−p

IτpK
(u) + ρ

pq
n−p

IτpL
(u), (3.10)

with equality if and only if K and L are dilates.

Lemma 3.6. If K,L ∈ Sno , n > 2, 0 < p < 1, 0 < q < n− p and τ ∈ [−1, 1], then for any Q ∈ Sno ,

Ṽp(I
τ
p(K+̃qL),Q)

pq

(n−p)2 6 Ṽp(I
τ
pK,Q)

pq

(n−p)2 + Ṽp(I
τ
pL,Q)

pq

(n−p)2 , (3.11)

with equality if and only if IτpK and IτpL are dilates.
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Proof. Since n > 2, 0 < p < 1 and 0 < q < n − p, thus (n−p)2

pq > 1. Hence by (2.2), (3.10) and the
Minkowski integral inequality (see [9]), we have that for any Q ∈ Sno ,

Ṽp(I
τ
p(K+̃qL),Q)

pq

(n−p)2 =

[
1
n

∫
Sn−1

ρ(Iτp(K+̃qL),u)
n−pρ(Q,u)pdS(u)

] pq

(n−p)2

=

[
1
n

∫
Sn−1

(
ρ(Iτp(K+̃qL),u)

pq
n−pρ(Q,u)

p2q
(n−p)2

) (n−p)2
pq

dS(u)

] pq

(n−p)2

6

[
1
n

∫
Sn−1

(
(ρ(IτpK,u)

pq
n−p + ρ(IτpL,u)

pq
n−p )ρ(Q,u)

p2q
(n−p)2

) (n−p)2
pq

dS(u)

] pq

(n−p)2

6

[
1
n

∫
Sn−1

ρ(IτpK,u)n−pρ(Q,u)pdS(u)
] pq

(n−p)2

+

[
1
n

∫
Sn−1

ρ(IτpL,u)n−pρ(Q,u)pdS(u)
] pq

(n−p)2

= Ṽp(I
τ
pK,Q)

pq

(n−p)2 + Ṽp(I
τ
pL,Q)

pq

(n−p)2 .

According to the equality condition of Minkowski integral inequality, we see that equality holds in (3.11)
if and only if IτpK and IτpL are dilates.

Proof of Theorem 1.6. Since pq
(n−p)2 > 0, thus by definition (1.1) and inequality (3.11) we obtain[

ω
p
n
n G̃p(I

τ
p(K+̃qL))

] pq

(n−p)2

= sup
{[
nṼp(I

τ
p(K+̃qL),Q)V(Q∗)

p
n

] pq

(n−p)2

: Q ∈ Knos

}
= sup

{[
nṼp(I

τ
p(K+̃qL),Q)

] pq

(n−p)2

V(Q∗)
p2q

n(n−p)2 : Q ∈ Knos

}
6 sup

{[
(nṼp(I

τ
pK,Q))

pq

(n−p)2 + (nṼp(I
τ
pL,Q))

pq

(n−p)2

]
V(Q∗)

p2q
n(n−p)2 : Q ∈ Knos

}
6 sup

{[
nṼp(I

τ
pK,Q)V(Q∗)

p
n

] pq

(n−p)2

: Q ∈ Knos

}
+ sup

{[
nṼp(I

τ
pL,Q)V(Q∗)

p
n

] pq

(n−p)2

: Q ∈ Knos

}
=

[
ω
p
n
n G̃p(I

τ
pK)

] pq

(n−p)2

+

[
ω
p
n
n G̃p(I

τ
pL)

] pq

(n−p)2

,

i.e.,
G̃p(I

τ
p(K+̃qL))

pq

(n−p)2 6 G̃p(I
τ
pK)

pq

(n−p)2 + G̃p(I
τ
pL)

pq

(n−p)2 .

This gives inequality (1.13).
By the equality condition of (3.11), we see that equality holds in (1.13) if and only if IτpK and IτpL are

dilates.

4. Busemann-Petty type problems

In this section, we give the proofs of Theorems 1.7–1.8.

Lemma 4.1 ([26]). For K,L ∈ Sno and 0 < p < 1, if for every τ ∈ [−1, 1], IτpK ⊆ IτpL, then for any M ∈ Znp ,

Ṽp(K,M) 6 Ṽp(L,M).

The equality holds only if K = L.
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Proof of Theorem 1.7. From Lemma 4.1 and (1.14), we know that if IτpK ⊆ IτpL, then

G̃◦p(K) = sup{nṼp(K,M)V(M∗)
p
n :M ∈ Znp } 6 sup{nṼp(L,M)V(M∗)

p
n :M ∈ Znp } = G̃

◦
p(L).

According to the equality condition in Lemma 4.1, we know that equality holds in Theorem 1.7 only if
K = L.

Lemma 4.2. If K ∈ Sno , 0 < p < n and τ ∈ [−1, 1], then

G̃p(∇
τ
pK) 6 G̃p(K). (4.1)

For τ ∈ (−1, 1), equality holds if and only if K is origin-symmetric. For τ = ±1, (4.1) becomes an equality.

Proof. For τ ∈ (−1, 1), by definition (1.11), (2.2) and (2.5) we get

ω
p
n
n G̃p(∇

τ
pK) = sup

{
nṼp(∇̂τpK,Q)V(Q∗)

p
n : Q ∈ Knos

}
= sup

{
nṼp (f1(τ) ◦K⊕p f2(τ) ◦ (−K),Q)V(Q∗)

p
n : Q ∈ Knos

}
= sup

{∫
Sn−1

[
ρ(f1(τ) ◦K⊕p f2(τ) ◦ (−K),u)n−pρ(Q,u)p

]
dS(u)V(Q∗)

p
n : Q ∈ Knos

}
(4.2)

= sup
{∫
Sn−1

[f1(τ)ρ(K,u)n−p + f2(τ)ρ(−K,u)n−p]ρ(Q,u)pdS(u)V(Q∗)
p
n : Q ∈ Knos

}
= sup

{
nf1(τ)Ṽp(K,Q)V(Q∗)

p
n +nf2(τ)Ṽp(−K,Q)V(Q∗)

p
n : Q ∈ Knos

}
6 f1(τ) sup

{
nṼp(K,Q)V(Q∗)

p
n : Q ∈ Knos

}
+ f2(τ) sup

{
nṼp(−K,Q)V(Q∗)

p
n : Q ∈ Knos

}
.

Notice Q ∈ Knos, we easily get Ṽp(−K,Q) = Ṽp(K,Q). This together with (4.2) yields

G̃p(∇
τ
pK) 6 G̃p(K). (4.3)

Because of equality holds in (4.2) if and only if K and −K are dilates, this gives K = −K, i.e., K is origin-
symmetric. Hence, equality holds in (4.3) if and only if K is origin-symmetric.
For τ = ±1, by (2.7) we see that (4.1) is an equality.

Lemma 4.3 ([26]). If K ∈ Sno , 0 < p < 1 and τ ∈ [−1, 1], then

I+p (∇
τ
pK) = I

τ
pK,

I−p (∇
τ
pK) = I

−τ
p K.

Proof of Theorem 1.8. Since K is not origin-symmetric, thus by Lemma 4.2 we know for τ ∈ (−1, 1),

G̃p(∇
τ
pK) < G̃p(K).

Choose ε > 0, such that G̃p((1 + ε)∇τpK) < G̃p(K). Therefore, let L = (1 + ε)∇τpK, then L ∈ Sno (L ∈ Snos
when τ = 0) and

G̃p(K) > G̃p(L).

But from Lemma 4.3, we have for τ ∈ (−1, 1),

ρ(I+pL, ·) = ρ(I+p (1 + ε)∇τpK, ·) = (1 + ε)
n−p
p ρ(I+p∇

τ
pK, ·)

= (1 + ε)
n−p
p ρ(IτpK, ·) > ρ(IτpK, ·).

(4.4)
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Similarly, from Lemma 4.3, we obtain for τ ∈ (−1, 1),

ρ(I−pL, ·) > ρ(I−τp K, ·). (4.5)

Notice that τ ∈ (−1, 1) is equivalent to −τ ∈ (−1, 1), then by (4.5) we see for τ ∈ (−1, 1),

ρ(I−pL, ·) > ρ(IτpK, ·). (4.6)

Because of f1(τ), f2(τ) > 0 for τ ∈ (−1, 1), thus by (4.4) and (4.6) we obtain for 0 < p < 1,

f1(τ)ρ(I
τ
pK, ·)p + f2(τ)ρ(I

τ
pK, ·)p < f1(τ)ρ(I

+
pL, ·)p + f2(τ)ρ(I

−
pL, ·)p.

This together with (1.5) and (1.8), we have for τ ∈ (−1, 1),

ρ(IτpK, ·)p < ρ(IτpL, ·)p,

i.e.,
IτpK ⊂ IτpL.
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