L_{p}-dual geominimal surface areas for the general L_{p}-intersection bodies

Zhonghuan Shen, Yanan Li, Weidong Wang*
Department of Mathematics, China Three Gorges University, Yichang, 443002, China.

Communicated by N. Shahzad

Abstract

For $0<p<1$, Haberl and Ludwig defined the notions of symmetric and asymmetric L_{p}-intersection bodies. Recently, Wang and Li introduced the general L_{p}-intersection bodies. In this paper, we give the L_{p}-dual geominimal surface area forms for the extremum values and Brunn-Minkowski type inequality of general L_{p}-intersection bodies. Further, combining with the L_{p}-dual geominimal surface areas, we consider Busemann-Petty type problem for general L_{p}-intersection bodies. ©2017 All rights reserved.

Keywords: General L_{p}-intersection body, L_{p}-dual geominimal surface area, extremum value, Brunn-Minkowski inequality, Busemann-Petty problem.
2010 MSC: 52A20, 52A40, 52A39.

1. Introduction and main results

Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \mathbb{R}^{n}. For the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies in \mathbb{R}^{n}, we write \mathcal{K}_{o}^{n} and $\mathcal{K}_{o s}^{n}$, respectively. Let \mathcal{S}_{o}^{n} denote the set of star bodies (about the origin) in \mathbb{R}^{n}. Let S^{n-1} denote the unit sphere in \mathbb{R}^{n} and $V(K)$ denote the n-dimensional volume of a body K. For the standard unit ball B in \mathbb{R}^{n}, its volume is written by $\omega_{n}=V(B)$.

The notion of intersection body was introduced by Lutwak (see [14]): For $K \in \mathcal{S}_{0}^{n}$, the intersection body, $I K$, of K is a star body whose radial function in the direction $u \in S^{n-1}$ is equal to the ($n-1$)-dimensional volume of the section of K by u^{\perp}, the hyperplane orthogonal to u, i.e., for all $u \in S^{n-1}$,

$$
\rho(\mathrm{IK}, u)=\mathrm{V}_{\mathrm{n}-1}\left(\mathrm{~K} \cap u^{\perp}\right)
$$

where V_{n-1} denotes ($n-1$)-dimensional volume.
In 2006, Haberl and Ludwing ([5]) introduced the L_{p}-intersection body as follows: For $K \in \mathcal{S}_{0}^{n}, 0<p<$ 1 , the L_{p}-intersection body, $I_{p} K$, of K is the origin-symmetric star body, whose radial function is defined by

$$
\begin{equation*}
\rho_{\mathrm{I}_{\mathrm{p}} \mathrm{~K}}^{\mathrm{p}}(u)=\frac{1}{2} \int_{K}|u \cdot x|^{-p} d x=\frac{1}{2(n-p)} \int_{S^{n-1}}|u \cdot v|^{-p} \rho_{K}^{n-p}(v) \mathrm{dS}(v), \tag{1.1}
\end{equation*}
$$

[^0]for all $u \in S^{n-1}$. For the convenient of this paper, here we add a coefficient $1 / 2$ in (1.1).
Meanwhile, they ([5]) gave the following notion of asymmetric L_{p}-intersection body. For $K \in \mathfrak{S}_{0}^{n}$, $0<p<1$, the asymmetric L_{p}-intersection body, $\mathrm{I}_{\mathrm{p}}^{+} \mathrm{K}$, of K is defined by
\[

$$
\begin{equation*}
\rho_{\mathrm{I}_{\boldsymbol{p} K} \mathrm{~K}}^{\mathrm{p}}(\mathfrak{u})=\int_{\mathrm{K}^{\prime} \mathfrak{u}^{+}}|\mathfrak{u} \cdot x|^{-p} \mathrm{~d} x, \tag{1.2}
\end{equation*}
$$

\]

for all $u \in \mathcal{S}^{n-1}$, where $u^{+}=\left\{x: u \cdot x \geqslant 0, x \in \mathbb{R}^{n}\right\}$ and $u \cdot x$ denotes the standard inner product of u and x. From (1.2), it follows that for all $u \in \mathcal{S}^{n-1}$,

$$
\begin{equation*}
\rho_{\mathrm{I}_{\mathrm{p} K}}^{p}(\mathfrak{u})=\frac{1}{n-p} \int_{\mathrm{S}^{n-1} \cap \mathfrak{u}^{+}}|\mathfrak{u} \cdot v|^{-p} \rho_{K}^{n-p}(v) \mathrm{dS}(v) . \tag{1.3}
\end{equation*}
$$

Further, the authors ([5]) also defined that

$$
\mathrm{I}_{\mathrm{p}}^{-} \mathrm{K}=\mathrm{I}_{\mathrm{p}}^{+}(-\mathrm{K})
$$

This together with (1.3) yields that

$$
\begin{equation*}
\rho_{\mathrm{I}_{\mathrm{p}} K}^{p}(\mathfrak{u})=\rho_{\mathrm{I}_{\mathrm{p}}^{+}(-K)}^{p}(\mathfrak{u})=\frac{1}{n-\mathfrak{p}} \int_{\mathrm{S}^{n-1} \cap \mathfrak{u}^{+}}|\mathfrak{u} \cdot v|^{-\mathrm{p}} \rho_{-K}^{n-p}(v) \mathrm{dS}(v) . \tag{1.4}
\end{equation*}
$$

Recently, Wang and $\mathrm{Li}([26,27])$ introduced the notion of general L_{p}-intersection body with a parameter τ as follows: For $K \in \mathcal{S}_{o}^{n}, 0<p<1$ and $\tau \in[-1,1]$, the general L_{p}-intersection body, $I_{p}^{\tau} K \in \mathfrak{S}_{o}^{n}$, of K is defined by

$$
\begin{equation*}
\rho_{\mathrm{I}_{\mathrm{p}}^{\tau} K}^{p}(u)=f_{1}(\tau) \rho_{\mathrm{I}_{\mathrm{p}} K}^{p}(u)+\mathrm{f}_{2}(\tau) \rho_{\mathrm{I}_{\mathrm{p}} K}^{p}(u), \tag{1.5}
\end{equation*}
$$

for all $u \in \mathcal{S}^{n-1}$, where

$$
\begin{equation*}
f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \quad f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}} . \tag{1.6}
\end{equation*}
$$

Obviously, (1.6) deduces

$$
\begin{gather*}
f_{1}(-\tau)=f_{2}(\tau), \quad f_{2}(-\tau)=f_{1}(\tau), \tag{1.7}\\
f_{1}(\tau)+f_{2}(\tau)=1 . \tag{1.8}
\end{gather*}
$$

In the meantime, they $([26,27])$ also showed that if $\tau=0$, then $I_{p}^{0} K=I_{p} K$ and

$$
\begin{equation*}
\rho_{\mathrm{I}_{\mathrm{p}} K}^{\mathrm{p}}(\mathfrak{u})=\frac{1}{2} \rho_{\mathrm{I}_{\mathrm{p}}^{+} K}^{\mathrm{p}}(\mathfrak{u})+\frac{1}{2} \rho_{\mathrm{I}_{\mathrm{p}} K}^{\mathrm{p}}(\mathfrak{u}), \tag{1.9}
\end{equation*}
$$

for all $u \in \mathcal{S}^{n-1}$.
From (1.4), (1.5) and (1.7), we easily obtain for $\tau \in[-1,1]$ (see [27]),

$$
\begin{equation*}
\mathrm{I}_{\mathfrak{p}}^{-\tau} \mathrm{K}=\mathrm{I}_{\mathfrak{p}}^{\tau}(-\mathrm{K})=-\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{K} . \tag{1.10}
\end{equation*}
$$

For the general $\mathrm{L}_{\boldsymbol{p}}$-intersection bodies, Wang and Li in [27] obtained the following extremum values of volume and a Brunn-Minkowski type inequality with respect to $L_{q}(q>0)$ radial combinations of star bodies, respectively.

Theorem 1.1. If $K \in \mathfrak{S}_{0}^{n}, 0<p<1$ and $\tau \in[-1,1]$, then

$$
\mathrm{V}\left(\mathrm{I}_{\mathfrak{p}} \mathrm{K}\right) \leqslant \mathrm{V}\left(\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K}\right) \leqslant \mathrm{V}\left(\mathrm{I}_{\mathrm{p}}^{ \pm} \mathrm{K}\right) .
$$

If K is not origin-symmetric, equality holds in the left inequality if and only if $\tau=0$ and equality holds in the right inequality if and only if $\tau= \pm 1$.

Theorem 1.2. If $\mathrm{K}, \mathrm{L} \in \mathcal{S}_{\mathrm{o}}^{\mathfrak{n}}, 0<\mathrm{p}<1$ and $0<\mathrm{q}<\mathrm{n}-\mathrm{p}$, then for $\tau \in[-1,1]$,

$$
V\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right)\right)^{\frac{p q}{n(n-p)}} \leqslant V\left(I_{p}^{\tau} K\right)^{\frac{p q}{(n-p)}}+V\left(I_{p}^{\tau} L\right)^{\frac{p q}{n(n-p)}},
$$

with equality if and only if K and L are dilates.
Here $K \tilde{f}_{q} L$ denotes the $L_{q}(q>0)$ radial combination of star bodies K and L.
Further, Wang and Li in [26] researched the Busemann-Petty type problem for general L_{p}-intersection bodies, they respectively gave an affirmative and a negative form as follows:

Theorem 1.3. Let $\mathrm{K}, \mathrm{L} \in \mathfrak{S}_{\mathrm{o}}^{\mathfrak{n}}, 0<\mathrm{p}<1$ and $\tau \in[-1,1]$. If K is a general L_{p}-intersection body, then

$$
\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{K} \subseteq \mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{L},
$$

implies

$$
V(K) \leqslant V(L)
$$

The equality holds only if $\mathrm{K}=\mathrm{L}$.
Theorem 1.4. Let $\mathrm{K} \in \mathfrak{S}_{\mathrm{o}}^{\mathrm{n}}, 0<\mathrm{p}<1$ and $\tau \in(-1,1)$. If K is not origin-symmetric, then there exists $\mathrm{L} \in \mathfrak{S}_{\mathrm{o}}^{n}$, such that

$$
\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{K} \subset \mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{L} .
$$

But

$$
\mathrm{V}(\mathrm{~K})>\mathrm{V}(\mathrm{~L})
$$

The general L_{p}-intersection bodies belong to a new and rapidly evolving asymmetric L_{p}-BrunnMinkowski theory that has its own origin in the work of Ludwig, Haberl and Schuster (see [4-7, 12, 13]). For the further researches of asymmetric L_{p}-Brunn-Minkowski theory, also see $[1,8,11,17-20,22,23,25-$ $32,34,35,38]$.

Associated with L_{p}-mixed volumes, Lutwak ([16]) introduced the notion of L_{p}-geominimal surface area. For $K \in \mathscr{K}_{o}^{n}$ and $p \geqslant 1$, the L_{p}-geominimal surface area, $G_{p}(K)$, of K is defined by

$$
\omega_{n}^{\frac{p}{n}} G_{p}(K)=\inf \left\{n V_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o}^{n}\right\}
$$

Here $V_{p}(M, N)$ denotes L_{p}-mixed volume of $M, N \in \mathcal{K}_{o}^{n}$ (see [15, 16]). Obviously, if $p=1, G_{p}(K)$ is just the geominimal surface area $G(K)$ which was given by Petty (see [21]). Some affine isoperimetric inequalities related to the L_{p}-geominimal surface areas can be found in [36, 37, 39-41].

Together with the L_{p}-dual mixed volumes, Wan and Wang ([24]) gave the notion of L_{p}-dual geominimal surface area. For $K \in S_{o}^{n}$ and $p>0$, the L_{p}-dual geominimal surface area, $\widetilde{G}_{p}(K)$, of K is defined by

$$
\begin{equation*}
\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}(K)=\sup \left\{n \widetilde{V}_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} . \tag{1.11}
\end{equation*}
$$

Here $\widetilde{V}_{p}(M, N)$ denotes L_{p}-dual mixed volume of $M, N \in \mathcal{S}_{0}^{n}$. For the studies of L_{p}-dual geominimal surface areas, also see [2, 10, 33].

In this paper, associated with the L_{p}-dual geominimal surface area, we continuously study general L_{p}-intersection bodies. First, corresponding to Theorem 1.1, we give L_{p}-dual geominimal surface area forms for the extremum values of general L_{p}-intersection bodies.

Theorem 1.5. If $K \in \mathfrak{S}_{0}^{n}, 0<p<1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}} K\right) \leqslant \widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{\tau} K\right) \leqslant \widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{ \pm} \mathrm{K}\right) . \tag{1.12}
\end{equation*}
$$

If K is not origin-symmetric, equality holds in the left inequality if and only if $\tau=0$ and equality holds in the right inequality if and only if $\tau= \pm 1$.

Next, the L_{p}-dual geominimal surface area version of Theorem 1.2 is established as follows:
Theorem 1.6. If $K, L \in \mathcal{S}_{0}^{n}, n \geqslant 2,0<p<1,0<q<n-p$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathfrak{p}}^{\tau}\left(\mathrm{K} \tilde{f}_{q} \mathrm{~L}\right)\right)^{\frac{\mathrm{pq}}{(n-p))^{2}}} \leqslant \widetilde{\mathrm{G}}_{\mathfrak{p}}\left(\mathrm{I}_{\mathrm{p}}^{\tau} K\right)^{\frac{\mathrm{pq}}{(n-p)^{2}}}+\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{L}\right)^{\frac{\mathrm{pq}}{(\mathrm{n}-\mathrm{p})^{2}}} \tag{1.13}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Further, similar to Theorems 1.3-1.4, we give an affirmative and a negative form of the L_{p}-dual geominimal surface area for the Busemann-Petty type problems of general L_{p}-intersection bodies. Let z_{p}^{n} denote the set of general L_{p}-intersection bodies. If $M \in \mathcal{Z}_{p}^{n}$ in (1.11), then we write $\widetilde{G}_{p}^{\circ}(K)$ by

$$
\begin{equation*}
\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}^{o}(K)=\sup \left\{n \widetilde{V}_{p}(K, M) V\left(M^{*}\right)^{\frac{p}{n}}: M \in z_{p}^{n}\right\} \tag{1.14}
\end{equation*}
$$

Here, associated with (1.14), we obtain an affirmative form of the Busemann-Petty type problem for general L_{p}-intersection bodies.
Theorem 1.7. If $K, L \in \mathcal{S}_{0}^{n}, 0<p<1$ and $\tau \in[-1,1]$, then

$$
\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K} \subseteq \mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{L},
$$

implies

$$
\widetilde{\mathrm{G}}_{\mathrm{p}}^{\circ}(\mathrm{K}) \leqslant \widetilde{\mathrm{G}}_{\mathrm{p}}^{\circ}(\mathrm{L})
$$

The equality holds only if $\mathrm{K}=\mathrm{L}$.
Finally, according to (1.11), we give a negative form of the Busemann-Petty type problem for general L_{p}-intersection bodies as follows:
Theorem 1.8. Let $\mathrm{K} \in \mathcal{S}_{\mathrm{o}}^{n}, 0<\mathrm{p}<1$ and $\tau \in(-1,1)$. If K is not origin-symmetric, then there exists $\mathrm{L} \in \mathcal{S}_{\mathrm{o}}^{n}$, such that

$$
\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{K} \subset \mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{L} .
$$

But

$$
\widetilde{\mathrm{G}}_{\mathfrak{p}}(\mathrm{K})>\widetilde{\mathrm{G}}_{\mathrm{p}}(\mathrm{~L}) .
$$

2. L_{p}-dual mixed volumes and general L_{p}-dual Blaschke bodies

In order to complete the proofs of Theorems 1.5-1.8, we will require the following two notions.
2.1. L_{p}-dual mixed volumes

If K is a compact star shaped (about the origin) in \mathbb{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \rightarrow$ $[0, \infty)$, is defined by (see [3])

$$
\rho(K, u)=\max \{\lambda \geqslant 0: \lambda \cdot u \in K\}, u \in S^{n-1} .
$$

For $K, L \in S_{o}^{n}, p>0$ and $\lambda, \mu \geqslant 0$ (not both zero), the L_{p}-radial combination, $\lambda \cdot K \tilde{f}_{p} \mu \cdot L \in S_{o}^{n}$, of K and L is defined by (see [4])

$$
\begin{equation*}
\rho\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L, \cdot\right)^{p}=\lambda \rho(K, \cdot)^{p}+\mu \rho(L, \cdot)^{p}, \tag{2.1}
\end{equation*}
$$

where $\lambda \cdot K$ denotes the L_{p}-radial scalar multiplication, and we easily know $\lambda \cdot K=\lambda^{\frac{1}{p}} K$.
Associated with the L_{p}-radial combinations of star bodies, Haberl ([4]) introduced the notion of L_{p} dual mixed volume as follows: For $K, L \in S_{o}^{n}, p>0$ and $\varepsilon>0$, the L_{p}-dual mixed volume, $\widetilde{V}_{p}(K, L)$, of K and L is defined by

$$
\frac{n}{p} \widetilde{\mathrm{~V}}_{\mathrm{p}}(\mathrm{~K}, \mathrm{~L})=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\mathrm{V}\left(\mathrm{~K} \tilde{f}_{p} \varepsilon \cdot \mathrm{~L}\right)-\mathrm{V}(\mathrm{~K})}{\varepsilon} .
$$

From above definition, the integral representation of the L_{p}-dual mixed volume can be given by (see [26])

$$
\begin{equation*}
\widetilde{\mathrm{V}}_{\mathfrak{p}}(\mathrm{K}, \mathrm{~L})=\frac{1}{n} \int_{\mathrm{S}^{n-1}} \rho_{\mathrm{K}}^{n-\mathfrak{p}}(\mathfrak{u}) \rho_{\mathrm{L}}^{\mathrm{p}}(\mathfrak{u}) \mathrm{dS}(\mathfrak{u}), \tag{2.2}
\end{equation*}
$$

where the integration is with respect to spherical Lebesgue measure S on S^{n-1}.

2.2. General L_{p}-dual Blaschke bodies

The notion of dual Blaschke combination was given by Lutwak (see [14]). For $K, L \in \mathcal{S}_{0}^{n}, \lambda, \mu \geqslant 0$ (not both zero), $n \geqslant 2$, the dual Blaschke combination, $\lambda \circ K \oplus \mu \circ L \in \mathcal{S}_{0}^{n}$, of K and L is defined by

$$
\rho(\lambda \circ K \oplus \mu \circ L, \cdot)^{n-1}=\lambda \rho(K, \cdot)^{n-1}+\mu \rho(L, \cdot)^{n-1}
$$

where the operation " \oplus " is called dual Blaschke addition and $\lambda \circ \mathrm{K}$ denotes dual Blaschke scalar multiplication.

In 2015, Wang and Wang ([29]) introduced the notion of L_{p}-dual Blaschke combination as follows: For $K, L \in \mathcal{S}_{o}^{n}, \lambda, \mu \geqslant 0$ (not both zero), $n>p>0$, the L_{p}-dual Blaschke combination, $\lambda \circ K \oplus_{p} \mu \circ L \in \mathcal{S}_{o}^{n}$, of K and L is defined by

$$
\begin{equation*}
\rho\left(\lambda \circ K \oplus_{p} \mu \circ L, \cdot\right)^{n-p}=\lambda \rho(K, \cdot)^{n-p}+\mu \rho(L, \cdot)^{n-p} \tag{2.3}
\end{equation*}
$$

where the operation " \oplus_{p} " is called L_{p}-dual Blaschke addition and $\lambda \circ K=\lambda^{\frac{1}{n-p}}$.
Let $\lambda=\mu=\frac{1}{2}$ and $L=-K$ in (2.3), then the L_{p}-dual Blaschke body, $\bar{\nabla}_{p} K$, of $K \in \mathcal{S}_{o}^{n}$ is given by

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{p}} \mathrm{~K}=\frac{1}{2} \circ \mathrm{~K} \oplus_{\mathrm{p}} \frac{1}{2} \circ(-\mathrm{K}) . \tag{2.4}
\end{equation*}
$$

According to (2.3), Wang and Li in [26] (also see [29]) defined general L_{p}-dual Blaschke bodies as follows: For $K \in \mathcal{S}_{o}^{n}, n>p>0$ and $\tau \in[-1,1]$, the general L_{p}-dual Blaschke body, $\bar{\nabla}_{p}^{\tau} K$, of K is defined by

$$
\begin{equation*}
\rho\left(\bar{\nabla}_{\mathrm{p}}^{\tau} \mathrm{K}, \cdot\right)^{\mathrm{n}-\mathrm{p}}=\mathrm{f}_{1}(\tau) \rho(\mathrm{K}, \cdot)^{\mathrm{n}-\mathrm{p}}+\mathrm{f}_{2}(\tau) \rho(-\mathrm{K}, \cdot)^{\mathrm{n}-\mathrm{p}} \tag{2.5}
\end{equation*}
$$

where $f_{1}(\tau), f_{2}(\tau)$ satisfy (1.6).
Associated with the definition of L_{p}-dual Blaschke combination, it easily follows that

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{p}}^{\tau} \mathrm{K}=\mathrm{f}_{1}(\tau) \circ \mathrm{K} \oplus_{\mathrm{p}} \mathrm{f}_{2}(\tau) \circ(-\mathrm{K}) \tag{2.6}
\end{equation*}
$$

Besides, by (1.6), (2.4) and (2.6), we may get that if $\tau=0$, then $\bar{\nabla}_{p}^{0} K=\bar{\nabla}_{p} K$, if $\tau= \pm 1$, then

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{p}}^{+1} \mathrm{~K}=\mathrm{K}, \quad \bar{\nabla}_{\mathrm{p}}^{-1} \mathrm{~K}=-\mathrm{K} \tag{2.7}
\end{equation*}
$$

3. Proofs of Theorems 1.5-1.6

In this section, we shall complete the proofs of Theorems 1.5-1.6. The proof of Theorem 1.5 requires the following lemmas.

Lemma 3.1. If $\mathrm{K}, \mathrm{L} \in \mathcal{S}_{\mathrm{o}}^{n}, 0<\mathrm{p}<\frac{\mathrm{n}}{2}$ and $\lambda, \mu \geqslant 0$ (not both zero), then for any $\mathrm{Q} \in \mathcal{S}_{\mathrm{o}}^{n}$,

$$
\begin{equation*}
\widetilde{V}_{p}\left(\lambda \cdot K \tilde{+}_{p} \mu \cdot L, Q\right)^{\frac{p}{n-p}} \leqslant \lambda \widetilde{V}_{p}(K, Q)^{\frac{p}{n-p}}+\mu \widetilde{V}_{p}(L, Q)^{\frac{p}{n-p}} \tag{3.1}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof. Since $0<p<\frac{n}{2}$, thus $\frac{n-p}{p}>1$. Hence by (2.1), (2.2) and the Minkowski integral inequality (see [9]), we have for any $Q \in \mathcal{S}_{o}^{n}$,

$$
\begin{aligned}
\widetilde{V}_{p}\left(\lambda \cdot K \tilde{+}_{p} \mu \cdot L, Q\right)^{\frac{p}{n-p}} & =\left[\frac{1}{n} \int_{S^{n-1}} \rho\left(\lambda \cdot K \tilde{+}_{p} \mu \cdot L, u\right)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p}{n-p}} \\
& =\left[\frac{1}{n} \int_{S^{n-1}}\left(\rho\left(\lambda \cdot K \tilde{+}_{p} \mu \cdot L, u\right)^{p} \rho(Q, u)^{\frac{p^{2}}{n-p}}\right)^{\frac{n-p}{p}} d S(u)\right]^{\frac{p}{n-p}} \\
& =\left[\frac{1}{n} \int_{S^{n-1}}\left(\left(\lambda \rho(K, u)^{p}+\mu \rho(L, u)^{p}\right) \rho(Q, u)^{\frac{p^{2}}{n-p}}\right)^{\frac{n-p}{p}} d S(u)\right]^{\frac{p}{n-p}}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \lambda\left[\frac{1}{n} \int_{S}^{n-1} \rho(K, u)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p}{n-p}} \\
& +\mu\left[\frac{1}{n} \int_{S^{n-1}} \rho(L, u)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p}{n-p}} \\
\leqslant & \lambda \widetilde{V}_{p}(K, Q)^{\frac{p}{n-p}}+\mu \widetilde{V}_{p}(L, Q)^{\frac{p}{n-p}} .
\end{aligned}
$$

According to the equality condition of Minkowski integral inequality, we see that equality holds in (3.1) if and only if K and L are dilates.

Lemma 3.2. If $\mathrm{K}, \mathrm{L} \in \mathcal{S}_{\mathrm{o}}^{\mathrm{n}}, 0<\mathrm{p}<\frac{\mathfrak{n}}{2}$ and $\lambda, \mu \geqslant 0$ (not both zero), then

$$
\begin{equation*}
\widetilde{G}_{p}\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L\right)^{\frac{p}{n-p}} \leqslant \lambda \widetilde{G}_{p}(K)^{\frac{p}{n-p}}+\mu \widetilde{G}_{p}(L)^{\frac{p}{n-p}}, \tag{3.2}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof. From definition (1.11) and inequality (3.1), and notice $\frac{p}{n-p}>0$, we have

$$
\begin{aligned}
{\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L\right)\right]^{\frac{p}{n-p}}=} & \sup \left\{\left[n \widetilde{V}_{p}\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L, Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p}{n-p}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
= & \sup \left\{\left[n \widetilde{V}_{p}\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L, Q\right)\right]^{\frac{p}{n-p}}\left[V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p}{n-p}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
\leqslant & \sup \left\{\lambda\left(n\left(n \widetilde{V}_{p}(K, Q)\right)^{\frac{p}{n-p}}+\mu\left(n \widetilde{V}_{p}(L, Q)\right)^{\frac{p}{n-p}}\right]\left[V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p}{n-p}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
\leqslant & \sup \left\{\lambda\left(n \widetilde{V}_{p}(K, Q)^{\frac{p}{n-p}}\left[V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p}{n-p}}: Q \in \mathcal{K}_{o s}^{n}\right\}\right. \\
& +\sup \left\{\mu\left(n \widetilde{V}_{p}(L, Q)\right)^{\frac{p}{n-p}}\left[V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p}{n-p}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
= & \lambda\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}(K)\right]^{\frac{p}{n-p}}+\mu\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}(L)\right]^{\frac{p}{n-p}} .
\end{aligned}
$$

Thus

$$
\widetilde{G}_{p}\left(\lambda \cdot K \tilde{f}_{p} \mu \cdot L\right)^{\frac{p}{n-p}} \leqslant \lambda \widetilde{G}_{p}(K)^{\frac{p}{n-p}}+\mu \widetilde{G}_{p}(L)^{\frac{p}{n-p}} .
$$

According to the equality condition of (3.1), we see that equality holds in (3.2) if and only if K and L are dilates.

Lemma 3.3 ([27]). If $\mathrm{K} \in \mathcal{S}_{\mathrm{o}}^{n}$ and $0<\mathrm{p}<1$, then $\mathrm{I}_{\mathrm{p}}^{+} \mathrm{K}=\mathrm{I}_{\mathrm{p}}^{-} \mathrm{K}$ if and only if K is origin-symmetric.
Lemma 3.4 ([27]). If $\mathrm{K} \in \mathcal{S}_{\mathrm{o}}^{n}, 0<p<1, \tau \in[-1,1]$ and $\tau \neq 0$, then $\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K}=\mathrm{I}_{\mathrm{p}}^{-\tau} \mathrm{K}$ if and only if K is origin-symmetric.

Proof of Theorem 1.5. Since $K \in \mathcal{S}_{o}^{n}, 0<p<1$, by (1.5) and (3.2), we have

$$
\begin{align*}
\widetilde{G}_{p}\left(I_{p}^{\tau} K\right)^{\frac{p}{n-p}} & =\widetilde{G}_{p}\left(f_{1}(\tau) \cdot I_{p}^{+} K \tilde{+}_{p} f_{2}(\tau) \cdot I_{p}^{-} K\right)^{\frac{p}{n-p}} \\
& \leqslant f_{1}(\tau) \widetilde{G}_{p}\left(I_{p}^{+} K\right)^{\frac{p}{n-p}}+f_{2}(\tau) \widetilde{G}_{p}\left(I_{p}^{-} K\right)^{\frac{p}{n-p}} . \tag{3.3}
\end{align*}
$$

Since $I_{p}^{+} K=-I_{p}^{-} K$ and notice that $Q \in \mathcal{K}_{o s}^{n}$ implies $\rho(Q, u)=\rho(-Q, u)=\rho(Q,-u)$ for all $u \in S^{n-1}$, thus by (2.2) we get that

$$
\widetilde{V}_{p}\left(I_{p}^{-} K, Q\right)=\widetilde{V}_{p}\left(-I_{p}^{+} K, Q\right)=\widetilde{V}_{p}\left(I_{p}^{+} K, Q\right)
$$

Therefore, from definition (1.11), it follows that

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{+} \mathrm{K}\right)=\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{-} \mathrm{K}\right) . \tag{3.4}
\end{equation*}
$$

Combining with (3.3), (3.4), and (1.8), we can get

$$
\widetilde{\mathrm{G}}_{\mathfrak{p}}\left(I_{p}^{\tau} K\right)^{\frac{p}{n-p}} \leqslant \widetilde{\mathrm{G}}_{p}\left(I_{p}^{ \pm} K\right)^{\frac{p}{n-p}},
$$

i.e.,

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K}\right) \leqslant \widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathrm{p}}^{ \pm} \mathrm{K}\right) \tag{3.5}
\end{equation*}
$$

According to the equality condition of inequality (3.2), we know that equality holds in (3.5) if and only if $I_{p}^{+} K$ and $I_{p}^{-} K$ are dilates. Since $I_{p}^{+} K=-I_{p}^{-} K$, this means $I_{p}^{+} K=I_{p}^{-} K$. Hence from Lemma 3.3, we see that if K is not origin-symmetric, then equality holds in (3.5) if and only if $\tau= \pm 1$.

Now, we prove the left inequality of (1.12). By (2.1), (1.5), (1.7), and (1.8), we have

$$
\begin{align*}
\rho\left(I_{p}^{\tau} K, \cdot\right)^{p}+\rho\left(I_{p}^{-\tau} K, \cdot\right)^{p} & =f_{1}(\tau) \rho\left(I_{p}^{+} K, \cdot\right)^{p}+f_{2}(\tau) \rho\left(I_{p}^{-} K, \cdot\right)^{p}+f_{1}(-\tau) \rho\left(I_{p}^{+} K, \cdot\right)^{p}+f_{2}(-\tau) \rho\left(I_{p}^{-} K, \cdot\right)^{p} \\
& =f_{1}(\tau) \rho\left(I_{p}^{+} K, \cdot\right)^{p}+f_{2}(\tau) \rho\left(I_{p}^{-} K, \cdot\right)^{p}+f_{2}(\tau) \rho\left(I_{p}^{+} K, \cdot\right)^{p}+f_{1}(\tau) \rho\left(I_{p}^{-} K, \cdot\right)^{p} \tag{3.6}\\
& =\rho\left(I_{p}^{+} K, \cdot\right)^{p}+\rho\left(I_{p}^{-} K, \cdot\right)^{p} .
\end{align*}
$$

Therefore, (3.6) can be written as

$$
\frac{1}{2} \rho\left(I_{p}^{\tau} K, \cdot\right)^{p}+\frac{1}{2} \rho\left(I_{p}^{-\tau} K, \cdot\right)^{p}=\frac{1}{2} \rho\left(I_{p}^{+} K, \cdot\right)^{p}+\frac{1}{2} \rho\left(I_{p}^{-} K, \cdot\right)^{p}
$$

This together with (1.9) yields

$$
\rho\left(I_{p} K, \cdot\right)^{p}=\frac{1}{2} \rho\left(I_{p}^{\tau} K, \cdot\right)^{p}+\frac{1}{2} \rho\left(I_{p}^{-\tau} K, \cdot\right)^{p}
$$

so by (2.1) we have

$$
\mathrm{I}_{\mathrm{p}} \mathrm{~K}=\frac{1}{2} \cdot \mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K} \tilde{+}_{p} \frac{1}{2} \cdot \mathrm{I}_{\mathrm{p}}^{-\tau} \mathrm{K}
$$

Thus from inequality (3.2), we obtain

$$
\begin{align*}
\widetilde{G}_{p}\left(I_{p} K\right)^{\frac{p}{n-p}} & =\widetilde{G}_{p}\left(\frac{1}{2} \cdot I_{p}^{\tau} K \tilde{+}_{p} \frac{1}{2} \cdot I_{p}^{-\tau} K\right)^{\frac{p}{n-p}} \tag{3.7}\\
& \leqslant \frac{1}{2} \widetilde{G}_{p}\left(I_{p}^{\tau} K\right)^{\frac{p}{n-p}}+\frac{1}{2} \widetilde{G}_{p}\left(I_{p}^{-\tau} K\right)^{\frac{p}{n-p}}
\end{align*}
$$

Due to $I_{p}^{-\tau} K=-I_{p}^{\tau} K$ by (1.10), similar to the proof of (3.4), we have

$$
\begin{equation*}
\widetilde{G}_{p}\left(I_{p}^{\tau} K\right)=\widetilde{G}_{p}\left(-I_{p}^{\tau} K\right) \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we deduce

$$
\begin{equation*}
\widetilde{G}_{p}\left(I_{p} K\right) \leqslant \widetilde{G}_{p}\left(I_{p}^{\tau} K\right) \tag{3.9}
\end{equation*}
$$

Using $I_{p}^{\tau} \mathrm{K}=-\mathrm{I}_{\mathfrak{p}}^{-\tau} \mathrm{K}$ and the equality condition of inequality (3.2), we know that equality holds in (3.9) if and only if $I_{p}^{\tau} \mathrm{K}=\mathrm{I}_{\mathrm{p}}^{-\tau} \mathrm{K}$. By Lemma 3.4, we see that if K is not origin-symmetric, then equality holds in (3.9) if and only if $\tau=0$.

In order to prove Theorem 1.6, the following lemmas are essential.
Lemma 3.5 ([27]). If $K, L \in \mathcal{S}_{o}^{n}, 0<p<1,0<q<n-p$ and $\tau \in[-1,1]$, then for all $u \in S^{n-1}$,

$$
\begin{equation*}
\rho_{I_{p}^{\tau}(K \tilde{f}}^{\frac{p q}{n-p}}(u) \leqslant \rho_{I_{p}^{\tau} K}^{\frac{p q}{n-p}}(u)+\rho_{I_{p}^{\tau} L}^{\frac{p q}{n-p}}(u) \tag{3.10}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Lemma 3.6. If $\mathrm{K}, \mathrm{L} \in \mathcal{S}_{\mathrm{o}}^{n}, \mathrm{n} \geqslant 2,0<\mathrm{p}<1,0<\mathrm{q}<\mathrm{n}-\mathrm{p}$ and $\tau \in[-1,1]$, then for any $\mathrm{Q} \in \mathcal{S}_{\mathrm{o}}^{n}$,

$$
\begin{equation*}
\widetilde{V}_{p}\left(I_{p}^{\tau}\left(K \tilde{+}_{q} L\right), Q\right)^{\frac{p q}{(n-p)^{2}}} \leqslant \widetilde{V}_{p}\left(I_{p}^{\tau} K, Q\right)^{\frac{p q}{(n-p)^{2}}}+\widetilde{V}_{p}\left(I_{p}^{\tau} L, Q\right)^{\frac{p q}{(n-p)^{2}}} \tag{3.11}
\end{equation*}
$$

with equality if and only if $\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K}$ and $\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{L}$ are dilates.

Proof. Since $n \geqslant 2,0<p<1$ and $0<q<n-p$, thus $\frac{(n-p)^{2}}{p q}>1$. Hence by (2.2), (3.10) and the Minkowski integral inequality (see [9]), we have that for any $\mathrm{Q} \in \mathcal{S}_{\mathrm{o}}^{n}$,

$$
\begin{aligned}
\widetilde{V}_{p}\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right), Q\right)^{\frac{p q}{(n-p)^{2}}}= & {\left[\frac{1}{n} \int_{S^{n-1}} \rho\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right), u\right)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p q}{(n-p)^{2}}} } \\
= & {\left[\frac{1}{n} \int_{S^{n-1}}\left(\rho\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right), u\right)^{\frac{p q}{n-p}} \rho(Q, u)^{\frac{p^{q} q}{(n-p)^{2}}}\right)^{\frac{(n-p)^{2}}{p q}} d S(u)\right]^{\frac{p q}{(n-p)^{2}}} } \\
\leqslant & {\left[\frac{1}{n} \int_{S^{n-1}}\left(\left(\rho\left(I_{\mathfrak{p}}^{\tau} K, u\right)^{\frac{p q}{n-p}}+\rho\left(I_{p}^{\tau} L, u\right)^{\frac{p q}{n-p}}\right) \rho(Q, u)^{\frac{p^{2} q}{(n-p)^{2}}}\right)^{\frac{(n-p}{p-p}}{ }^{\frac{(1)}{p q}} d S(u)\right]^{\frac{p q}{(n-p)^{2}}} } \\
\leqslant & {\left[\frac{1}{n} \int_{S^{n-1}} \rho\left(I_{p}^{\tau} K, u\right)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p q}{(n-p)^{2}}} } \\
& +\left[\frac{1}{n} \int_{S^{n-1}} \rho\left(I_{p}^{\tau} L, u\right)^{n-p} \rho(Q, u)^{p} d S(u)\right]^{\frac{p q}{(n-p)^{2}}} \\
= & \widetilde{V}_{p}\left(I_{p}^{\tau} K, Q\right)^{\frac{p q}{(n-p)^{2}}}+\widetilde{V}_{p}\left(I_{p}^{\tau} L, Q\right)^{\frac{p q}{(n-p)^{2}}} .
\end{aligned}
$$

According to the equality condition of Minkowski integral inequality, we see that equality holds in (3.11) if and only if $I_{p}^{\tau} K$ and $I_{p}^{\tau} L$ are dilates.
Proof of Theorem 1.6. Since $\frac{\mathrm{pq}}{(\mathrm{n}-\mathrm{p})^{2}}>0$, thus by definition (1.1) and inequality (3.11) we obtain

$$
\begin{aligned}
{\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right)\right)\right]^{\frac{p q}{(n-p)^{2}}} } & =\sup \left\{\left[n \widetilde{V}_{p}\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right), Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p q}{(n-p)^{2}}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
= & \sup \left\{\left[n \widetilde{V}_{p}\left(I_{p}^{\tau}\left(K \tilde{f}_{q} L\right), Q\right)\right]^{\frac{p q}{(n-p)^{2}}} V\left(Q^{*}\right)^{\frac{p^{2} q}{n(n-p)^{2}}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
\leqslant & \sup \left\{\left[\left(n \widetilde{V}_{p}\left(I_{p}^{\tau} K, Q\right)\right)^{\frac{p q}{(n-p)^{2}}}+\left(n \widetilde{V}_{p}\left(I_{p}^{\tau} L, Q\right)\right)^{\frac{p q}{(n-p)^{2}}}\right] V\left(Q^{*}\right)^{\frac{p^{2} q}{n(n-p)^{2}}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
\leqslant & \sup \left\{\left[n \widetilde{V}_{p}\left(I_{p}^{\tau} K, Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p q}{(n-p)^{2}}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
& +\sup \left\{\left[n \widetilde{V}_{p}\left(I_{p}^{\tau} L, Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}\right]^{\frac{p q}{(n-p)^{2}}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
= & {\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}\left(I_{p}^{\tau} K\right)\right]^{\frac{p q}{(n-p)^{2}}}+\left[\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}\left(I_{p}^{\tau} L\right)\right]^{\frac{p q}{(n-p)^{2}}}, }
\end{aligned}
$$

i.e.,

$$
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\mathrm{I}_{\mathfrak{p}}^{\tau}\left(\mathrm{K} \tilde{f}_{q} \mathrm{~L}\right)\right)^{\frac{\mathrm{pq}}{(n-p)^{2}}} \leqslant \widetilde{\mathrm{G}}_{\mathfrak{p}}\left(\mathrm{I}_{\mathfrak{p}}^{\tau} K\right)^{\frac{\mathrm{pq}}{(n-p)^{2}}}+\widetilde{\mathrm{G}}_{p}\left(\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{L}\right)^{\frac{\mathrm{pq}}{(n-p)^{2}}} .
$$

This gives inequality (1.13).
By the equality condition of (3.11), we see that equality holds in (1.13) if and only if $I_{\mathfrak{p}}^{\tau} \mathrm{K}$ and $\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{L}$ are dilates.

4. Busemann-Petty type problems

In this section, we give the proofs of Theorems 1.7-1.8.
Lemma 4.1 ([26]). For $K, L \in \mathcal{S}_{o}^{n}$ and $0<p<1$, if for every $\tau \in[-1,1]$, $I_{p}^{\tau} K \subseteq I_{p}^{\tau} L$, then for any $M \in \mathcal{Z}_{p}^{n}$,

$$
\widetilde{V}_{p}(K, M) \leqslant \widetilde{V}_{p}(L, M)
$$

The equality holds only if $\mathrm{K}=\mathrm{L}$.

Proof of Theorem 1.7. From Lemma 4.1 and (1.14), we know that if $I_{\mathfrak{p}}^{\tau} K \subseteq I_{\mathfrak{p}}^{\tau} \mathrm{L}$, then

$$
\widetilde{G}_{p}^{\circ}(K)=\sup \left\{n \widetilde{V}_{p}(K, M) V\left(M^{*}\right)^{\frac{p}{n}}: M \in z_{p}^{n}\right\} \leqslant \sup \left\{n \widetilde{V}_{p}(L, M) V\left(M^{*}\right)^{\frac{p}{n}}: M \in z_{p}^{n}\right\}=\widetilde{G}_{p}^{\circ}(L) .
$$

According to the equality condition in Lemma 4.1, we know that equality holds in Theorem 1.7 only if $\mathrm{K}=\mathrm{L}$.

Lemma 4.2. If $K \in \mathcal{S}_{o}^{n}, 0<p<n$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathfrak{p}}\left(\bar{\nabla}_{\mathfrak{p}}^{\tau} K\right) \leqslant \widetilde{\mathrm{G}}_{\mathfrak{p}}(\mathrm{K}) . \tag{4.1}
\end{equation*}
$$

For $\tau \in(-1,1)$, equality holds if and only if K is origin-symmetric. For $\tau= \pm 1$, (4.1) becomes an equality. Proof. For $\tau \in(-1,1)$, by definition (1.11), (2.2) and (2.5) we get

$$
\begin{align*}
\omega_{n}^{\frac{p}{n}} \widetilde{G}_{p}\left(\bar{\nabla}_{p}^{\tau} K\right) & =\sup \left\{n \widetilde{V}_{p}\left(\widehat{\nabla}_{p}^{\tau} K, Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
& =\sup \left\{n \widetilde{V}_{p}\left(f_{1}(\tau) \circ K \oplus_{p} f_{2}(\tau) \circ(-K), Q\right) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
& =\sup \left\{\int_{S^{n-1}}\left[\rho\left(f_{1}(\tau) \circ K \oplus_{p} f_{2}(\tau) \circ(-K), u\right)^{n-p} \rho(Q, u)^{p}\right] d S(u) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathscr{K}_{o s}^{n}\right\} \tag{4.2}\\
& =\sup \left\{\int_{S^{n-1}}\left[f_{1}(\tau) \rho(K, u)^{n-p}+f_{2}(\tau) \rho(-K, u)^{n-p}\right] \rho(Q, u)^{p} d S(u) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
& =\sup \left\{n f_{1}(\tau) \widetilde{V}_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}+n f_{2}(\tau) \widetilde{V}_{p}(-K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} \\
& \leqslant f_{1}(\tau) \sup \left\{n \widetilde{V}_{p}(K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\}+f_{2}(\tau) \sup \left\{n \widetilde{V}_{p}(-K, Q) V\left(Q^{*}\right)^{\frac{p}{n}}: Q \in \mathcal{K}_{o s}^{n}\right\} .
\end{align*}
$$

Notice $\mathrm{Q} \in \mathcal{K}_{\mathrm{os}}^{n}$, we easily get $\widetilde{V}_{p}(-\mathrm{K}, \mathrm{Q})=\widetilde{\mathrm{V}}_{\mathfrak{p}}(\mathrm{K}, \mathrm{Q})$. This together with (4.2) yields

$$
\begin{equation*}
\widetilde{\mathrm{G}}_{\mathrm{p}}\left(\bar{\nabla}_{\mathrm{p}}^{\tau} \mathrm{K}\right) \leqslant \widetilde{\mathrm{G}}_{\mathrm{p}}(\mathrm{~K}) . \tag{4.3}
\end{equation*}
$$

Because of equality holds in (4.2) if and only if K and $-K$ are dilates, this gives $K=-K$, i.e., K is originsymmetric. Hence, equality holds in (4.3) if and only if K is origin-symmetric.
For $\tau= \pm 1$, by (2.7) we see that (4.1) is an equality.
Lemma 4.3 ([26]). If $K \in S_{o}^{n}, 0<p<1$ and $\tau \in[-1,1]$, then

$$
\begin{gathered}
\mathrm{I}_{\mathfrak{p}}^{+}\left(\bar{\nabla}_{\mathfrak{p}}^{\tau} \mathrm{K}\right)=\mathrm{I}_{\mathfrak{p}}^{\tau} \mathrm{K}, \\
\mathrm{I}_{\mathfrak{p}}^{-}\left(\bar{\nabla}_{\mathfrak{p}}^{\tau} \mathrm{K}\right)=\mathrm{I}_{\mathfrak{p}}^{-\tau} \mathrm{K} .
\end{gathered}
$$

Proof of Theorem 1.8. Since K is not origin-symmetric, thus by Lemma 4.2 we know for $\tau \in(-1,1)$,

$$
\widetilde{\mathrm{G}}_{p}\left(\bar{\nabla}_{\mathfrak{p}}^{\tau} K\right)<\widetilde{\mathrm{G}}_{\mathfrak{p}}(\mathrm{K}) .
$$

Choose $\varepsilon>0$, such that $\widetilde{G}_{p}\left((1+\varepsilon) \bar{\nabla}_{\mathfrak{p}}^{\tau} K\right)<\widetilde{G}_{p}(K)$. Therefore, let $L=(1+\varepsilon) \bar{\nabla}_{\mathfrak{p}}^{\tau} K$, then $L \in \mathcal{S}_{o}^{n}\left(L \in \mathcal{S}_{o \text { s }}^{n}\right.$ when $\tau=0$) and

$$
\widetilde{\mathrm{G}}_{\mathrm{p}}(\mathrm{~K})>\widetilde{\mathrm{G}}_{\mathrm{p}}(\mathrm{~L}) .
$$

But from Lemma 4.3, we have for $\tau \in(-1,1)$,

$$
\begin{align*}
\rho\left(\mathrm{I}_{\mathfrak{p}}^{+} \mathrm{L}, \cdot\right) & =\rho\left(\mathrm{I}_{\mathfrak{p}}^{+}(1+\varepsilon) \bar{\nabla}_{p}^{\tau} K, \cdot\right)=(1+\varepsilon)^{\frac{n-p}{p}} \rho\left(\mathrm{I}_{\mathfrak{p}}^{+} \bar{\nabla}_{\mathfrak{p}}^{\tau} K, \cdot\right) \\
& =(1+\varepsilon)^{\frac{n-p}{p}} \rho\left(\mathrm{I}_{\mathfrak{p}}^{\tau} K, \cdot\right)>\rho\left(\mathrm{I}_{\mathfrak{p}}^{\tau} K, \cdot\right) . \tag{4.4}
\end{align*}
$$

Similarly, from Lemma 4.3, we obtain for $\tau \in(-1,1)$,

$$
\begin{equation*}
\rho\left(I_{p}^{-} \mathrm{L}, \cdot\right)>\rho\left(I_{p}^{-\tau} K, \cdot\right) \tag{4.5}
\end{equation*}
$$

Notice that $\tau \in(-1,1)$ is equivalent to $-\tau \in(-1,1)$, then by (4.5) we see for $\tau \in(-1,1)$,

$$
\begin{equation*}
\rho\left(\mathrm{I}_{\mathrm{p}}^{-} \mathrm{L}, \cdot\right)>\rho\left(\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K}, \cdot\right) \tag{4.6}
\end{equation*}
$$

Because of $f_{1}(\tau), f_{2}(\tau)>0$ for $\tau \in(-1,1)$, thus by (4.4) and (4.6) we obtain for $0<p<1$,

$$
f_{1}(\tau) \rho\left(I_{p}^{\tau} K, \cdot\right)^{p}+f_{2}(\tau) \rho\left(I_{p}^{\tau} K, \cdot\right)^{p}<f_{1}(\tau) \rho\left(I_{p}^{+} L, \cdot\right)^{p}+f_{2}(\tau) \rho\left(I_{p}^{-} L, \cdot\right)^{p}
$$

This together with (1.5) and (1.8), we have for $\tau \in(-1,1)$,

$$
\rho\left(I_{p}^{\tau} K, \cdot\right)^{p}<\rho\left(I_{p}^{\tau} L, \cdot\right)^{p}
$$

i.e.,

$$
\mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{K} \subset \mathrm{I}_{\mathrm{p}}^{\tau} \mathrm{L}
$$

Acknowledgment

This research is supported by the Natural Science Foundation of China (Grant No.11371224). The authors are most grateful to the referees for the helpful comments and suggestions they gave to our paper.

References

 1
[2] Y.-B. Feng, W.-D. Wang, L_{p}-dual mixed geominimal surface area, Glasg. Math. J., 56 (2014), 229-239. 1
[3] R. J. Gardner, Geometric tomography, Second edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York, (2006). 2.1
[4] C. Haberl, Lp intersection bodies, Adv. Math., 217 (2008), 2599-2624. 1, 2.1, 2.1
[5] C. Haberl, M. Ludwig, A characterization of L_{p} intersection bodies, Int. Math. Res. Not., 2006 (2006), 29 pages. 1, 1, 1
[6] C. Haberl, F. E. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
[7] C. Haberl, F. E. Schuster, General L_{p} affine isoperimetric inequalities, J. Differential Geom., 83 (2009), 1-26. 1
[8] C. Haberl, F. E. Schuster, J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann., 352 (2012), 517-542. 1
[9] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, (1988). 3, 3
[10] Y.-N. Li, W.-D. Wang, The L_{p}-dual mixed geominimal surface area for multiple star bodies, J. Inequal. Appl., 2014 (2014), 10 pages. 1
[11] Z.-F. Li, W.-D. Wang, General L_{p}-mixed chord integrals of star bodies, J. Inequal. Appl., 2016 (2016), 12 pages. 1
[12] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357 (2005), 4191-4213. 1
[13] M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409-1428. 1
[14] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math., 71 (1988), 232-261. 1, 2.2
[15] E. Lutwak, The Brunn-Minkowski-Firey theory, I, Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150. 1
[16] E. Lutwak, The Brunn-Minkowski-Firey theory, II, Affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294. 1
[17] L. Parapatits, SL(n)-contravariant L_{p}-Minkowski valuations, Trans. Amer. Math. Soc., 366 (2014), 1195-1211. 1
[18] L. Parapatits, SL(n)-covariant L_{p}-Minkowski valuations, J. Lond. Math. Soc., 89 (2014), 397-414.
[19] Y.-N. Pei, W.-D. Wang, A type of Busemann-Petty problems for general Lp-intersection bodies, Wuhan Univ. J. Nat. Sci., 20 (2015), 471-475.
[20] Y.-N. Pei, W.-D. Wang, Shephard type problems for general L_{p}-centroid bodies, J. Inequal. Appl., 2015 (2015), 13 pages. 1
[21] C. M. Petty, Geominimal surface area, Geometriae Dedicata, 3 (1974), 77-97. 1
[22] F. E. Schuster, T. Wannerer, GL(n) contravariant Minkowski valuations, Trans. Amer. Math. Soc., 364 (2012), 815-826. 1
[23] F. E. Schuster, M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes, J. Differential Geom., 92 (2012), 263-283. 1
[24] X. Y. Wan, W.-D. Wang, L_{p}-dual geominimal surface area, (Chinese) J. Wuhan Univ. Natur. Sci. Ed., 59 (2013), 515518. 1
[25] W.-D. Wang, Y.-B. Feng, A general L_{p}-version of Petty's affine projection inequality, Taiwanese J. Math., 17 (2013), 517-528. 1
[26] W.-D. Wang, Y.-N. Li, Busemann-Petty problems for general L_{p}-intersection bodies, Acta Math. Sin. (Engl. Ser.), 31 (2015), 777-786. 1, 1, 1, 2.1, 2.2, 4.1, 4.3
[27] W.-D. Wang, Y.-N. Li, General Lp-intersection bodies, Taiwanese J. Math., 19 (2015), 1247-1259. 1, 1, 1, 1, 3.3, 3.4, 3.5
[28] W.-D. Wang, T.-Y. Ma, Asymmetric Lp-difference bodies, Proc. Amer. Math. Soc., 142 (2014), 2517-2527.
[29] J.-Y. Wang, W.-D. Wang, General L_{p}-dual Blaschke bodies and the applications, J. Inequal. Appl., 2015 (2015), 11 pages. 2.2, 2.2
[30] W.-D. Wang, J.-Y. Wang, Extremum of geometric functionals involving general L_{p}-projection bodies, J. Inequal. Appl., 2016 (2016), 16 pages.
[31] T. Wannerer, GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J., 60 (2011), 1655-1672.
[32] M. Weberndorfer, Shadow systems of asymmetric Lp zonotopes, Adv. Math., 240 (2013), 613-635. 1
[33] W. Weidong, Q. Chen, L_{p}-dual geominimal surface area, J. Inequal. Appl., 2011 (2011), 10 pages. 1
[34] W. Weidong, W. Xiaoyan, Shephard type problems for general L_{p}-projection bodies, Taiwanese J. Math., 16 (2012), 1749-1762. 1
[35] L. Yan, W.-D. Wang, General L_{p}-mixed-brightness integrals, J. Inequal. Appl., 2015 (2015), 11 pages. 1
[36] D.-P. Ye, L_{p} geominimal surface areas and their inequalities, Int. Math. Res. Not. IMRN, 2015 (2015), 2465-2498. 1
[37] D.-P. Ye, B.-C. Zhu, J.-Z. Zhou, The mixed L_{p} geominimal surface areas for multiple convex bodies, Indiana Univ. Math. J., 64 (2015), 1513-1552. 1
[38] F. Yibin, W. Weidong, L. Fenghong, Some inequalities on general L_{p}-centroid bodies, Math. Inequal. Appl., 18 (2015), 39-49. 1
[39] B.-C. Zhu, N. Li, J.-Z. Zhou, Isoperimetric inequalities for L_{p} geominimal surface area, Glasg. Math. J., 53 (2011), 717-726. 1
[40] B.-C. Zhu, J.-Z. Zhou, W.-X. Xu, Affine isoperimetric inequalities for L_{p} geominimal surface area, Real and complex submanifolds, Springer Proc. Math. Stat., Springer, Tokyo, 106 (2014), 167-176.
[41] B.-C. Zhu, J.-Z. Zhou, W.-X. Xu, Lp mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247-1263. 1

[^0]: *Corresponding author
 Email addresses: 278906478@qq.com (Zhonghuan Shen), 502430218@qq.com (Yanan Li), wdwxh722@163.com (Weidong Wang) doi:10.22436/jnsa.010.07.14

