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Abstract

The purpose of this paper is to introduce a viscosity approximation forward-backward splitting method for the implicit
midpoint rule of an accretive operators and m-accretive operators in Banach spaces. The strong convergence of this viscosity
method is proved under certain assumptions imposed on the sequence of parameters. The results presented in the paper
extend and improve some recent results announced in the current literature. Moreover, some applications to the minimization
optimization problem and the linear inverse problem are presented. (©2017 All rights reserved.
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1. Introduction

Let X be a real Banach space. We study the following inclusion problem: find x* € X such that
0 € Ax™ + Bx", (1.1)

where A : X — X is an operator and B : X — 2X is a set-valued operator. This problem includes, as special
cases, convex programming, variational inequalities, split feasibility problem and minimization problem.
To be more precise, some concrete problems in machine learning, image processing and linear inverse
problem can be modeled mathematically as this form.

One of the popular iterative methods used for solving problem (1.1) is the forward-backward splitting
method [15, 21, 27, 37] which is defined by the following manner: x; € X and

Xnil = (I—H‘B)_l(xn —T1AXn), n=1,

where v > 0. We see that each step of iterates involves only with A as the forward step and B as the
backward step, but not the sum of A and B. This method includes, in particular, the proximal point
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algorithm [7, 9, 19, 24, 33] and the gradient method [6, 18]. Lions-Mercier [21] introduced the following
splitting iterative methods in a real Hilbert space:

Xnt1 = (2] =D2JF —Dxn, n>1,

and
Xn+1 = ]i\(zer —Dxn + (I— ]E)Xn/ n=1l,
where J] = (I+71T)7! is the resolvent of T. The first one is often called Peaceman-Rachford algorithm
[28] and the second one is called Douglas-Rachford algorithm [17]. We note that both algorithms can be
weakly convergent in general [27].
In 2012, Takashashi et al. [36] proved some strong convergence theorems of the Halpern-type iteration
in a Hilbert space H, which is defined by the following manner: for any x; € H,

Xn+1 = BnXn + (1— Bn)(“nu+ (1— “n)]?n (Xn —TnAxn)), ¥Wn=>1, (1.2)

where u € H is a given point and A is an a-inverse strongly monotone mapping on H and B is a maximal
monotone operator on H, {rn} C (0,00), {otn}, {Bn} C (0,1]. Under suitable conditions, they proved that
the sequence {xn,} generated by (1.2) converges strongly to a solution of the inclusion problem (1.1).
Recently, Lépez et al. [22] introduced the following Halpern-type forward-backward method: x; € X
and
Xn41 = otpu+ (1 — o‘n)(]]rsn (xn —Tn(Axn +an)) +bn), (1.3)

where u € X, A is an a-inverse strongly accretive mapping on X and B is an m-accretive operator on X.
{rn} € (0,00), {otn} C (0,1] and {an}, {bn} are error sequences in X. They proved that the sequence {xn }
generated by (1.3) strongly converges to a solution of the inclusion problem (1.1) under some appropriate
conditions. There have been many works concerning the problem of finding zero points of the sum of
two monotone operators (in Hilbert spaces) and accretive operators (in Banach spaces). For more details,
see [11, 14, 22, 29, 30, 36, 37, 39, 42].

In 2015, Cholamjiak [12] studied a generalized forward-backward method for solving the inclusion
problem (1.1) for an accretive and m-accretive operators in Banach spaces.

Xn4l = OnU+ ApnXn + 6n]§n (Xn —TnAxn) +en, n =1

They then proved its strong convergence under some mild conditions.

The viscosity approximation method for nonexpansive mapping in Hilbert spaces was introduced by
Moudafi [26], following the ideas of Attouch [2]. Refinements in Hilbert spaces and extensions to Banach
spaces were obtained by Xu [41].

Let T : X — X be a nonexpansive mapping and f : X — X be a contraction. Explicit viscosity method
for nonexpansive mappings generates a sequence {xn} through the iteration process:

Xnt1 = Xnf(xn) + (I—an)Txn, n >0,

where [ is the identity of X. It is well-known [26, 41] that under certain conditions, the sequence {x,}
converges in norm to a fixed point q of T.

The implicit midpoint rule is one of the powerful methods for solving ordinary differential equations,
see [3, 4, 16, 34, 35, 38] and the references therein. For instance, consider the initial value problem for the
differential equation y’(t) = f(y(t)) with the initial condition y(0) = yo, where f is a continuous function
from R¢ to R4. The implicit midpoint rule is that which generates a sequence {y,} via the relation
1 (ynJrl + Yn )

E(UnJrl*Un) =f 5

The implicit midpoint rule has been extended [1] to nonexpansive mappings, which generates a se-
quence {xn } by the implicit procedure:

Xnt1+Xn

Xn+4+1 = (1 - tn)Xn + tnT( >

), n=0.



L. Yang, F. H. Zhao, J. Nonlinear Sci. Appl., 10 (2017), 3530-3543 3532

Motivated and inspired by the research going on in this direction. The purpose of this paper is to
introduce a viscosity approximation forward-backward splitting method for the implicit midpoint rule of
an accretive operators and m-accretive operators in the framework of Banach spaces. More precisely, we
consider the following iterative algorithm:

Xn41+Xn
2
Under certain assumptions imposed on the sequence of parameters, the strong convergence of this viscos-

ity method is proved. Finally, we discuss applications of algorithms (1.4) to the minimization optimization
problem and the linear inverse problem.

Xnt1 = anf(xn) + Anxn + 5n]]rgn(1 —TnA)( )t+en, n=>1 (1.4)

2. preliminaries

In order to prove the main results of the paper, we need the following basic concepts, notations and
lemmas.

We assume that X is a real Banach space with norm || - || and dual space X*. Let T be a nonlinear
mapping. We denote the fixed point set of T by Fix(T).

Let 5(€) : (0,2] — [0,1] be modulus of convexity of X defined by

. X+
ste) = inff1 — PV gy = 1, eyl > e

A Banach space X is said to be uniformly convex if 5(e) > 0 for every € € (0,2].
Let p : [0,00) — [0, 00) be the modulus of smoothness of X defined by

1
p(t) = sup{5 (I +tyll + [[x —tyl[) = 1%,y € X, |[x[| = [ly[| = 11

A Banach space X is said to be uniformly smooth if @ — 0ast — 0. Let q be a fixed real number
with q > 1. Then a Banach space E is said to be q-uniformly smooth if there exists a constant b > 0 such
that p(t) < bt9 for all t > 0. It is well-known that every q-uniformly smooth Banach space is uniformly
smooth.

Let J4(q > 1) denote the generalized duality mapping from X into 2X" given by

]q(x) :{jq(x) €X' 1 (x,jq(x)) = %19, H]q(X)H = HxHqil}/ Vx € X,

where (-,-) denotes the duality pairing between X and X*. In particular, J, := ] is called the normalized
duality mapping on X. It is also known (e.g., [40, p.1128]]) that

jq(x) = [Ix[[97?](x), x #0.
Some properties of the duality mappings are collected as follows.
Lemma 2.1 ([13]). Let 1 < q < 0.

(i) The Banach space X is smooth if and only if the duality mapping ] is single-valued.

(ii) The Banach space X is uniformly smooth if and only if the duality mapping ] is single-valued and norm-to-
norm uniformly continuous on bounded subsets of X.

Using the concept of sub-differentials, we know the following inequality:

Lemma 2.2 ([10, p. 33]). Let q > 1 and X be a real normed space with the generalized duality mapping Jq. Then,
for any x,y € X, we have

Ix+yll* < Xl +q(y,iq(x +y)),
forall jq(x+y) € Jq(x+y).
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Lemma 2.3 ([31, Corollary 1]). Let C be a closed convex subset of a uniformly smooth Banach space X, and let
T : C — C be a nonexpansive mapping with a fixed point. Let x belong to C. Define for each t € (0,1), the unique
fixed point x¢ € C of the contraction C > x — tx + (1 —t)Tx¢ converges strongly as t — 0 to a fixed point of T.

Lemma 2.4 ([23, Lemma 3.1]). Let {an} and {nn} be sequences of nonnegative real numbers such that

ant1 < (I=vn)an+Tn+Mn, n=>1,

o
where {yn} is a sequence in (0,1) and {tn} is a real sequence. Assume ) mn < oco. Then the following results

n=1
hold:

(i) If Tn < vYnM, for some M > 0, then {an} is a bounded sequence.
(i) If > yn =oc0andlimsup =* <0, then lim a, =0.
n=1 nooo '™ n—oo

Lemma 2.5 ([20, Lemma 8]). Assume {sn} is a sequence of nonnegative real numbers such that

Sn+1 < (1—=vn)sn +v¥nTh, n2>1,
and
Sl SSn—Mn+pPn, N2 1,

where {yn} is a sequence in (0,1), {Nn} is a sequence of nonnegative real numbers and {t}, and {pn} are real
sequences such that

(i) Z Yn = .
n=1
(i) lim pn =0.
n—oo
(iii) klim NMn, = 0 implies limsup t,, < 0 for any subsequence {ny.} C {n}.
—00

k—o00

Then lim s, = 0.
n—oo

Lemma 2.6 ([25, p. 63]). Let q > 1. Then the following inequality holds:

ab< Laay It
q q

for arbitrary positive real numbers a and b.

Lemma 2.7 ([12, Proposition 3.1]). Let q > 1 and let X be a real smooth Banach space with the generalized duality

m
mapping jq. Let m € N be fixed. Let {xi}i"; C Xand t; > 0 foralli=1,2,--- , m with 'Zl ty < 1. Then we have
1=

m
2 tillxil9

m N

1Yt < —= —

=1 q—(g—1) Y t
i=1

We define the domain and the range of an operator A : X — 2X by D(A) = {x € X : Ax # 0} and
R(A) = U{Az : z € D(A)}, respectively. The inverse of A, denoted by A~!, is defined by x € A~y if
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and only if y € Ax. A set-valued operator A is said to be accretive, if for each x,y € D(A), there exists
j(x—y) € J(x —y) such that
(u—v,j(x—y)) >0, ueAx, veAy.

An accretive operator A is said to be m-accretive if R(I+1A) =X, for all r > 0.
Given « > 0 and q € (1, 00), we say that an accretive operator A is a-inverse strongly accretive («-isa)
of order g, if for each x,y € D(A), there exists j4(x —y) € J(x —y) such that

u=v,jqx—y)) > afflu—v||9, ueAx, veAy.
In what follows, we shall use the following notation:
TAB = JB(I—rA)=(I+rB) }(I—1A), r>0.
Lemma 2.8 ([22, Lemma 3.1 and Lemma 3.2]). Let X be a Banach space. Let A : X — X be an o-isa of order q
and B : X — 2% an m-accretive operator. Then we have
(i) Forr >0, Fix(TAB) = (A +B)~1(0).
(ii) For0 <s <randx € X, |[x — TMBx| < 2||x — TABx|.

Lemma 2.9 ([22, Lemma 3.3]). Let X be a uniformly convex and q-uniformly smooth Banach space for some
q € (1,2]. Assume that A is a single-valued o-isa of order q in X. Then, for given v > 0, there exists a continuous,
strictly increasing and convex function ¢ : Rt — RT with $q(0) = 0 such that, for all x,y € B,

ITABx — TPy |9 < Ix —y[| T —r(ag — 197 kg )| Ax — Ay||9
—dq(II=TB) (I —rA)x— (I-TB)(I—TA)y|),

where kq is the q-uniform smoothness coefficient of X.

3. Main results

To complete our proof, we need the following proposition:

Proposition 3.1. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X — X be an «-isa

of order q and B : X — 2X an m-accretive operator such that Q := (A +B)~1(0) # 0. Let {en} be a sequence in X

and f be a contraction on X with coefficient 3 € [0,1). Let {xn} be generated by x1 € X and

Xn41+Xn
2

where ]En = (I4+mB)™, 0<r < (ocq/kq)l/(q*” and {xn}, {An}, and {dn} are sequences in [0,1] with

Xnt+1 = Onf(Xn) +Anxn + 671]]3“(1 —TnA)( Jt+en, n=1,

n +A+0n=11If ) |len] < ooor liin llenl|/on =0, then {xn} is bounded.
n=1 n o0

Proof. For eachn € N, we put T, = ]an (I—rnA) and let {yn} be defined by

Yn+1+Yn )

. (3.1)

Yn+1 = “nf(yn) + }\nyn + 0n Tn(
Firstly, we compute the following:
||Xn+1 _yn+1|| = H“n(f(xn) —f(yn)) + An(xn —yn)

X +x +
o B (T (R0 = T (P20 ey,

< o |[f(xn) = flyn) || + Anllxn —ynl

X +X +
o B [ T (R — Ty (BRI

< onBlxn —Ynll +Anllxn —ynl|

I+ l[enl

1
+ 50 lxn —ynl + [xns1 = ynral) + llen]-
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After simplifying, it follows that

1 1
(1— Eén)||xn+l —Ynt1l] < (P +An + Eén)HXn —Ynll +lenll

Therefore 200 B+ Dhy 15
I?
[Xnt+1 —Ynt1ll < — X —yn| +
2—0n 2

2“n(1 - B)
2—06n
By the assumptions and Lemma 2.4 (ii), we conclude that lgn ||Xn —ynH = 0. Let p € Fix(T,). We
n [ee)
next show that {yn} is bounded. Indeed

e
Zlenl

2
=(1- JPen =ynll+ 5= ~llen-

+
lyns1 =Pl = lletn (Flyn) =)+ An(yn =) + 8 (T () )

+
< tn[f(yn) =PIl + A fyn =PIl + 8 [Tu (PPEE) —p|

< on([[flyn) =fPI + If(P) =PI + Anllyn —Pl|

Sonllyn =Pl + lynsr —pl)
< o Bllyn =Pl + anf(P) =Pl + Anllyn — Pl

Son(lyn =Pl + lyns1 —pl)-

By simplifying, we have

1 1
(1—76 ynt1 —pll < ocnf5+7\n+ S0 ) lyn —pll + on [[f(p) —plI.

Hence 200 + 2An + 8 2
Kn n n Xn
—pll < — f(p) —
[Yn+1—Pll 7 o, [yn =PIl + 2_5nH (p) =7l
2000 (1 —B) 20tn
=(1-— — f(p) —p|l
(1 2 5. )[yn pH+2_5nII (p) —pll
This shows that {yn} is bounded by Lemma 2.4 (i) and hence {x,,} is also bounded. O

We are now ready to prove our main result.

Theorem 3.2. Let X be a uniformly convex and q-uniformly smooth Banach space, q € (1,2]. Let A : X — X be an
o-isa of order q and B : X — 2X an m-accretive operator such that Q := (A +B)~1(0) # 0. Let {en} be a sequence
in X and f be a contraction on X with coefficient 3 € [0,1). Let {xn} be generated by x; € X and

Xn+1 + Xn

5 )+en, n>1,

Xni1 = Xnf(xn) +Anxn + énlfn (IT—rhA)(
where ]an = (I+1,B)7, {rn} C (0,00) and {on}, {An}, and {6} are sequences in [0, 1] with o + An + 6n = 1.
Assume that

o0
) D on =00, hm o =0;
n=1

(ii) 0<linl>infrTL < limsupty < (aq/kq)¥/(971);
n—oo

n—oo

(iii)) liminfé, > 0;
n—oo
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o0
iv) 3 [len]l < ooor lim |en]|/otn = 0.
n—1 n—oo

Then {xn} strongly converges to some z € Q).

Proof. Let z € Fix(Ty), from Lemma 2.2 and Lemma 2.6, we have

_l’_
lyns1 =219 = llon (F(yn) = 2) + An(yn —2) + 8 (T (I —2) |

< Ay =2+ 8n (T (PEEIR) 219+ qotn((f(yn) — 2), G (Yns1 —2)

(w) —z)|d
+ qan<f(9n) - f(Z),jq (yn—H - Z)> + q“n<f(z) - Z/jq (Un—!—l _Z)>
(W) —z)|d
(3.2)
+ qonBllyn — zlll[uns1 — 2 + qaxn (f(z) — 2,iq (Yns1 — 2))

< Anlyn —2) +0n(Tn

< ||}\n(yn - Z) + 6n(Tn

1 -1 .
o Bl lyn —z||f+ qTHUnH =z ) + qan(f(z) = 2,jq(Yn+1 - 2))

< ||}\n(yn —2) + 0n(Tnl

+
(W)_Z)Hq
+ (XnBHUn _ZHq + (q - 1)(XnBHyn+l _ZHq + (](Xn(f(Z) _erq(yn+1 _Z)>'

< ||}\n(yn - Z) + 6n(Tn

On the other hand, by Lemma 2.7 and Lemma 2.9, we obtain

_l’_
(M)_Z)Hq

[An(Yn —2)+0n(Tn 5

yn+l+yn
QN S— N S} It L T
(an_’_l_(xn( n”yn ZH + nH n( > ) ZH )
1
<—
ong+1—on
+ - +
+ 8 (1IN 0 (g — 1 kg A (LTI Ag

Anllyn —z[|9

2 2
+ + +Yn
— g (I i AR T (IR IR r Ag))
1
<————(nllyn —2°
ocnq—i-l—ocn( nlyn =2 (3.3)
1 1 _ +
80 (5 yn1 =29+ S llyn =29 = rn (e — 13 kg AT ) — Az
+ + +
— g (1P A (I TR T (BTN 4 ag))))
An + 350 16,
<—- 2" 27" _ |4
5 —rd K
B nTn(oq—mn q)|]A(y“+1+y“)—Az\|q
ong+1—on 2
5
n cl)q(||(yn+1+y“)—rnA(M)—Tn(M)+TnAzH).

S ang+1—oan 2 2 2
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Replacing (3.3) into (3.2), it follows that

Ap + 16, 15,
_ q < a2 n _ q 2— _ q
lyns1—z|| (an+1_(xn”9“ z|| + g+l [Yns1—z||

SnTn(og —1
ocnq+1—ocn
5 + + ni1t
—Z,jq(yn+1—2)>

Un—i—l ern AZHq

B ong+1—on
+omBllyn =zl + (g = DxnBllynt1 —2z[ T+ qon (f(z)

?\n+%6n+ocn[3(ocnq+1—ocn)” |
= ong+1— ot In
1
7n+ (g —1DanP(ong +1— o)
2%n _ 4
_Surnl@d TR ka) ) Uniibuny g
ocnq+1—ocn 2
on Yn+1+Yn Yn+1+tYn Yn+l+Yn
. S— InilTony o ALYy g IntlTIn A
“nq‘i‘l_(xn q H( > ) —TnA( > ) n > ) +Tn ZH)

+ qon (f(z) — Z,jq(Ynt1— z)).
After simplifying it follows that

T _ xngq(1—PB —Pan(q—1)) g
=2 < O ) (@ng + 1 o) o 1 7
_ Sntn(og—Tii kq) ||A(yn+1+yn)—Aqu
(1_(q_l)(xnﬁ)((an"i‘l_o‘n)_%‘sn 2
on (3.4)

(1= (q—1)otnB)(@Xng+1— o) — 160

+ + +
X | (EI) — A (TN T, (IR I r A

" 2 2
qocn((an'i‘l_ocn) .
+ f(z) —z,jql 1—2)).
(1= (4~ DonB)(oma + 1 ocn) — 1o Jalna1 =2)
anq(1=B—(g—1)anB)
We can check that A (a—)onB) (and +1—cxn)—Tom isin (0,1) since 1 < q < 2, {an} C (0,1) and nll_r)r(}o on =0.
fp: .: dnTn(xq— rn 1k ) On sp:

Moreover, by condition (ii), (4 Dawp) (anq il q“n)_%én and A (a—Donp) (o ri—an)—To, 2Te positive.

For each n > 1, we set
oxnq(l1—PB—(q—1)anp)

sn = [[yn —z[9,vn =
| | (1_(q_l)“nﬁ)(“nq+l_“n)_%6n

7

. anq"i‘l . B
Tn = 1_[5_(q_1)(xn6< (z) — Zr]q(yn—H Z)>r
Sutn (g — 13 1k +
(1—(q—1DonB)(otng+1—an) — 500
on

(1= (q—DonB)(@ng+1—an) — L8,

+ + +
X g (I — A (IR R T (IR TR Az,

_ qotn(ang+1—an) o B
P = (g = 1)onB)(ond + 1 — oon) — o 12~ aluna =2,
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From (3.4), we then have
Snl < (I—=vn)sn+¥YnTh, n>1,

and
Sny1 SKSn—TNMn+pPn, n=1L

Since ) oy = oo, it follows that ) yn = oo. By the boundedness of {y,} and 1i_1>n oan = 0, we see
n o0

n=1 n=1
that lim p,, = 0. In order to complete the proof, using Lemma 2.5, it remains to show that klim Mn, =0
n—oo —00
implies lim sup 1, < 0 for any subsequence {ny} C {n}.
k—o0

Let {ny} be a subsequence of {n} such that klim Mn, = 0. So, by our assumptions and the property of
—00

¢4, we can deduce that

lim At TYny 4y
k—o0 2
— lim H(M) —vnkA(iy"“H Y ) _Tnk(yi“k+1 +ynk) +1n, Az|| = 0.
k—00 2 2 2

This gives, by the triangle inequality, that

lim [T, (Yt Ty Y By _ g (35)
k—o0 2 2

By (3.1), we have

[Yner1 —=Ynell = llon, F(Yn) +AnYn, + 5nank(w) il
< ot [[f(Yn) =yl +6nkHTnk(W) —
< oy [[f(Yn) = yn |l + 6nkHTnk(U“k+12+Unk - ynk+12+ Y |
o [Ty )

By simplifying we have

(Xnk

6le ||Tnk(ynk+l +ynk) o Yy +1 +ynk H

F(yn,) —ynel + ; ;

Hyﬂk+1 “Yny H <

1 1
- Eénk - Eénk

By Proposition 3.1, {yn } is bounded, and so is {f(xn )}, by condition (i) and (3.5), we obtain
lim ”yﬂk+1 _ynk” =0. (36)
k—o0

By the triangle inequality, we have

Y 1ty
T = Y| < [Ty — T (S 00y

[T, (Bt T Yy Ymest Fne

1+
i HM —yn

2
1t Yn+1 T Y
< [yt =Y [T (P TI  mt EUm

By (3.5) and (3.6), we have
kh—rgo HTleyle “Yny H =0. (3.7)
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Since li]fn infr, > 0, there is v > 0 such that v, > r for all n > 1. In particular, r,, > rforall k > 1
— 00
Lemma 2.8 (ii) yields that
HTA'BUnk Yn | < 2T Ynye — Yne |-
Then, by (3.7), we obtain
limsup HTﬁ/Bynk ynk” 2 hm HTleyTLk ynk”'

k—o0

It follows that

lim || TMB

K Yny _yﬂkH =0. (38)
—00

Let zy = tf(z¢) + (1 —t)TMBz, t € (0,1). Employing Lemma 2.3, we have z; — z € Q as t — 0, from
Lemma 2.2 we have that
Ize = yn 19 = [t(F(z0) —yn,) + (1 =) (TAPze —yn, )9

<(1- qHTA Pze —yn )19+ qt(f(ze) — Yny, g (ze = yn))

<A =09(TP2e = TPy, |+ 1T Pyn, —yn, )
+qt(f(ze) — zt,iq (2t —Yny)) + qt{ze =Y iq (2t —Yny))

< 1= lze =y |+ TPy, —yn,
+ qt(f(ze) — z¢,iq (2t —yn,)) + qtllze —yn, |

This shows that

. (1—1t)9 1
(zt = f(ze),jq(zt —yn,)) < at Izt = Yni |+ I TPy, —yn, N9+ at ¢ = Yn, ]9
From (3.8), we obtain
. i 1—1t)d t—1
limsup(z¢ —f(zt),jq (2t —Yn,)) < ( Ve Lk VL
_ (1—1t)d +qt—1Mq
qt '
where M = limsup ||zt —yn, ||, t € (0,1). We see that M;%H — 0 ast — 0. From Lemma 2.1 (ii), we

k—o00
know that jq is norm-to-norm uniformly continuous on bounded subsets of X. Since z — zas t — 0, we

have [[jq(zt —Yn,) —iq(z—Yn,)|| = 0 as t — 0. Observe that

(zt —z+z—1(2) +f(z) — f(z1),iq(zt —Yn,)) — (z—F(2),iq(z—Yn,))l
(zt Zr]q(Zt_ynkm+‘<Z_f(2)rjq(2t_ynk)_jq(Z_ynkm

+1(f(z) = f(zt),iq(zt —Yny))
< (1+B)ze —zllllze —yn, 197" + lz— F(2)lliq (2t —=Ymy) —iq(z—yn )l

|<Zt_f(2t)r)q( gnk)>_<Z_f(Z)qu(Z_ynk)>|
|
|

<
<

So,ast — 0, we get
<Zt - f(Zt)/jq (Zt _Unk)> — <Z‘_ f(Z)/jq (Z_ynk»‘
From (3.9), as t — 0, it follows that
limsup(z — f(z),jq(z —yn,)) <O0. (3.10)

k—o0
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Combining (3.6) and (3.10), we get that

lim sup(z — f(z), q (z— ynk+1)> < 0.
k—o00

It also follows that limsup 1, < 0. We conclude that 1i_r>n sn = 0 by Lemma 2.5. Hence y, — z as
k—o00 n—eo
n — oo, by Proposition 3.1, 1i_r}1 Ixn —ynl|| =0, so li_r>n xn =z € Q. We thus complete the proof. O
n—oo n—oo

By setting A, = 0 for all n > 1, we obtain the following result:

Corollary 3.3. Let X be a uniformly convex and q-uniformly smooth Banach space, q € (1,2]. Let A : X — X
be an o-isa of order q and B : X — 2% an m-accretive operator such that Q := (A +B)~1(0) # 0. Let {en} be a
sequence in X and f be a contraction on X with coefficient 3 € [0,1). Let {xn} be generated by x; € X and

Xn+1 + Xn

5 J+en, n>1,

Xnt1 = &nf(xn) + (1 — o‘n)Jan(I —1rA)(
where ]]fn = (I4+1B)~1, {rn} C (0,00) and {a,} is a sequences in [0,1]. Assume that

o0
(i) X oan =00, lim an =0;
=1 n—oo

(ii) 0 <liminfr, <limsupr, < (ocq/kq)l/(qfl);
n—oo

n—oo

oo
(i) 3 [en] < ocoor lim |len]/an = 0.
n=1 n—oo

Then {xn} strongly converges to some z € Q).

4. Applications

Firstly, we apply Theorem 3.2 to the convex minimization problem. Let H be a real Hilbert space. Let
F: H — R be a convex smooth function and G : H — R be a convex, lower-semicontinuous and nonsmooth
function. We consider the problem of finding x* € H such that

F(x") + G(x") < F(x) + G(x), (4.1)
for all x € H. This problem (4.1) is equivalent, by Fermats rule, to the problem of finding x* € H such that
0 € VF(x*) +0G(x"),

where VF is the gradient of F and 0G is the subdifferential of G. In this point of view, we can set A = VF
and B = 9G in Theorem 3.2. This is because if VF is (1/L)-Lipschitz continuous, then it is L-inverse
strongly monotone [5, Corollary 10]. Moreover, G is maximal monotone [32, Theorem A]. So we obtain
the following result.

Theorem 4.1. Let H be real Hilbert space. Let F : H — R be a convex and differentiable function with (1/L)-
Lipschitz continuous gradient VF and G : H — R be a convex and lower semi-continuous function which F + G
attains a minimizer. Let {en} be a sequence in H and f be a contraction on X with coefficient 3 € [0,1). Let {xn} be
generated by x; € H and

(Xn+1 +Xn

2 )+enr n>1/

Xnt1 = onf(Xn) + Anxn +0nJr, (I—1n VF)

where Jr, = (I+1,0G) 7L, {rn} C (0,00) and {an}, {(An}, and {51} are sequences in [0, 1] with oty +An +n = 1.
Assume that
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o0
(i) > on =00, lim an =0;
n—1 n—o0

(ii) 0 <liminfr, <limsupry < 2L;
n—oo n—oo

(iii) liminf &, > 0;
n—oo

o0
(iv) X |len]| < occor lim |en|/an =0.
n=1 n—oo

Then {xn} strongly converges to a minimizer of F+ G.

Secondly, we apply Theorem 3.2 to solve the unconstrained linear system
Cx=d, (4.2)

where C is a bounded linear operator on H and d € H. For each x € H, we define F: H — R by
1 2
Fix) = Sllcx—

From [8] we know that VF(x) = CT(Cx—d) and VF is K-Lipschitz continuous with K the largest eigenvalue
of CTC. So we obtain the following result.

Theorem 4.2. Let H be real Hilbert space. Let C : H — H be a bounded linear operator and d € H with K the
largest eigenvalue of CTC. Let {en} be a sequence in H and f be a contraction on X with coefficient B € [0,1). Let
{xn} be generated by x; € H and

Xn+1 +Xn
2

where {rn} C (0, 00) and {&n}, {An}, and {6} are sequences in [0, 1] with &y + An + dn = 1. Assume that

Xna1 = onf(xn) + Anxn + 0n (I — T CT(C — dD))( J+en, n>1,

(i)

M8

Xn =00, im o, =0;
1 n—oo

(ii) 0 <liminfr, <limsupr, <2/K;
n—,oo n—oo

(iii) liminfd, > 0;
n—oo

[ee)
(iv) X |len]| < occor lim |en|/an =0.
n—1 n—o0

If (4.2) is consistent, then {xn} strongly converges to a solution of a linear system.
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