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Abstract

In this paper, we mainly focus on the stability of Nash equilibria to any perturbation of strategy sets. A larger perturbation,
strong δ-perturbation, will be proposed for set-valued mapping. The class of perturbed games considered in the definition
of strong δ-perturbation is richer than those considered in many other definitions of stability of Nash equilibria. The strong
δ-perturbation of the best reply correspondence will be used to define an appropriate stable set for Nash equilibria, called
SBR-stable set. As an SBR-stable set is stable to any strong δ-perturbation and, various perturbations of strategy sets are not
beyond the range of strong δ-perturbation, it has the stability that various stable sets possess, such as fully stable set, stable set,
quasistable set, and essential set. An SBR-stable set is stable to any perturbation of strategy sets, so it will provide convenience
for study in strategic stability, which is even used to study any noncooperative game. c©2017 All rights reserved.
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1. Introduction

The concept of equilibria, as defined by Nash (1951), is a core of the theory of noncooperative games.
One reason for the widespread use of the Nash equilibria is that it has the advantage of existing in broad
classes of games. As many games have multiple equilibria, a basic problem is the following: how can the
players consistently predict the common equilibria? Many papers, some of which will be discussed here,
have stressed that in some games, none of the Nash equilibria could be seen as a ”reasonable” prediction.
Hence the tough task for game theorists is not the existence of equilibria but the multiplicity.

Since Nash equilibria has multiplicity, the natural question that arises is: how to find a ”reasonable”
mechanism to refine equilibria? In addressing multiplicity, game theorists have examined a variety of
arguments that refine the set of equilibria. Wu and Jiang [23] have proposed essential equilibria. Selten
[19] has proposed trembling hand perfect equilibria. Myerson [15] and Kalai-Samet [9] have proposed
proper and persistent equilibria. Kreps and Wilson [12] have proposed a variant-sequential equilibria.

∗Corresponding author
Email addresses: shwxiang@vip.163.com (Shuwen Xiang), xiashunyou@126.com (Shunyou Xia), hejihao78@sohu.com (Jihao

He), yylong1980@163.com (Yanlong Yang), liuchenwei15@163.com (Chenwei Liu)

doi:10.22436/jnsa.010.07.20

Received 2017-05-28

http://dx.doi.org/10.22436/jnsa.010.07.20


S. W. Xiang, et al., J. Nonlinear Sci. Appl., 10 (2017), 3599–3611 3600

The refinement of equilibria should follow certain rational principle, so a reasonable approach for refine-
ment, as used in the above concepts is to select equilibria that are ”stable” to slight perturbation in the
specification of the game. An equilibrium is stable if each nearby game, obtained by perturbing each
player’s strategies by a ”tremble”, has a nearby equilibrium. Kohlberg and Mertens [11] introduced the
concept of KM equilibria based on many refinement methods of Nash equilibria. One of the core ideas of
KM equilibria is to seek the set of Nash equilibrium points that is stable to the slight perturbation of strat-
egy sets. Kohlberg and Mertens established various stable sets, such as hyperstable set, fully stable set,
and stable set. Unfortunately, none of these stable sets can satisfy all conditions of KM equilibria. Since
then, many researchers including Mertens were committed to the improvement of stable set, and there
has been a number of literatures researched on this field (see [4–8, 13, 14, 16, 20–22]). The most important
concept of stable set is based on trembling hand perfect equilibria, which is stable to the perturbation of
strategy sets. The stability is an important method for refining the equilibria, and the stability of these
sorts of results in the literatures is usually dependent on the fact that the games were perturbed slightly in
terms of the actions that players can take, the information that the players might have, or the underlying
uncertainties about strategy sets.

It is more difficult to prove directly the connectedness of a stable set of Nash equilibria by game
model itself. A usual approach is to apply the equivalence between equilibrium points and solutions of
some nonlinear problems. Then, two ways can be followed. The first one consists in defining a stable
set of Nash equilibria by using the equivalence between Nash equilibria and the fixed points of the best
reply correspondence. The second one aims to translate Nash equilibrium points into solutions of Ky
Fan minimax inequality. Yu and Xiang [26] proposed an essential set for Nash equilibria and proved the
existence of essential component in the second direction by considering perturbations of payoff functions
of players. There is a lot of researches about using the essential component to discuss the stability of Nash
equilibria (see, [1, 2, 8, 17, 18, 24, 25, 27]). However, there are two drawbacks in the second way. First, the
minimax inequality related to the payoff function does not concern how players choose their strategies,
and so the perturbation no longer has the real meaning of players’ behavior. Second, it is difficult to
consider the perturbation of strategy sets. Therefore, the first way was usually used to establish stable
set to avoid these two drawbacks, for the reason that the best reply correspondence not only represented
players’ choice of strategy but also was used to define a stable set based on perturbations of strategy
sets. Unfortunately, there is another, more pressing problem: to prove the existence of stable set by the
best reply correspondence needs the continuity between best reply correspondences and strategy sets, but
the perturbations of best reply correspondences are not continuous with respect to the perturbations of
strategy sets when these perturbations are defined by Hausdorff distance simply. That is to say, when a
perturbation of strategy set is sufficiently small, the perturbation of corresponding best reply correspon-
dence does not need to be sufficiently small as well (see Example 3.2). To overcome this deficiency, Hillas
[5] proposed a concept of quasistable set by using the perturbation of best reply correspondence instead
of perturbation of strategy sets. The concept of quasistable set could avoid the discontinuity between
two types of perturbations and satisfy the conditions of KM-equilibrium. But quasistable set may not be
stable to perturbations of strategy sets, as the perturbation of best reply correspondence does not need
to be sufficiently small, even the perturbation of strategy sets is small enough. Thus, some concepts of
stable set, such as homotopy-stable set (see, Mertens [14]), essential set (see, McLennan [13]), CKM-set,
and CT -set (see, Hillas et al. [6]), were presented, where a perturbation of strategy sets was defined with
some additional conditions. Mclennan [13] introduced a related type of stable set called essential sets.
A larger class of mappings was used to perturb the best reply correspondence and, more importantly, a
coarser topology was used to define a perturbation.

A number of stability concepts were used to refine Nash equilibria. However, whether a stable set
is stable to any perturbation of strategy sets is still a question. It is the reason why we consider a class
of stronger perturbations for best reply correspondences to define an appropriate stable set. Since the
stability of Nash equilibria to perturbations of strategy sets is a important problem in such research, a
stable set will be proposed to ensure that it is stable to any perturbation defined by Hausdorff distance
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between strategy sets simply. As mentioned above, when a perturbation of strategy sets is sufficiently
small, the perturbation of corresponding best reply correspondence is not necessarily sufficiently small.
Hence the key to the definition of stable set is to find a reasonable class of perturbations for best reply
correspondence and to answer the following two problems at the same time.

1. When the perturbation of a strategy set is sufficiently small, is the corresponding perturbation of
the best reply sufficiently small as well?

2. Does the stable set defined by these perturbations still has existence and connectedness?

Around these two problems, a larger perturbation, strong δ-perturbation, will be proposed for set-
valued mappings. It will be proved that when a perturbation of strategy sets is sufficiently small, the
strong δ-perturbation of the best reply correspondence is sufficiently small as well. The class of perturbed
games considered in the definition of strong δ-perturbation is richer than those considered in many other
definitions of stability of Nash equilibria. The strong δ-perturbation of the best reply correspondence will
be used to define an appropriate stable set for Nash equilibria, called SBR-stable set. An SBR-stable set
is stable to any strong δ-perturbation, and various form of perturbations of strategy sets are not beyond
the range of strong δ-perturbation, so an SBR-stable set has the stability that various stable sets possess,
such as, fully stable set, stable set, quasistable set and essential set. An SBR-stable set is defined for
any compact convex subset in normed space and the perturbation of strategy sets is defined directly by
distance between sets without any additional condition, so the concept of SBR-stable set will provide
convenience for the study in strategic stability, which is even used to study any noncooperative game.

2. Preliminaries

For convenience, we recall some definitions and conclusions.

Definition 2.1. Let Y be a Hausdorff topological space, and {Aα} be a net constituted by the subsets of Y.

(1) x is said to be a limit point of {Aα}, if for any neighborhood U of x, there is α0 such that Aα ∩U 6= ∅
for all α > α0. The set of all limit points of {Aα} is denoted as lim infAα.

(2) x is said to be a cluster point of {Aα}, if for any neighborhood U of x, and any α0, there is some α > α0
such that Aα ∩U 6= ∅. The set of all cluster points of {Aα} is denoted as lim supAα.

(3) If lim infAα = lim supAα = A, then Aα converges to A, denoted by limAα = A.

The following lemma is derived from Theorem 3.3.11 and Corollary 4.2.3 of Klein-Thompson [10].

Lemma 2.2. Suppose that Y is a compact metric space and that {Aα} is a net comprised of nonempty closed subsets
of Y. Then limAα = A if and only if Aα converges to A with respect to Hausdorff metric.

Unless otherwise stated, X is supposed to be a nonempty compact and convex subset in the normed
space E. Bε(x) is used to represent ε-neighbourhood of x no matter which space x is in.

Let

C(X) = {T |T : X 7→ 2X is an upper semi-continuous mapping with nonempty compact and convex value}.

For any T ∈ C(X), fix(T) is used to represent the set of all the fixed points of T . By Fan-Glicksberg
fixed-point theorem, fix(T) is non-empty and compact.

As usual, the distance between set-valued mappings T1, T2 ∈ C(X) is defined by

ρC(T1, T2) = sup
x∈X

Hd (T1(x), T2(x)) ,

where Hd is the Hausdorff metric between nonempty closed subsets of X.
The concept of essential fixed point is first proposed by Fort [3]. Then the method was widely used to

the stability of solutions of optimization and game theory.
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Definition 2.3. Let T ∈ C(X). A δ-neighborhood of T is defined by

P(T , δ) = {T ′ ∈ C(X) : ρC(T
′, T) < δ}.

Definition 2.4. Let T ∈ C(X), and e(T) ⊂ fix(T) be a nonempty closed subset. For any ε > 0, if there is a
δ > 0 such that (e(T) + Bε(0))∩ fix(T ′) 6= ∅ for all T ′ ∈ P(T , δ), then e(T) is called an essential fixed point
set with respect to (C(X), ρC), or an essential set for short.

Remark 2.5.

(1) If an essential set e(T) is a single point set, i.e., e(T) = {x∗}, then x∗ is an essential fixed point, or
essential point in short.

(2) e1(T), e2(T) are two nonempty closed subsets of X and e1(T) ⊂ e2(T). If e1(T) is essential, then e2(T)
is essential as well.

We introduce some basic definitions.
An n-person noncooperative game is denoted as follows:

1. N = {1, 2, · · · ,n} is a finite set of players;

2. Xi is the strategy set of player i, and X =
n∏
i=1

Xi is the strategy profile space. For any i ∈ N, denote

X−i = (X1, · · · ,Xi−1,Xi+1, · · · ,Xn) and x−i = (x1, · · · , xi−1, xi+1, · · · , xn) ∈ X−i;

3. f = (f1, · · · , fn) : X 7→ Rn is the payoff, where fi : X =
n∏
i=1

Xi 7→ R is the payoff function of player

i. Γ = (N; (X1,X2, · · · ,Xn); (f1, f2, · · · , fn)) is called an n-person noncooperative game, denoted by
Γ(X, f) = (N; (Xi); (fi)).

x∗ = (x∗i , x
∗
−i) is said to be a Nash equilibrium point of Γ(X, f), if

fi(x
∗
i , x
∗
−i) = max

yi∈X
fi(yi, x∗−i), ∀i ∈ N.

Let
Γ = {Γ(X, f) : Γ(X, f) satisfies all conditions of Theorem 2.6}

As to the existence of Nash equilibria, Nikado and Isodo proved the following conclusion.

Theorem 2.6. Let Γ(X, f) be an n-person noncooperative game and satisfy the following conditions:

(1) for each i ∈ N, Xi is a nonempty compact convex subset in the normed space Ei;
(2) for each i ∈ N, f is continuous on X;
(3) for each i ∈ N and any fixed x−i ∈ X−i, fi(xi, x−i) is quasi-concave on Xi.

Then Γ(X, f) has a Nash equilibrium point in X, and the set of all the Nash equilibrium points of Γ(X, f) is denoted
by E(X, f).

For any Γ(X, f) ∈ Γ , its best reply correspondence is defined as follows:

(i) for each i ∈ N, the best reply correspondence of player i is given by

BRi(X,f)(x−i) = {xi ∈ Xi : fi(xi, x−i) > fi(yi, x−i), ∀yi ∈ Xi}, ∀x−i ∈ X−i;

(ii) the best reply correspondence BR(X,f) : X 7→ 2X of Γ(X, f) is given by

BR(X,f)(xi, x−i) =
∏
i∈N

BRi(X,f)(x−i), ∀x = (xi, x−i) ∈ X.

The set of fixed points of mapping BR(X,f) is denoted by fix(BR(X,f)). By definition of Nash equilibria,
x∗ ∈ E(X, f) if and only if x∗ ∈ fix(BR(X,f)). Then it is easy to see from the proof of the existence of
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Nash equilibria that the best reply correspondence BR(X,f) is an upper semi-continuous mapping with
nonempty compact and convex value on X, namely, BR(X,f) ∈ C(X).

3. Strong δ-perturbation and strongly essential set of fixed points

An n-person noncooperative finite game is denoted by Γ(S,p) = (N; (Si); (pi)) where strategy set
Si = {si1, si2, · · · , simi} is a finite set. Let us consider its mixed strategy model where mixed strategy sets
and payoff functions are defined as follows:

∆i = {xi = (ui1, , · · · ,uimi) : 0 6 uiji 6 1, ji = 1, · · · ,mi,
mi∑
ji=1

uiji = 1 }, ∆ =
∏
i∈N

∆i,

fi(x1, x2, · · · , xn) =
m1∑
j1=1

m2∑
j2=1

· · ·
mn∑
jn=1

u1
j1u

2
j2 · unjnpi(s1

j1, s2
j2, · · · , snjn).

Denote by Γ(X, f) = (N; (∆i); (pi)) the mixed strategy form of Γ(S,p) = (N; (Si); (pi)).
For game Γ(X, f), following Kohlberg and Mertens [11] and Selten [19], we will say that, an n-tuple

ε̃ = (ε̃1, · · · , ε̃n) (ε̃i = (εi1, · · · , εimi), ε
i
ji > 0, ji = 1, · · · ,mi, i ∈ N) gives rise to an ε-perturbation of

Γ(X, f) = (N; (∆i); (pi)) as

∆ε̃ =
∏
i∈N

∆ε̃i , where ∆ε̃i = {xi = (ui1, , · · · ,uimi) ∈ ∆i : uiji > εiji, ji = 1, · · · ,mi}.

Now let us consider the general form of the perturbation of strategy sets. Considering the general n-
person games, we propose the concept in a normed space.

Denote by K(Xi) the family of all non-empty compact and convex subsets of Xi. Let X ′ =
∏
i∈N

X ′i,

where X ′i ∈ K(Xi), for all i ∈ N. X ′ gives rise to a perturbation game Γ(X|X ′, f), whose strategy profile
space is X ′. The payoff function of player i is simply the restriction of fi to X1 × · · · ×X ′i × · · ·Xn, and the
best reply correspondence is as follows:

BR(X ′,f)(xi, x−i) =
∏
i∈N

BRi(X ′,f)(x−i), ∀x = (xi, x−i) ∈ X,

where
BRi(X ′,f)(x−i) = {x ′i ∈ X ′i : fi(x ′i, x−i) > fi(yi, x−i),∀yi ∈ X ′i}, ∀x−i ∈ X−i.

For each game Γ(X, f) ∈ Γ , let

Λ(Γ(X, f)) = {Γ(X|X ′, f) : X ′ =
∏
i∈N

X ′i, X
′
i ∈ K(Xi), i ∈ N}.

Consider the perturbation of strategy sets of Γ(X, f).

Definition 3.1. Let Γ(X, f) ∈ Γ . A δ-neighborhood of Γ(X, f) is defined by

P(Γ(X, f), δ) = {Γ(X|X ′, f) : X ′ =
∏
i∈N

X ′i,X
′
i ∈ K(Xi) and Hd(X ′,X) < δ}.

Firstly, an example is given to illustrate that, the perturbation of the best reply correspondence with
respect to ρC does not need to be sufficiently small when the perturbation of strategy sets is sufficiently
small.

Example 3.2. A two-person noncooperative game with payoffs is given in Table 1.
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Table 1: Table of payoffs for Example 3.2.

Player 1

Player 2 

 e F g 

a (1,0) (-1,1) (1,-1) 

b (1,0) (0,0) (-1,1) 

c (-1,1) (1,-1) (0,1) 

 

The mixed strategy form of this game is denoted by Γ(∆,u), where the mixed strategy sets of player 1
and player 2 are respectively as follows:

∆1 = {x1 = (u1,u2,u3)|0 6 ui 6 1,
3∑
i=1

ui = 1} = co{(1, 0, 0), (0, 1, 0), (0, 0, 1)},

∆2 = {x2 = (v1, v2, v3)|0 6 vi 6 1,
3∑
i=1

vi = 1} = co{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Then the set of strategy profiles is ∆ = ∆1 ×∆2. For any δ > 0, the following perturbation of strategy set
is considered.

∆δ1 = co{(1, 0, 0), (
δ

2
, 1 − δ,

δ

2
), (0, 0, 1)}

= {x1 ∈ X1|x1 = (t1 +
δ

2
t2, (1 − δ)t2,

δ

2
t2 + t3), 0 6 ti 6 1,

3∑
i=1

ti = 1},

∆δ2 = ∆2,

∆δ = ∆δ1 ×∆δ2 .

Then Γ(∆|∆δ,u) ∈ Λ(Γ(∆,u)). Denote the best reply correspondences of Γ(∆|∆δ,u) and Γ(∆,u) by BR∆ =
BR1
∆ ×BR2

∆ and BR∆δ = BR1
∆δ
×BR2

∆δ
, respectively, where

BR1
∆((1, 0, 0)) = {x1 = (u1,u2, 0)|0 6 u1 6 1, 0 6 u2 6 1,u1 + u2 = 1}, BR1

∆δ((1, 0, 0)) = {(1, 0, 0)}.

Hence,

Γ(∆|∆δ,u) ∈ P(Γ(∆,u), δ),
ρC(BR∆,BR∆δ) = sup

x∈∆
Hd(BR∆(x),BR∆δ(x))

> Hd(BR∆((1, 0, 0)),BR∆δ((1, 0, 0))) > Hd(BR1
∆((1, 0, 0)),BR1

∆δ((1, 0, 0))) =
√

2.

Notice that δ is arbitrary. It is clear that the perturbation of the best reply correspondence is not sufficiently
small even the perturbation of strategy sets is small enough.

By Example 3.2, it is necessary to introduce an appropriate perturbation for a best reply correspon-
dence to ensure that the perturbation can be sufficiently small whenever the perturbation of strategy sets
is sufficiently small.

In addition, the following example is used to illustrate that it is necessary to improve the concept of
essential fixed point for further refinement of fixed point set.

Example 3.3. Suppose a set-valued mapping T : [0, 1] 7→ 2[0,1] is

T(x) =

{
(x− 1)2, x ∈ [0, 1

2 ]∪ [
3
4 , 1],[

(x− 1)2, 1
]

, x ∈ ( 1
2 , 3

4).

The graph of T is shown as Figure 1.
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Figure 1: Essential and strongly essential.

The set of fixed points of T is fix(T) = { 3−
√

5
2 } ∪ [ 1

2 , 3
4 ]. By Definition 2.3, { 3−

√
5

2 } and all the points in
[ 1

2 , 3
4 ] are essential fixed points of T . Notice that there is a large difference between essential fixed point

{3−
√

5
2 } and any point in [ 1

2 , 3
4 ]. By contrast, {3−

√
5

2 } has stronger stability and all the points in [ 1
2 , 3

4 ] seem
a little abnormal. It is the reason why we rewrite the condition of essential fixed point in a stronger
perturbation. A perturbation that we think will help us well to find some fixed points more stable, called
strongly essential fixed point. The concept of strongly essential fixed point should be introduced and all
the points of [ 1

2 , 3
4 ] will be eliminated.

In addition, it was imperative that the concept of stronger perturbation must ensure that every stable
set (minimal essential set) is connected. Now, we define a strong perturbation as follows.

Definition 3.4. Let T ∈ C(X). A strong δ-neighborhood of T is defined by

SP(T , δ) = {S ∈ C : S(x) ⊂ co(T(x+Bδ(0)) +Bδ(0)), ∀x ∈ X}.

Remark 3.5. Definitions 2.3 and 3.4 imply P(T , δ) ⊂ SP(T , δ), and then SP(T , δ) has a wider perturbation
range than P(T , δ).

For any set-valued mapping T , Gr(T) denotes the graph of T . Let GP(T , δ) = {S ∈ C(X) : Gr(S) ⊂
Gr(T) + Bδ(0)}. Then GP(T , δ) denotes the graph perturbation of T introduced by McLennan [13]. It will
be proved that SP(T , δ) has a wider perturbation range than GP(T , δ).

Lemma 3.6. If T ′ ∈ GP(T , δ), then T ′(x) ⊂ T(x+Bδ(0)) +Bδ(0) for each x ∈ X, and hence T ′ ∈ SP(T , δ).

Proof. Let T ′ ∈ GP(T , δ). Then Gr(T ′) ⊂ Gr(T) +Bδ(0). It is immediate from Gr(T ′) ⊂ Gr(T) +Bδ(0) that

T ′(x) ⊂ T(x+Bδ(0)) +Bδ(0), ∀x ∈ X. (3.1)

In fact, because, for each x ∈ X and y ∈ T ′(x), there are some x ′ ∈ X and y ′ ∈ T(x ′) such that ||x− x ′|| < δ
and ||y− y ′|| < δ. Then y ∈ y ′ + Bδ(0) ⊂ T ′(x ′) + Bδ(0) ⊂ T ′(x+ Bδ(0)) + Bδ(0), and hence (3.1) holds. It
is obvious that T ′ ∈ SP(T , δ).

Definition 3.7. Let T ∈ C(X), and e(T) ⊂ fix(T) be a closed set. For any ε > 0, if there is δ > 0 such that
(e(T) + Bε(0)) ∩ fix(T ′) 6= ∅ for all T ′ ∈ SP(T , δ), then e(T) is said to be a strongly essential set of fixed
points with respect to the strong δ-perturbation, or a strongly essential set for short. Moreover, if e(T)
is the minimal element of the family of all the strongly essential sets of fix(T) ordered by the inclusion
relation, then e(T) is said to be a minimal essential set of fix(T) and a connected minimal essential set is
said to be a stable set.

Remark 3.8.

(1) If a strongly essential set e(T) is a single point set, i.e. e(T) = {x∗}, then x∗ is a strongly essential fixed
point, a strongly essential point for short.
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(2) e1(T), e2(T) are two nonempty closed subsets of X and e1(T) ⊂ e2(T). If e1(T) is strongly essential,
then e2(T) is strongly essential as well.

(3) If some component c(T) of fix(T) is a strongly essential set, then c(T) is said to be a strong essential
connected component of fix(T).

(4) By Remark 3.5, Definition 2.3, and Definition 3.7, a strongly essential set is clear a essential set.
By Lemma 3.6, a strongly essential set is stable to BR-perturbations defined by Hausdorff distance
between mappings or graph perturbations introduced by McLennan [13]. The reason for considering
SP(T , δ) rather than GP(T , δ) as a strong perturbation is not only to give a stronger stability but also
to ensure the connectedness of stable set.

To know the advantage of strongly essential set, consider the fixed point set fix(T) in Example 3.3.
By definition of strongly essential set, { 3−

√
5

2 } is strongly essential, and [ 1
2 , 3

4 ] is not. In fact, choose a
single-valued mapping T ′(x) = (x − 1)2, x ∈ [0, 1], and then T ′ ∈ SP(T , δ) for all δ > 0. Notice that
([ 1

2 , 3
4 ] +B 1

8
(0))∩ fix(T ′) ⊂ ( 3

8 , 1)∩ {3−
√

5
2 } = ∅. Hence, [ 1

2 , 3
4 ] is not a strongly essential set and the set [ 1

2 , 3
4 ]

has been eliminated. Example 3.3 shows that if our goal is to discriminate between some essential fixed
points and others, the concept of strongly essential set must be strengthened in some way.

The existence and connectedness of stable set of fixed points are proved as follows.

Theorem 3.9. Let T ∈ C(X). Then fix(T) has at least one minimal essential set.

Proof. Suppose T ∈ C(X). It is easy to prove that fix(T) is a closed set. A discussion of what followed
fix(T) is proved to be a strongly essential set of itself. It is sufficient to prove that for any ε > 0, if there
is δ > 0, such that (fix(T) + Bε(0)) ∩ fix(T ′) 6= ∅ for all T ′ ∈ SP(T , δ). Otherwise, there is some ε0 > 0
and a sequence of positive numbers δ1 > δ2 > · · · > δn > · · · with δn → 0 and Tn ∈ SP(T , δ), such that
(fix(T) + Bε0(0)) ∩ fix(Tn) = ∅. Choose an arbitrary sequence {x∗n} such that x∗n ∈ fix(Tn). {x∗n} ⊂ X and
the compactness of X imply that {x∗n} has a convergent subsequences. Without loss of generality, we may
assume x∗n → x0. x∗n ∈ fix(Tn) and Tn ∈ SP(T , δn) imply x∗n ∈ Tn(x∗n) ⊂ co(T(x∗n + Bδn(0)) + Bδn(0)).
Since T is upper semi-continuous, there exists 0 < η < ε, such that T(Bη(x0)) ⊂ T(x0) + Bε(0), and since
δn → 0 and xn → x0, there exists N0 > 0 such that δn < ε, δn < η

2 and x∗n ∈ Bη2 (x0) for all n > N0, and
therefore Bδn(x

∗
n) ⊂ Bη(x0). Consequently,

x∗n ∈ co(T(x∗n +Bδn(0)) +Bδn(0)) ⊂ co(T(Bη(x0)) +Bε(0))
⊂ co(T(x0) +Bε(0) +Bε(0)) = co(T(x0) +B2ε(0)).

The convexity of T(x0) and B2ε(0) imply x∗n ∈ T(x0) + B2ε(0), and then x0 ∈ T(x0) + B3ε(0). Since ε is
arbitrary, it is obvious that x0 ∈ T(x0) and x0 ∈ fix(T). Moreover, x∗n → x0 implies x∗n ∈ x0 + Bε0(0), and
then x∗n ∈ (fix(T) + Bε0(0)) ∩ fix(Tn) 6= ∅ for sufficiently large n, a contradiction, and hence fix(T) is a
strongly essential set of itself. Let < denote the family of all the strongly essential sets of fix(T). Then
< 6= ∅.

For any decreasing chain in <, it is sufficient to show there is a lower bound for < and we may apply
Zorn lemma to get the minimal element of <.

Suppose that {eα} is a decreasing chain and thatD is a index set, i.e. eα1 ⊂ eα2 when α1 > α2. It follows
from the compactness of eα and finite intersection property that e =

⋂
α∈D

eα is a nonempty compact set.

Now we prove lim eα = e. Since {eα} is a decreasing chain and e =
⋂
α∈D

eα, lim sup eα = lim inf eα and

e ⊂ lim sup eα. It remains to show lim sup eα ⊂ e. If not, then there exists x ∈ lim sup eα such that x 6∈ e,
and then there is an α0 ∈ D such that x 6∈ eα0 . By the compactness of eα0 , there is a neighborhood O(x)
of x such that O(x) ∩ eα0 6= ∅, and then O(x) ∩ eα = ∅ whenever α > α0. This is a contradiction with
x ∈ lim sup eα, and hence lim eα = e.

Moreover, Lemma 2.2 implies {eα} converges to e with respect to Hausdorff metric. Hence, for any
0 < β < ε

2 , there is α1 ∈ D such that eα ⊂ e+ Bβ(0) for all α > α1. Since eα is a strongly essential set
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of fix(T), there exists some δ > 0 such that
[
eα1 +Bβ(0)

]
∩ fix(T ′) 6= ∅ for any T ′ ∈ SP(T , δ), and then

[e+Bε(0)] ∩ fix(T ′) ⊃
[
e+Bβ(0) +Bβ(0)

]
∩ fix(T ′) ⊃

[
eα +Bβ(0)

]
∩ fix(T ′) 6= ∅. By definition of strong

essential set, it follows that e is a strongly essential set of fix(T), i.e. e ∈ <. It can be seen that < has a
minimal element and it is a minimal essential set of fix(T) by means of the standard application of Zorn
lemma.

Theorem 3.10. Let T ∈ C(X). Then fix(T) has at least one stable set.

Proof. Suppose thatm(T) is a minimal essential set of fix(T). It is sufficient to show thatm(T) is connected.
If not, then there are nonempty closed subsets c1 and c2 of fix(T) such that m(T) = c1 ∪ c2, and since X is
compact, there is some η > 0 such that (c1 +Bη(0))∪ (c2 +Bη(0)) = ∅.

Since m(T) is the minimal element of the family of strongly essential sets of fix(T), c1 and c2 are not
strongly essential. Then for given η and any δ > 0, there are T1, T2 ∈ SP(T , δ) such that

(c1 +Bη(0))∩ fix(T1) = ∅, (c2 +Bη(0))∩ fix(T2) = ∅.

Let D1 = c1 +Bη2 (0) and D2 = c2 +Bη
2
(0). A partition of unity {β1,β2} is defined by

β1(x) =
d(x,D2)

d(x,D1) + d(x,D2)
, β2(x) =

d(x,D1)

d(x,D1) + d(x,D2)
, ∀x ∈ X.

Define a set-valued mapping T ′ : X 7→ 2X as

T ′(x) = β1(x)T1(x) +β2(x)T2(x), ∀x ∈ X.

Then T ′ is a mapping with nonempty closed and convex value by the definition of T ′.
To prove T ′ ∈ C(X), we first show that T is upper semi-continuous. By the compactness of X, it is

sufficient to prove that the graph of T ′ is closed. For any xn → x, yn ∈ T ′(xn) and yn → y, we should
prove that y ∈ T ′(x). By the definition of T ′, we have

yn ∈ T ′(xn) = β1(x
n)T1(x

n) +β2(x
n)T2(x

n)

and hence there are un ∈ T1(x
n) and vn ∈ T2(x

n) such that

yn = β1(x
n)un +β2(x

n)vn. (3.2)

Without loss of generality, assume un → u and vn → v. Since T1 and T2 are upper semi-continuous and
closed-valued, u ∈ T1(x) and v ∈ T2(x). Notice the continuity of β1 and β2 and let n → ∞ in formula
(3.2), we have

y = β1(x)u+β2(x)v ∈ β1(x)T1(x) +β2(x)T2(x) = T
′(x), ∀x ∈ X

and therefore T ′ is upper semi-continuous. Moreover, T1, T2 ∈ SP(T , δ) implies

T1(x) ⊂ co(T(x+Bδ(0)) +Bδ(0)), ∀x ∈ X,
T2(x) ⊂ co(T(x+Bδ(0)) +Bδ(0)), ∀x ∈ X.

Then

T ′(x) = β1(x)T1(x) +β2(x)T2(x)

⊂ β1(x)co(T(x+Bδ(0)) +Bδ(0)) +β2(x)co(T(x+Bδ(0)) +Bδ(0)) ⊂ co(T(x+Bδ(0)) +Bδ(0)),

that is, T ′ ∈ SP(T , δ).
However, it is easy to check that T ′ has no fixed points in D1 ∪D2 by the definition of T ′, and then

(c1 +Bη2 (0))∩ fix(T ′) ⊂ (D1 +Bη2 (0))∩ fix(T ′) = ∅,

(c2 +Bη
2
(0))∩ fix(T ′) ⊂ (D2 +Bη

2
(0))∩ fix(T ′) = ∅.

Notice the arbitrariness of δ and the definition of strongly essential set. It follows that m(T) is not a
strongly essential set of fix(T), a contradiction, and hence m(T) is connected.
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The following corollary is immediate from the connectedness and stable set.

Corollary 3.11. Let T ∈ C(X). Then fix(T) has at least one strongly essential component.

Proof. Let m(T) be a stable set of fix(T). Since m(T) is connected, it must be in some component C of
fix(T) and then C is a strongly essential component.

4. SBR-stable set and stable strategy set of Nash equilibrium points

Now consider the first problem proposed in Section 1. When the perturbation of strategy sets is
sufficiently small, can the perturbation of the best reply correspondence be sufficiently small as well?

Lemma 4.1. Let Γ(X, f) ∈ Γ and x ∈ X. Then for ε > 0, there is some δ > 0 such that BR(X ′,f)(x) ⊂ BR(X,f)(x) +
Bε(0) for all Γ(X|X ′, f) ∈ P(Γ(X, f), δ).

Proof. Suppose that it is false. Then there are x0 = (x0
i, x

0
−i) ∈ X and ε0 > 0, for any δ > 0 there are

Xδ =
∏
i∈N

Xδi and Γ(X|Xδ, f) ∈ P(Γ(X, f), δ) such that BR(Xδ,f)(x
0) 6⊂ BR(X,f)(x

0) +Bε0(0). For each i ∈ N,

BRi(X,f)(x
0
−i) =

{
xi ∈ Xi : fi(xi, x0

−i) = max
yi∈Xi

fi(yi, x0
−i)

}
,

BRi(Xδ,f)(x
0
−i) =

{
xi ∈ Xδi : fi(xi, x0

−i) = max
yi∈Xδi

fi(yi, x0
−i)

}
, ∀i ∈ N.

Let max
xi∈Xi

fi(xi, x0
−i) = ri0, Xε0

i = {yi ∈ Xi : d(yi,BRi(X,f)(x
0
−i)) > ε0}, and max

xi∈Xε0
fi(xi, x0

−i) = qi0. The

definition of Xε0
i implies xi 6∈ BRi(X,f)(x−i) for all xi ∈ Xε0

i and then fi(xi, x0
−i) < ri0 and ri0 > qi0. Let

ηi = r
i
0 − q

i
0 > 0 and then ηi > 0 for each i ∈ N.

Choose some z0 = (z0
i, z

0
−i) ∈ BR(X,f)(x

0). Since fi is continuous on X, there is some δ ′ > 0 such that
for each i ∈ N, |fi(x ′i, x

0
−i) − fi(z

0
i, x

0
−i)| <

ηi
3 whenever ||x ′i − z

0
i || < δ

′, and then

fi(x
′
i, x

0
−i) > fi(z

0
i, x

0
−i) −

ηi
3

= ri0 −
ηi
3

= qi0 + ηi −
ηi
3

= qi0 +
2ηi
3

. (4.1)

Notice that BR(Xδ ′ ,f)(x
0) 6⊂ BR(X,f)(x

0) + Bε0(0) and choose some y0 ∈ BR(Xδ ′ ,f)(x
0) such that y0 6∈

BR(X,f)(x
0) + Bε0(0). Then for some i0 ∈ N, y0

i0
6∈ BRi0

(X,f)(x
0
−i0

) + Bε0(0), and therefore y0
i0
∈ Xε0

i0
and

fi0(y
0
i0

, x0
−i0

) 6 qi0
0 . Moreover, (4.1) implies

fi(x
′
i, x

0
−i) > q

i
0 +

2ηi
3

, ∀i ∈ N, ||x ′i − z
0
i || < δ

′.

Since ρ(Xδ
′
,X) < δ ′, there exists some x ′i0

∈ Xδ ′i0
such that

||x ′i0
− z0

i0
|| < δ ′,

and then
fi0(x

′
i0

, x0
−i0

) > qi0
0 +

2ηi
3
> fi0(y

0
i0

, x0
−i0

),

which is a contradiction with y0
i0
∈ BRi

(Xδ
′ ,f)

(x0
−i).

The following result can be obtained from Lemma 3.6 and Lemma 4.1.
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Lemma 4.2. Let Γ(X, f) ∈ Γ . For any ε > 0, if there is some δ > 0 such that

Gr(BR(X ′,f)) ⊂ Gr(BR(X,f)) +Bε(0), ∀Γ(X|X ′, f) ∈ P(Γ(X, f), δ), (4.2)

then BR(X ′,f) ∈ SP(BR(X,f), ε).

Proof. Let us prove (4.2). If not, then for given ε0 > 0 and any δ > 0, there exists some Γ(X|Xδ, f) ∈
P(Γ(X, f), δ) such that

Gr(BR(Xδ,f)) 6⊂ Gr(BR(X,f)) +Bε0(0).

Then there is a sequence of {δm} ( δm > 0, δm → 0) and the corresponding Xm ∈ P(X, δm) such that

Gr(BR(Xm,f)) ⊂ Gr(BR(x,f)) +Bε0(0)

and hence there is (xm,ym) ∈ Gr(BR(Xm,f)) such that (xm,ym) 6∈ Gr(BR(X,f))+Bε0(0). Since X is compact,
without loss of generality, assume (xm,ym) → (x,y), and then (x,y) 6∈ Gr(BR(X,f)) + Bε0(0), i.e. y 6∈
BR(X,f)(x) + Bε0(0). Therefore, there is some i ∈ N such that yi 6∈ BRi(X,f)(x−i) + Bε0(0), i.e. there exists
some x ′i ∈ Xi such that fi(yi, x−i) < fi(x ′i, x−i). Let fi(x ′i, x−i) − fi(yi, x−i) = η > 0. Since Xm ∈ P(X, δm),
we have Hd(Xmi ,Xi) < δm for each i ∈ N, where Hd is the Hausdorff distance between Xmi and Xi. Since
x ′i ∈ Xi and Hd(Xmi ,Xi) < δm, there is some zmi ∈ Xmi such that ||zmi − x ′i|| < δm and then zmi → x ′i.
Notice that X is compact and fi is continuous on X. We have the uniform continuity of fi on X. Consider
fi(x

′
i, x−i) − fi(yi, x−i) = η and zmi → x ′i, x

m → x, ym → y. There is some N0 > 0 such that for all
m > N0, we have

|fi(z
m
i , xm−i) − fi(x

′
i, x
m
−i)| <

η

3
, |fi(x

′
i, x
m
−i) − fi(x

′
i, x−i)| <

η

3
, |fi(yi, x−i) − fi(ymi , xm−i)| <

η

3
.

Furthermore,

fi(z
m
i , xm−i) − fi(y

m
i , xm−i) = fi(z

m
i , xm−i) − fi(x

′
i, x
m
−i) + fi(x

′
i, x
m
−i) − fi(x

′
i, x−i)

+ fi(x
′
i, x−i) − fi(yi, x−i) + fi(yi, x−i) − fi(y

m
i , xm−i)

> −
η

3
−
η

3
+ η−

η

3
= 0.

Therefore, fi(zmi , xm−i) > fi(y
m
i , xm−i), and hence ymi 6∈ BRi(Xm,f)(x

m
−i), i.e. ym 6∈ BR(Xm,f)(x

m). This is a
contradiction. Then it is immediate from Lemma 3.6 and (4.2) that BR(X ′,f) ∈ SP(BR(X,f), ε).

The following conclusions is from Lemma 4.1 and Lemma 4.2.

(I) For each fixed point, the perturbation of values of the best reply correspondence is sufficiently small
whenever the perturbation of strategy sets is sufficiently small.

(II) The strong δ-perturbation of the best reply correspondence is sufficiently small whenever the per-
turbation of strategy sets is sufficiently small.

Lemma 3.6 shows that the class of perturbed games considered in the definition of strong δ-perturbation
is richer than those considered in the definitions of essential sets considered by McLennan [13], especially
BR-stability. Lemma 4.1 shows that SBR-stable set can be used to give the stability to perturbations
of strategy sets. So the strong δ-perturbation of the best reply correspondence will be used to define
an appropriate stable set for Nash equilibria, called SBR-stable set. Theorem 4.5 below will show the
existence and connectedness of SBR-stable and answer the second problem proposed in Section 2.

Definition 4.3. Let Γ(X, f) ∈ Γ , BR(X,f) the best reply correspondence of game Γ(X, f), and S ⊂ E(X, f) a
closed set. If for any ε > 0, there is some δ > 0 such that (S+Bε(0))∩fix(T ′) 6= ∅ for all T ′ ∈ SP(BR(X,f), δ),
then S is said to be an SBR-set of E(X, f). If S is a minimal element of the family of all the SBR-sets of
E(X, f) with partial order defined by the inclusion relation, then S is said to be an SBR-stable set of E(X, f).
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Remark 4.4. In Definition 4.3, if the SBR-set is defined by replacing strong δ-perturbation SP(BR(X,f), δ)
with δ-perturbation P(BR(X,f), δ) and GP(BR(X,f), δ), respectively, then the SBR-set becomes a BR-set or
an essential set.

For game Γ(X, f) ∈ Γ and its best reply correspondence BR(X,f) (BR for short), a strong δ-perturbation
is expressed as

SP(BR, δ) = {S ∈ C(X) : S(x) ⊂ co(BR(x+Bδ(0)) +Bδ(0)),∀x ∈ X}.

Let us explain briefly the meaning of strong δ-perturbation in some way. A strong δ-perturbation is
to be interpreted as modelling mistakes made by the players with some negligible probability when the
game is played. Such mistakes would most likely consist of a player making another move than the one
intended at some point during play. Some understanding is as follows.

(A) ”Bδ(0)” in ”BR(x+Bδ(0))” can be explained as the mistakes that players sometimes aim at a different
strategy profile than x when they intend to select the best response to strategy profile x (such as some
x ′ ∈ x+Bδ(0)).

(B) The second ”Bδ(0)” in ”BR(x+ Bδ(0)) + Bδ(0)” can be explained as the mistakes that players some-
times make another move than some y ∈ BR(x+ Bδ(0)) when they intend to play the best reply to
strategy profile x ′ ∈ x+Bδ(0) (for example, some y ′ ∈ BR(x+Bδ(0)) +Bδ(0)).

(C) The convex hull ”co” in ”co(BR(x+ Bδ(0)) + Bδ(0))” can be explained as the possibility that players
make the mistakes combined by perturbations generated in the cases (A) and (B) when they intend
to play the best reply to strategy profile x. Here the perturbations are similar to the mixed strategies.

Theorem 4.5. Let Γ(X, f) ∈ Γ . Then E(X, f) has at least one SBR-stable set.

Proof. Suppose BR is the best reply correspondence of game Γ(X, f). By Theorem 3.10, fix(BR) has a stable
set S ⊂ fix(BR). Then for any ε > 0, there is some δ > 0 such that (S + Bε(0)) ∩ fix(T) 6= ∅ for all
T ∈ SP(BR, δ). Notice E(X, f) = fix(BR). We have S ⊂ E(X, f) and (S+ Bε(0)) ∩ E(X, f) 6= ∅, and then S is
an SBR-stable set of E(X, f) by Definition 4.3.

Finally, it will be proved that an SBR-stable set is stable to any perturbations of strategy sets, so that it
has the strategic stability.

Definition 4.6. Let Γ(X, f) ∈ Γ , and S ⊂ E(X, f) be a nonempty closed subset. For any ε > 0, if there is
δ > 0 such that (S+Bε(0))∩ E(X ′, f) 6= ∅ for all Γ(X|X ′, f) ∈ P(Γ(X, f), δ) and corresponding game Γ(X ′, f),
then S is said to be a strategically essential set.

Theorem 4.7. Let Γ(X, f) ∈ Γ , and S ⊂ E(X, f) be an SBR-stable set of E(X, f). Then S is a strategically essential
set.

Proof. By Theorem 4.5, E(X, f) has at least one SBR-stable set, denoted as S. It only needs to prove that
S is a strategically essential set. Since S is an SBR-stable set, for any ε > 0, there is some η > 0 such
that (S + Bε(0)) ∩ fix(T) 6= ∅ for all T ∈ SP(BR(X,f),η). By Lemma 4.2, for given η > 0, there is some
δ > 0 such that BR(X ′,f) ∈ SP(BR(X,f),η) for all Γ(X|X ′, f) ∈ P(Γ(X, f), δ) and (S+Bε(0))∩ fix(BR(X ′,f)) 6= ∅
for all Γ(X|X ′, f) ∈ P(Γ(X, f), δ). Notice fix(BR(X ′,f))) = E(X ′, f). Then (S+ Bε(0)) ∩ E(X ′, f) 6= ∅ for all
Γ(X|X ′, f) ∈ P(Γ(X, f), δ), and hence S is a strategically essential set.

Theorems 4.5 and 4.7 show that each Γ(X, f) ∈ Γ has at least one strategically essential set.
Since an SBR-stable set has stability with respect to any strong δ-perturbation and various perturba-

tions for a strategy set are not beyond the range of a strong δ-perturbation, an SBR-stable set has the
stability that various essential sets possess, such as fully-stable set, stable set, quasistable set and essential
set. An SBR-stable set is stable to any perturbation of strategy sets defined directly by Hausdorff distance
without any additional conditions, so the concept of SBR-stable set will provide convenience for studying
the strategic stability, which is even used to study any noncooperative finite game.
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