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Abstract

In this paper, we are concerned with a new iterative scheme for general split equality variational inclusion problems in
Banach spaces. We also show that the iteration converges strongly to a common solution of the general split equality variational
inclusion problems (GSEVIP). The results obtained in this paper extend and improve some well-known results in the literature.
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1. Introduction

Many problems in physics, optimization, and economics reduce to find a solution of an equilibrium
problem. Some methods have been proposed to solve the equilibrium problem; see for instance [1, 4, 6, 9,
12, 14–17, 20, 24].

Let H1 and H2 be real Hilbert spaces with the inner product 〈·, ·〉 and the norm ‖ · ‖. C1 and C2 are two
nonempty closed convex subsets of H1 and H2, respectively. If A : H1 → H2 is a bounded linear operator,
the split feasibility problem (SFP) is defined as follows: find x∗ ∈ C1 such that

Ax∗ ∈ C2.

In 1994, Censor and Elfving [3] firstly introduced the (SFP) in finite-dimensional spaces for modeling
inverse problems which arise from phase retrievals and in medical image reconstruction [2]. It has been
found that the (SFP) can also be used in various disciplines such as image restoration, computer tomo-
graph and radiation therapy treatment planning [4, 5]. The (SFP) in an infinite-dimensional real Hilbert
space can be found in [22–24].
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Recently, Moudafi and Al-Shemas introduced the following split equality feasibility problem (SEFP):
to find x ∈ C1,y ∈ C2 such that

Ax = By, (1.1)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators.
In order to solve the split equality feasibility problem (1.1), Moudafi and Al-Shemas [19], introduced

the following simultaneous iterative method:{
xn+1 = PC[xn − γA∗(Axn −Byn)],
yn+1 = PQ[yn + γA∗(Axn −Byn)],

and under suitable conditions they proved the weak convergence of the sequence (xn,yn) to a solution
of (1.1) in Hilbert spaces.

Let H1, H2 be two real Hilbert spaces and F a real Banach space. A : H1 → F and B : H2 → F are two
bounded linear operators and A∗ and B∗ are the adjoint mappings of A and B, respectively. For every
j = 1, 2, · · · , let Cj and Qj be nonempty closed convex subsets of H1 and H2, respectively. iCj and iQj
denote the indicator functions of Cj and Qj, while NCj(x) and NQj(y) are the normal cone of Cj and Qj
at x and y, respectively, i.e.,

iCj(x) =

{
0, if x ∈ Cj,
+∞, if x 6∈ Cj,

iQj(y) =

{
0, if y ∈ Qj,
+∞, if y 6∈ Qj,

NCj(x) = {z ∈ H1 : 〈z, v− x〉 > 0,∀v ∈ Cj}, NQj(y) = {z ∈ H2 : 〈z, v− y〉 > 0,∀v ∈ Qj}.

It is well-known that iCj and iQj are proper convex and lower semicontinuous functions on H1 and H2,
respectively. And the sub-differentials ∂iCj and ∂iQj are maximal monotone operators. For j = 1, 2, · · ·

and for all µ > 0, we define the resolvent operator J
∂iCj
µ of ∂iCj by

J
∂iCj
µ (·) = (I+ µ∂iCj)

−1(·) : H1 → H1,

where

∂iCj(x) = {z ∈ H1 : iCj(x) + 〈z,u− x〉 6 iCj(u),∀u ∈ H1} = {z ∈ H1 : 〈z,u− x〉 6 0,∀u ∈ Cj}
= NCj(x), x ∈ Cj.

Hence we have

u = J
∂iCj
µ (x)⇔ x− u ∈ µNCj(u)⇔ 〈x− u,y− u〉 6 0,∀y ∈ Cj ⇔ u = PCj(x).

Here PCj is the metric projection from H1 onto Cj. Therefore, we get

J
∂iCj
µ = PCj , and J

∂iQj
µ = PQj , j = 1, 2, · · · ,

which implies

∂iCj
−1(0) = F(J

∂iCj
µ ) = F(PCj), and ∂iQj

−1(0) = F(J
∂iQj
µ ) = F(PQj), j = 1, 2, · · · . (1.2)

The general split equality variational inclusion problem (GSEVIP) in a Banach space is defined as
follows: find (p,q) ∈ H1 ×H2, such that

p ∈
∞⋂
j=1

∂iCj
−1(0), q ∈

∞⋂
j=1

∂iQj
−1(0), and Ap = Bq. (1.3)
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The set of all solutions of (GSEVIP) (1.3) is denoted by Ω, i.e,

Ω = {(p,q) ∈ H1 ×H2 : p ∈
∞⋂
j=1

∂iCj
−1(0), q ∈

∞⋂
j=1

∂iQj
−1(0), and Ap = Bq}.

In this paper, we introduce a new iterative algorithm for solving the general split equality variational
inclusion problem (GSEVIP) (1.3) in a Banach space and show that the suggested the iteration algorithm
converges strongly to a solution of (GSEVIP) (1.3). The results of this paper extend and improve the
corresponding results announced by Chang et al. [8, 9], and Moudafi and Al-Shemas [19].

2. Preliminaries and lemmas

In this section, we give some definitions and preliminaries which will be used in the sequel. Let H be
a real Hilbert space and C be a nonempty closed convex subset of H.

An operator G : H→ H is said to be

(i) a nonexpansive mapping, if
‖Gx−Gy‖ 6 ‖x− y‖,∀x,y ∈ H;

(ii) a firmly nonexpansive mapping, if

‖Gx−Gy‖2 6 〈Gx−Gy, x− y〉, ∀x,y ∈ H.

We denote by PC the Metric projection from H onto C. Obviously, PC is a firmly nonexpansive mapping
from H onto C. Further, for any x ∈ H, z=PCx if and only if 〈x− z, z− y〉 > 0, for all y ∈ C.

Let F be a real smooth Banach space. JF is the dual mapping of F defined by

JF(x) = {x∗ ∈ F∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2, x ∈ F}.

Lemma 2.1 ([6]). Let H be a real Hilbert space. Then for all x,y ∈ H, we have

‖ x+ y ‖26‖ x ‖2 +2〈y, x+ y〉.

Lemma 2.2 ([13]). Let {an}, {bn}, and {cn} be sequences of positive real numbers satisfying an 6 (1−bn)an+ cn
for all n > 1. If the following conditions are satisfied

(1) bn ∈ [0, 1] and
∑∞
n=1 bn =∞;

(2)
∑∞
n=1 cn <∞, or lim sup

n→∞ cn
bn

6 0,

then lim
n→∞an = 0.

Lemma 2.3 ([10]). Let H be a real Hilbert space, B : H → 2H be a maximal monotone mapping and JBβ be the
resolvent mapping of B defined by JBβ = (I+βB)−1,β > 0, then

(1) for each β > 0, JBβ is a single-valued and firmly nonexpansive mapping;
(2) D(JBβ) = H and F(JBβ) = B

−1(0);
(3) (I− JBβ) is a firmly nonexpansive mapping for each β > 0;
(4) suppose that B−1(0) 6= ∅, then

‖ x− JBβx ‖2 + ‖ JBβx− x∗ ‖6‖ x− x∗ ‖2

for each x ∈ H, each x∗ ∈ B−1(0), and each β > 0;
(5) suppose that B−1(0) 6= ∅, then 〈x− JBβx, JBβx−w〉 > 0 for each x ∈ H, each w ∈ B−1(0), and each β > 0.
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Lemma 2.4 ([7]). Let H be a real Hilbert space and {xn} be a sequence in H. Then for any sequence {λn} (λn ∈
(0, 1)) with

∑∞
n=1 λn = 1, the following inequality holds

‖
∞∑
n=1

λnxn ‖26
∞∑
n=1

λn ‖ xn ‖2 −λiλj ‖ xi − xj ‖2, ∀i, j, i < j.

Lemma 2.5 ([18]). Let {tn} be a sequence of real numbers. If there exists a subsequence {ni} of {n}, such that
tni < tni+1 for all i > 1, then there exists a nondecreasing sequence {θ(n)} with θ(n)→∞ as n→∞, such that
for all (sufficiently large) positive integer number n, the following holds:

tθ(n) 6 tθ(n)+1, tn 6 tθ(n)+1.

In fact,
θ(n) = max{k 6 n : tk 6 tk+1}.

Lemma 2.6 (demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C be a nonexpansive mapping with Fix(T) 6= ∅. Then I− T is said to be demi-closed at zero, if for any
sequence {xn} ⊂ C with xn ⇀ x and ‖xn − Txn‖ → 0, then x = Tx.

3. The main results

In this section, we show some strong convergence theorems for finding a common element of the
solution set of the general split equality variational inclusion problem (GSEVIP) (1.3) in a Banach space.

In order to solve problem (GSEVIP) (1.3), we propose the following simultaneous type iterative algo-
rithm.

Algorithm 3.1. For any given W0 = (x0,y0), V0 = (v01, v02) ∈ H1 ×H2, the iterative sequence {Wn} ⊂
H1 ×H2 is generated by

Wn+1 = αnWn +βnV0 +

∞∑
j=1

γn,jJ
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn, n > 0, (3.1)

where {αn}, {βn}, {γn,j} are the sequences of nonnegative numbers satisfying

αn +βn +

∞∑
j=1

γn,j = 1, n > 0,

J
(∂iCj ,∂iQj)
µ =

(
J
∂iCj
µ

J
∂iQj
µ

)
,G =

(
A −B

)
,G∗ =

(
A∗

−B∗

)
,G∗JFG =

(
A∗JFA −A∗JFB
−B∗JFA B∗JFB

)
.

We also need the following conclusion.

Lemma 3.2. If the set of solutions of (GSEVIP) (1.3) is Ω 6= ∅, then W∗ = (x∗,y∗) ∈ H1 ×H2 is a solution of
(GSEVIP) (1.3) if and only if for each j > 1, and for any given µ > 0

W∗ = J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)W

∗. (3.2)

Proof. Indeed, W∗ = (x∗,y∗) ∈ H1 ×H2 is a solution of (GSEVIP) (1.3), from Lemma 2.3 (2), for all j > 1,
we have

x∗ ∈ ∂iCj
−1(0) = F(J

∂iCj
µ ), y∗ ∈ ∂iQj

−1(0) = F(J
∂iQj
µ ), Ax∗ = By∗, GW∗ = Ax∗ −By∗ = 0.
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Thus for any µ > 0,

J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)W

∗ = J
(∂iCj ,∂iQj)
µ W∗ = (J

∂iCj
µ x∗, J

∂iQj
µ y∗) = (x∗,y∗) =W∗.

Conversely, if W∗ = (x∗,y∗) ∈ H1 ×H2 satisfies (3.2), we have{
x∗ = J

∂iCj
µ (x∗ − µA∗JF(Ax

∗ −By∗)),

y∗ = J
∂iQj
µ (y∗ + µB∗JF(Ax

∗ −By∗)).
(3.3)

From Lemma 2.3 (5) and Ω 6= ∅, we have

〈x∗ − (x∗ − µA∗JF(Ax
∗ −By∗)), x− x∗〉 > 0, ∀x ∈ ∂iCj

−1(0).

Since µ > 0, we get
〈JF(Ax∗ −By∗),Ax−Ax∗〉 > 0, ∀x ∈ ∂iQj

−1(0). (3.4)

Simplifying, from (3.3) and Lemma 2.3 (1), we have

〈JF(Ax∗ −By∗),By∗ −By〉 > 0, ∀y ∈ ∂iQj
−1(0). (3.5)

Adding up (3.4) and (3.5), we get

〈JF(Ax∗ −By∗),Ax∗ −By∗〉 6 〈JF(Ax∗ −By∗),Ax−By〉 ∀x ∈ ∂iCj
−1(0),∀y ∈ ∂iQj

−1(0).

So, we get

‖Ax∗ −By∗‖2 6 〈JF(Ax∗ −By∗),Ax−By〉, ∀x ∈ ∂iCj
−1(0),∀y ∈ ∂iQj

−1(0).

Since the set of solutions of (GSEVIP) (1.3) is Ω 6= ∅, taking W = (x0,y0) ∈ Ω and x = x0, y = y0, we get

‖Ax∗ −By∗‖ = 0, i.e., Ax∗ = By∗. (3.6)

From (3.3), we have{
x∗ = J

∂iCj
µ x∗,

y∗ = J
∂iQj
µ y∗,

i.e., x∗ ∈ F(J
∂iCj
µ ) = ∂iCj

−1(0),y∗ ∈ F(J
∂iQj
µ ) = ∂iQj

−1(0),∀j > 1, (3.7)

which from (3.6) and (3.7) implies that W∗ ∈ Ω.

Lemma 3.3. If µ ∈ (0, 2
L), where L = ‖G‖2, then I− µG∗JFG : H1 ×H2 → H1 ×H2 is a nonexpansive mapping.

Proof. For any given w,u ∈ H1 ×H2, we have

‖(I− µG∗JFG)u− (I− λG∗JFG)w‖2 = ‖(u−w) − µG∗JFG(u−w)‖2

= ‖u−w‖2 + µ2‖G∗JFG(u−w)‖2 − 2µ〈u−w,G∗JFG(u−w)〉
6 ‖u−w‖2 + µ2L‖JFG(u−w)‖2 − 2µ〈G(u−w), JFG(u−w)〉.
= ‖u−w‖2 + µ2L‖G(u−w)‖2 − 2µ‖G(u−w)‖2.

= ‖u−w‖2 − µ(2 − µL)‖G(u−w)‖2.

6 ‖u−w‖2.

This completes the proof.
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Theorem 3.4. Let {Wn} be the sequence defined by (3.1). If the set of solutions of (GSEVIP) (1.3) is Ω 6= ∅ and the
following conditions are satisfied:

(B1) {αn}, {βn}, {γn,j} ⊂ [0, 1], for any n > 0, αn +βn +
∑∞
j=1 γn,j = 1;

(B2)
∑∞
n=0 βn =∞ and lim

n→∞βn = 0;

(B3) µ ∈ (0, 2
L), where L = ‖G‖2;

(B4) lim inf
n→∞ anγn,j > 0, ∀j > 1,

then the sequence {Wn} converges strongly to W∗ = PΩV0, which is a solution of (GSEVIP) (1.3).

Proof. We shall divide the proof into three steps.

Step (I). Showing that {Wn} is bounded.
For any p ∈ Ω, from Lemma 3.2, we have

p = J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)p.

Form Lemma 3.3, Lemma 2.3 (1), and condition (B3), we get

‖Wn+1 − p‖
= ‖αnWn +βnV0 +

∑∞
j=1 γn,jJ

(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn − p‖

6 αn‖Wn − p‖+βn‖V0 − p‖+
∑∞
j=1 γn,j‖J

(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn − p‖

6 αn‖Wn − p‖+βn‖V0 − p‖+
∑∞
j=1 γn,j‖(I− µG∗JFG)Wn − p‖

6 αn‖Wn − p‖+βn‖V0 − p‖+
∑∞
j=1 γn,j‖Wn − p‖

= (1 −βn)‖Wn − p‖+βn‖V0 − p‖
6 max{‖Wn − p‖, ‖V0 − p‖}.

(3.8)

By induction, we have

‖Wn − p‖ 6 max{‖W0 − p‖, ‖V0 − p‖}, ∀n > 0,

which implies that {Wn} is bounded.

Step (II). We show that the following inequality holds

αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2 6 ‖Wn − p‖2 − ‖Wn+1 − p‖2 +βn‖V0 − p‖2. (3.9)

From Lemma 2.4 and (3.1), we have

‖Wn+1 − p‖2 = ‖αnWn +βnV0 +

∞∑
j=1

γn,jJ
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn − p‖2

= ‖αn(Wn − p) +βn(V0 − p) +

∞∑
j=1

γn,j(J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn − p)‖2

6 αn‖Wn − p‖2 +βn‖V0 − p‖2 +

∞∑
j=1

γn,j‖J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn − p‖2

−αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2

6 αn‖Wn − p‖2 +βn‖V0 − p‖2 +

∞∑
j=1

γn,j‖(I− µG∗JFG)Wn − p‖2

−αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2
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6 αn‖Wn − p‖2 +βn‖V0 − p‖2 +

∞∑
j=1

γn,j‖Wn − p‖2

−αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2

6 (1 −βn)‖Wn − p‖2 +βn‖V0 − p‖2 −αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2

6 ‖Wn − p‖2 +βn‖V0 − p‖2 −αnγn,j‖Wn − J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖2.

Inequality (3.9) is proved.

Step (III). Since the set of solutions of (GSEVIP) (1.3) is Ω 6= ∅ and Cj and Qj (j = 1, 2, · · · ) are nonempty
closed convex subsets of H1 and H2, respectively, from (1.2) and lemma 2.3, we can get the set of solutions
of (GSEVIP) (1.3), Ω, is nonempty closed convex. Setting W∗ = PΩV0, we have W∗ ∈ Ω. We will prove
that {Wn} converges strongly to W∗.

We consider two cases: (I) Suppose that the sequence {‖Wn −W∗‖} is monotone.
Since {‖Wn−W∗‖} is monotone, following Step (I), it is obvious that {‖Wn−W∗‖} is convergent. From

conditions (B2), (B4), and (3.9), we have

lim
n→∞ ‖Wn − J

(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn‖ = 0, (3.10)

and

‖Wn+1 −W
∗‖2 = ‖αnWn +βnV0 +

∞∑
j=1

γn,jJ
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn −W∗‖2

= ‖αn(Wn −W∗) +βn(V0 −W
∗) +

∞∑
j=1

γn,j(J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn −W∗)‖2

6 ‖αn(Wn −W∗) +

∞∑
j=1

γn,j(J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wn −W∗)‖2

+ 2βn〈V0 −W
∗,Wn+1 −W

∗〉 (by Lemma 2.1)

6 {αn‖Wn −W∗‖+
∞∑
j=1

γn,j‖Wn −W∗‖}2 + 2βn〈V0 −W
∗,Wn+1 −W

∗〉

= (1 −βn)
2‖Wn −W∗‖2 + 2βn〈V0 −W

∗,Wn+1 −W
∗〉.

Since βn ∈ [0, 1]. Then we have

‖Wn+1 −W
∗‖2 6 (1 −βn)‖Wn −W∗‖2 + 2βn〈V0 −W

∗,Wn+1 −W
∗〉. (3.11)

Since {Wn} is bounded, there exists a subsequence {Wnk} ⊂ {Wn} such that Wnk ⇀ W ∈ H1 ×H2. From
(3.10), we get

lim
n→∞ ‖Wnk − J

(∂iCj ,∂iQj)
µ (I− µG∗JFG)Wnk‖ = 0.

Since J
(∂iCj ,∂iQj)
µ (I− µG∗JFG) is a nonexpansive mapping, by Lemma 2.6, we have

W = J
(∂iCj ,∂iQj)
µ (I− µG∗JFG)W.

From Lemma 3.2, this shows that W ∈ Ω. We get

lim sup
n→∞ 〈V0 −W

∗,Wn −W∗〉 = lim
k→∞〈V0 −W

∗,Wnk −W
∗〉 6 〈V0 −W

∗,W −W∗〉 6 0.
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Taking an = ‖Wn −W∗‖, bn = βn, and cn = βn〈V0 −W
∗,Wn+1 −W

∗〉, all conditions of Lemma 2.2 are
satisfied, so lim

n→∞ ‖Wn+1 −W
∗‖ = 0.

(II) Suppose that the sequence {‖Wn −W∗‖} is not monotone.
By Lemma 2.5, there exists a sequence of positive integers, {θ(n)}, n > n0 (where n0 is large enough)

such that
θ(n) = max{k 6 n : ‖Wk −W∗‖ 6 ‖Wk+1 −W

∗‖}. (3.12)

Clearly, {θ(n)} is nondecreasing and θ(n)→∞ as n→∞ and for all n > n0,

‖Wθ(n) −W∗‖ 6 ‖Wθ(n)+1 −W
∗‖, ‖Wn −W∗‖ 6 ‖Wθ(n)+1 −W

∗‖.

Hence, {‖Wθ(n) −W∗‖} is a nondecreasing sequence. By virtue of Case (I), lim
n→∞ ‖Wθ(n) −W∗‖ = 0 and

lim
n→∞ ‖Wθ(n)+1 −W

∗‖ = 0, we have

0 6 ‖Wn −W∗‖ 6 max{‖Wn −W∗‖, ‖Wθ(n) −W∗‖} 6 ‖Wθ(n)+1 −W
∗‖ → 0, as n→∞.

This implies that Wn →W∗ and W∗ = PΩV0 is a solution of (GSEVIP) (1.3).

4. Applications

In this section, two examples will be illustrated to verify the validity of the proposed algorithm in
Section 3.

4.1. Application to the general split equality equilibrium problem in Banach space
Let H1, H2 be two real Hilbert spaces and F is a real smooth Banach space. Let C1 and C2 are nonempty

closed convex subsets of H1 and H2, respectively, and A : H1 → F, B : H2 → F are bounded linear operator.
let Fi: C1 ×C1 → R and Gi: C2 ×C2 → R, i = 1, 2, · · · be two equilibrium functions, where C and Q are
nonempty closed convex subsets of H1 and H2, respectively.

Assumption 4.1. Let F: C ×C→ R be an equilibrium function satisfying the following assumptions:

(1) F(x, x)=0, ∀x ∈ C;
(2) F is monotone, i.e., F(x,y) + F(y, x) 6 0, ∀x,y ∈ C;
(3) for each x,y, z ∈ C, lim sup

t→0+
F(tz+ (1 − t)x,y) 6 F(x,y);

(4) for each x ∈ C,y 7−→ F(x,y) is convex and lower semi-continuous.

For Assumption 4.1, see [1, 21].

Lemma 4.2 ([11]). Let C be a nonempty closed convex subset of a Hilbert space H and F: C × C → R be a
equilibrium which satisfies Assumption 4.1. For all r > 0 and x ∈ H, the resolvent of the equilibrium function F is
the operator TFr : H→ C defined by

TFr (x) = {z ∈ C : F(z,y) +
1
r
〈y− z, z− x〉 > 0, ∀y ∈ C}.

Then TFr is well-defined and the followings hold:

(1) TFr is nonempty and single-valued;
(2) TFr is firmly nonexpansive, i.e., for any x,y ∈ H1

‖TFr (x) − TFr (y)‖2 6 〈TFr (x) − TFr (y), x− y〉;

(3) F(TFr )=EP(F);
(4) EP(F) is closed and convex.
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Let H1, H2 be two real Hilbert spaces. Let C1 and C2 be nonempty closed convex subsets of H1 and
H2, respectively. The general split equality equilibrium problem (GSEEP) is defined as follows: to find
x∗ ∈ C1, y∗ ∈ C2, such that

Fi(x
∗, x) > 0, ∀x ∈ C1,Gi(y∗,y) > 0, ∀ y ∈ C2 and Ax∗ = By∗. (4.1)

We know that the general split equality equilibrium problem (GSEEP) (4.1) is equivalent to find x∗ ∈
C1, y∗ ∈ C2, such that for each λ > 0,

x∗ ∈
∞⋂
i=1

EP(Fi,C1) =

∞⋂
i=1

F(TFir ),y∗ ∈
∞⋂
i=1

EP(Gi,C2) =

∞⋂
i=1

F(TGir ), such that Ax∗ = By∗.

Letting C =
⋂∞
i=1 F(T

Fi
r ), Q =

⋂∞
i=1 F(T

Gi
r ), by Lemma 4.2, C (resp.Q) is a nonempty closed and convex

subset of C (res.Q).
The general split equality equilibrium problem (GSEEP) in Banach space is defined as follows:

p ∈ C,q ∈ Q, such that Ap = Bq. (4.2)

In order to solve problem (GSEEP) (4.2), we propose the following simultaneous type iterative algo-
rithm.

Algorithm 4.3. For any givenW0 = (x0,y0), V0 = (v01, v02) ∈ H1×H2, the iterative sequenceWn ∈ H1×H2
is generated by

Wn+1 = αnWn +βnV0 + PC×Q(I− µnG
∗JFG)Wn n > 0, (4.3)

where {αn}, {βn}, {γn,j} are the sequences in [0, 1] with αn +βn + γn = 1, for all n > 0,

PC×Q =

(
PC
PQ

)
,G =

(
A −B

)
,G∗ =

(
A∗

−B∗

)
,G∗JFG =

(
A∗JFA −A∗JFB
−B∗JFA B∗JFB

)
.

Theorem 4.4. Let H1, H2, F, C, Q, A, B, A∗, B∗, PC×Q, G, G∗, be the same as above. Let {Wn} be the sequence
defined by (4.3). If the set of solutions of (GSEEP) (4.2) is Ω 6= ∅, where Ω = {(x∗,y∗) ∈ H1 ×H2 : (x∗,y∗) ∈
C×Q : Ax∗ = By∗}, the following conditions are satisfied:

(B1) {αn}, {βn}, {γn} ⊂ [0, 1], for any n > 0

αn +βn + γn = 1;

(B2)
∑∞
n=0 βn =∞ and lim

n→∞βn = 0;

(B3) µn ∈ (0, 2
L), where L = ‖G‖2;

(B4) lim inf
n→∞ anγn > 0.

Then the sequence {Wn} converges strongly to W∗ = PΩV0, which is a solution of (GSEEP) (4.1).

4.2. Application to the general split equality feasibility problem in Banach space
Let H1, H2 be two real Hilbert spaces and F is a real smooth Banach space. Let C1,j and C2,j, j = 1, 2, · · ·

be nonempty closed convex subsets of H1 and H2, respectively. The general split equality feasibility
problem (GSEFP) in Banach space is defined as follows:

p ∈
∞⋂
j=1

C1,j,q ∈
∞⋂
j=1

Q1,j such that Ap = Bq. (4.4)

In order to solve problem (GSEFP) (4.4), we propose the following simultaneous type iterative algo-
rithm.
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Algorithm 4.5. For any givenW0 = (x0,y0), V0 = (v01, v02) ∈ H1×H2, the iterative sequenceWn ∈ H1×H2
is generated by

Wn+1 = αnWn +βnV0 +

∞∑
j=1

γn,jPCj×Qj(I− µnG
∗JFG)Wn, n > 0, (4.5)

where {αn}, {βn}, {γn} are the sequences in [0,1] with αn +βn +
∑∞
j=1 γn,j = 1, for all n > 0,

PCj×Qj =

(
PCj
PQj

)
,G =

(
A −B

)
,G∗ =

(
A∗

−B∗

)
,G∗JFG =

(
A∗JFA −A∗JFB
−B∗JFA B∗JFB

)
.

Theorem 4.6. Let H1, H2, F, Cj, Qj, A, B, A∗, B∗, G, G∗, PCj , PQj be the same as above. Let {Wn} be the
sequence defined by (4.5). Assum the set of solution of (SEFPP) (4.4) is Ω 6= ∅, and the following conditions are
satisfied

(B1) {αn}, {βn}, {γn,j} ⊂ [0, 1], for any n > 0

αn +βn +

∞∑
j=1

γn,j = 1;

(B2)
∑∞
n=0 βn =∞ and lim

n→∞βn = 0;

(B3) µn ∈ (0, 2
L), where L = ‖G‖2;

(B4) lim inf
n→∞ anγn,j > 0, ∀j > 1.

Then the sequence {Wn} converges strongly to W∗ = PΩV0, which is a solution of (SEFPP) (4.4).
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