On solving general split equality variational inclusion problems in Banach space

J. Zhao ${ }^{\text {a,* }}$, Y. S. Liang ${ }^{\text {b }}$
${ }^{\text {a C College of }}$ Sciences, Qinzhou University, Qinzhou, Guangxi 535000, P. R. China
${ }^{\text {b }}$ Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, and College of Sciences, Guangxi University for Nationalities, Nanning, Guangxi 530006, P. R. China.

Communicated by S. S. Chang

Abstract

In this paper, we are concerned with a new iterative scheme for general split equality variational inclusion problems in Banach spaces. We also show that the iteration converges strongly to a common solution of the general split equality variational inclusion problems (GSEVIP). The results obtained in this paper extend and improve some well-known results in the literature. (c)2017 All rights reserved.

Keywords: General split equality variational problems, strong convergence, Banach space.
2010 MSC: 47J22, 34A60.

1. Introduction

Many problems in physics, optimization, and economics reduce to find a solution of an equilibrium problem. Some methods have been proposed to solve the equilibrium problem; see for instance $[1,4,6,9$, 12, 14-17, 20, 24].

Let H_{1} and H_{2} be real Hilbert spaces with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\| . \mathrm{C}_{1}$ and C_{2} are two nonempty closed convex subsets of H_{1} and H_{2}, respectively. If $A: H_{1} \rightarrow H_{2}$ is a bounded linear operator, the split feasibility problem (SFP) is defined as follows: find $\chi^{*} \in \mathrm{C}_{1}$ such that

$$
A x^{*} \in C_{2} .
$$

In 1994, Censor and Elfving [3] firstly introduced the (SFP) in finite-dimensional spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction [2]. It has been found that the (SFP) can also be used in various disciplines such as image restoration, computer tomograph and radiation therapy treatment planning [4,5]. The (SFP) in an infinite-dimensional real Hilbert space can be found in [22-24].

[^0]Recently, Moudafi and Al-Shemas introduced the following split equality feasibility problem (SEFP): to find $x \in C_{1}, y \in C_{2}$ such that

$$
\begin{equation*}
A x=B y, \tag{1.1}
\end{equation*}
$$

where $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are two bounded linear operators.
In order to solve the split equality feasibility problem (1.1), Moudafi and Al-Shemas [19], introduced the following simultaneous iterative method:

$$
\left\{\begin{array}{l}
x_{n+1}=P_{C}\left[x_{n}-\gamma A^{*}\left(A x_{n}-B y_{n}\right)\right], \\
y_{n+1}=P_{Q}\left[y_{n}+\gamma A^{*}\left(A x_{n}-B y_{n}\right)\right],
\end{array}\right.
$$

and under suitable conditions they proved the weak convergence of the sequence $\left(x_{n}, y_{n}\right)$ to a solution of (1.1) in Hilbert spaces.

Let H_{1}, H_{2} be two real Hilbert spaces and F a real Banach space. $A: H_{1} \rightarrow F$ and $B: H_{2} \rightarrow F$ are two bounded linear operators and A^{*} and B^{*} are the adjoint mappings of A and B, respectively. For every $\mathfrak{j}=1,2, \cdots$, let C_{j} and Q_{j} be nonempty closed convex subsets of H_{1} and H_{2}, respectively. $\mathfrak{i}_{C_{j}}$ and $\mathfrak{i}_{Q_{j}}$ denote the indicator functions of C_{j} and Q_{j}, while $N_{C_{j}}(x)$ and $N_{Q_{j}}(y)$ are the normal cone of C_{j} and Q_{j} at x and y, respectively, i.e.,

$$
\begin{aligned}
\mathfrak{i}_{C_{j}}(x) & = \begin{cases}0, & \text { if } x \in C_{j}, \\
+\infty, & \text { if } x \notin C_{j},\end{cases} & \mathfrak{i}_{Q_{j}}(y)= \begin{cases}0, & \text { if } y \in Q_{j}, \\
+\infty, & \text { if } y \notin Q_{j},\end{cases} \\
N_{C_{j}}(x) & =\left\{z \in H_{1}:\langle z, v-x\rangle \geqslant 0, \forall v \in C_{j}\right\}, & N_{Q_{j}}(y)=\left\{z \in H_{2}:\langle z, v-y\rangle \geqslant 0, \forall v \in Q_{j}\right\} .
\end{aligned}
$$

It is well-known that $i_{C_{j}}$ and $i_{Q_{j}}$ are proper convex and lower semicontinuous functions on H_{1} and H_{2}, respectively. And the sub-differentials $\partial i_{C_{j}}$ and $\partial i_{Q_{j}}$ are maximal monotone operators. For $\mathfrak{j}=1,2, \cdots$ and for all $\mu>0$, we define the resolvent operator $J_{\mu}^{\partial i_{j}}$ of $\partial i_{C_{j}}$ by

$$
\mathrm{J}_{\mu}^{\partial \mathrm{i}_{\mathrm{j}}}(\cdot)=\left(\mathrm{I}+\mu \partial \mathrm{i}_{\mathrm{c}_{\mathrm{j}}}\right)^{-1}(\cdot): \mathrm{H}_{1} \rightarrow \mathrm{H}_{1}
$$

where

$$
\begin{aligned}
\partial \mathfrak{i}_{C_{j}}(x)=\left\{z \in H_{1}: \mathfrak{i}_{C_{j}}(x)+\langle z, u-x\rangle \leqslant \mathfrak{i}_{C_{j}}(u), \forall \mathfrak{u} \in H_{1}\right\} & =\left\{z \in H_{1}:\langle z, u-x\rangle \leqslant 0, \forall \mathfrak{u} \in C_{j}\right\} \\
& =N_{C_{j}}(x), x \in C_{j} .
\end{aligned}
$$

Hence we have

$$
u=J_{\mu}^{\partial i c_{j}}(x) \Leftrightarrow x-u \in \mu N_{C_{j}}(u) \Leftrightarrow\langle x-u, y-u\rangle \leqslant 0, \forall y \in C_{j} \Leftrightarrow u=P_{C_{j}}(x)
$$

Here $\mathrm{P}_{\mathrm{C}_{j}}$ is the metric projection from H_{1} onto C_{j}. Therefore, we get

$$
\mathrm{J}_{\mu}^{\partial \mathrm{i}_{\mathrm{j}}}=\mathrm{P}_{\mathrm{C}_{j}}, \text { and } \mathrm{J}_{\mu}^{\partial \mathrm{Q}_{\mathrm{Q}}}=\mathrm{P}_{\mathrm{Q}_{j},}, \mathrm{j}=1,2, \cdots,
$$

which implies

$$
\begin{equation*}
\partial i_{C_{j}}^{-1}(0)=F\left(J_{\mu}^{\partial i_{c_{j}}}\right)=F\left(P_{C_{j}}\right), \text { and } \partial i_{Q_{j}}{ }^{-1}(0)=F\left(J_{\mu}^{\partial i_{Q_{j}}}\right)=F\left(P_{Q_{j}}\right), j=1,2, \cdots . \tag{1.2}
\end{equation*}
$$

The general split equality variational inclusion problem (GSEVIP) in a Banach space is defined as follows: find $(p, q) \in H_{1} \times H_{2}$, such that

$$
\begin{equation*}
p \in \bigcap_{j=1}^{\infty} \partial i_{c_{j}}{ }^{-1}(0), \quad q \in \bigcap_{j=1}^{\infty} \partial i_{Q_{j}}{ }^{-1}(0), \quad \text { and } \quad A p=B q . \tag{1.3}
\end{equation*}
$$

The set of all solutions of (GSEVIP) (1.3) is denoted by Ω, i.e,

$$
\Omega=\left\{(p, q) \in H_{1} \times H_{2}: p \in \bigcap_{j=1}^{\infty} \partial i_{c_{j}}{ }^{-1}(0), q \in \bigcap_{j=1}^{\infty} \partial i_{Q_{j}}{ }^{-1}(0) \text {, and } A p=B q\right\} .
$$

In this paper, we introduce a new iterative algorithm for solving the general split equality variational inclusion problem (GSEVIP) (1.3) in a Banach space and show that the suggested the iteration algorithm converges strongly to a solution of (GSEVIP) (1.3). The results of this paper extend and improve the corresponding results announced by Chang et al. [8, 9], and Moudafi and Al-Shemas [19].

2. Preliminaries and lemmas

In this section, we give some definitions and preliminaries which will be used in the sequel. Let H be a real Hilbert space and C be a nonempty closed convex subset of H.

An operator $\mathrm{G}: \mathrm{H} \rightarrow \mathrm{H}$ is said to be
(i) a nonexpansive mapping, if

$$
\|G x-G y\| \leqslant\|x-y\|, \forall x, y \in H ;
$$

(ii) a firmly nonexpansive mapping, if

$$
\|G x-G y\|^{2} \leqslant\langle G x-G y, x-y\rangle, \forall x, y \in H .
$$

We denote by P_{C} the Metric projection from H onto C . Obviously, P_{C} is a firmly nonexpansive mapping from H onto C. Further, for any $x \in H, z=P_{C} x$ if and only if $\langle x-z, z-y\rangle \geqslant 0$, for all $y \in C$.

Let F be a real smooth Banach space. J_{F} is the dual mapping of F defined by

$$
\mathrm{J}_{\mathrm{F}}(\mathrm{x})=\left\{\mathrm{x}^{*} \in \mathrm{~F}^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}, x \in \mathrm{~F}\right\} .
$$

Lemma 2.1 ([6]). Let H be a real Hilbert space. Then for all $x, y \in H$, we have

$$
\|x+y\|^{2} \leqslant\|x\|^{2}+2\langle y, x+y\rangle .
$$

Lemma 2.2 ([13]). Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of positive real numbers satisfying $a_{n} \leqslant\left(1-b_{n}\right) a_{n}+c_{n}$ for all $n \geqslant 1$. If the following conditions are satisfied
(1) $b_{n} \in[0,1]$ and $\sum_{n=1}^{\infty} b_{n}=\infty$;
(2) $\sum_{n=1}^{\infty} c_{n}<\infty$, or $\limsup _{n \rightarrow \infty} \frac{c_{n}}{b_{n}} \leqslant 0$,
then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.3 ([10]). Let H be a real Hilbert space, $\mathrm{B}: \mathrm{H} \rightarrow 2^{\mathrm{H}}$ be a maximal monotone mapping and $\mathrm{J}_{\beta}^{\mathrm{B}}$ be the resolvent mapping of B defined by $J_{\beta}^{B}=(I+\beta B)^{-1}, \beta>0$, then
(1) for each $\beta>0, J_{\beta}^{B}$ is a single-valued and firmly nonexpansive mapping;
(2) $\mathrm{D}\left(\mathrm{J}_{\beta}^{\mathrm{B}}\right)=\mathrm{H}$ and $\mathrm{F}\left(\mathrm{J}_{\beta}^{\mathrm{B}}\right)=\mathrm{B}^{-1}(0)$;
(3) $\left(I-J_{\beta}^{B}\right)$ is a firmly nonexpansive mapping for each $\beta>0$;
(4) suppose that $\mathrm{B}^{-1}(0) \neq \emptyset$, then

$$
\left\|x-J_{\beta}^{B} x\right\|^{2}+\left\|J_{\beta}^{B} x-x^{*}\right\| \leqslant\left\|x-x^{*}\right\|^{2}
$$

for each $x \in H$, each $\chi^{*} \in \mathrm{~B}^{-1}(0)$, and each $\beta>0$;
(5) suppose that $\mathrm{B}^{-1}(0) \neq \emptyset$, then $\left\langle x-J_{\beta}^{B} x, J_{\beta}^{B} x-w\right\rangle \geqslant 0$ for each $x \in H$, each $w \in B^{-1}(0)$, and each $\beta>0$.

Lemma 2.4 ([7]). Let H be a real Hilbert space and $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence in H . Then for any sequence $\left\{\lambda_{n}\right\}\left(\lambda_{n} \in\right.$ $(0,1)$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$, the following inequality holds

$$
\left\|\sum_{n=1}^{\infty} \lambda_{n} x_{n}\right\|^{2} \leqslant \sum_{n=1}^{\infty} \lambda_{n}\left\|x_{n}\right\|^{2}-\lambda_{i} \lambda_{j}\left\|x_{i}-x_{j}\right\|^{2}, \forall i, j, i<j .
$$

Lemma 2.5 ([18]). Let $\left\{\mathrm{t}_{\mathrm{n}}\right\}$ be a sequence of real numbers. If there exists a subsequence $\left\{\mathrm{n}_{\mathrm{i}}\right\}$ of $\{\mathrm{n}\}$, such that $\mathrm{t}_{\mathfrak{n}_{\mathrm{i}}}<\mathrm{t}_{\mathfrak{n}_{\mathrm{i}}+1}$ for all $\mathrm{i} \geqslant 1$, then there exists a nondecreasing sequence $\{\theta(\mathrm{n})\}$ with $\theta(\mathrm{n}) \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$, such that for all (sufficiently large) positive integer number n, the following holds:

$$
\mathrm{t}_{\boldsymbol{\theta}(\mathrm{n})} \leqslant \mathrm{t}_{\boldsymbol{\theta}(\mathrm{n})+1}, \mathrm{t}_{\mathrm{n}} \leqslant \mathrm{t}_{\boldsymbol{\theta}(\mathrm{n})+1} .
$$

In fact,

$$
\theta(\mathfrak{n})=\max \left\{k \leqslant n: t_{k} \leqslant t_{k+1}\right\} .
$$

Lemma 2.6 (demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert space H and $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ be a nonexpansive mapping with $\operatorname{Fix}(\mathrm{T}) \neq \emptyset$. Then $\mathrm{I}-\mathrm{T}$ is said to be demi-closed at zero, if for any sequence $\left\{x_{n}\right\} \subset C$ with $x_{n} \rightharpoonup x$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$, then $x=T x$.

3. The main results

In this section, we show some strong convergence theorems for finding a common element of the solution set of the general split equality variational inclusion problem (GSEVIP) (1.3) in a Banach space.

In order to solve problem (GSEVIP) (1.3), we propose the following simultaneous type iterative algorithm.

Algorithm 3.1. For any given $W_{0}=\left(x_{0}, y_{0}\right), V_{0}=\left(v_{01}, v_{02}\right) \in H_{1} \times H_{2}$, the iterative sequence $\left\{W_{n}\right\} \subset$ $\mathrm{H}_{1} \times \mathrm{H}_{2}$ is generated by

$$
\begin{equation*}
W_{n+1}=\alpha_{n} W_{n}+\beta_{n} V_{0}+\sum_{j=1}^{\infty} \gamma_{n, j} J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}, \quad n \geqslant 0, \tag{3.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, j}\right\}$ are the sequences of nonnegative numbers satisfying

$$
\begin{aligned}
\alpha_{n}+\beta_{n}+\sum_{j=1}^{\infty} \gamma_{n, j} & =1, n \geqslant 0, \\
J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{i_{j}}\right)} & =\binom{J_{\mu}^{\partial i_{C_{j}}}}{J_{\mu}^{\partial i_{Q_{j}}}}, G=\left(\begin{array}{ll}
A & -B
\end{array}\right), G^{*}=\binom{A^{*}}{-B^{*}}, G^{*} J_{F} G=\left(\begin{array}{cc}
A^{*} J_{F} A & -A^{*} J_{F} B \\
-B^{*} J_{F} A & B^{*} J_{F} B
\end{array}\right) .
\end{aligned}
$$

We also need the following conclusion.
Lemma 3.2. If the set of solutions of (GSEVIP) (1.3) is $\Omega \neq \emptyset$, then $W^{*}=\left(x^{*}, y^{*}\right) \in \mathrm{H}_{1} \times \mathrm{H}_{2}$ is a solution of (GSEVIP) (1.3) if and only if for each $\mathfrak{j} \geqslant 1$, and for any given $\mu>0$

$$
\begin{equation*}
\mathrm{W}^{*}=\mathrm{J}_{\mu}^{\left(\mathrm{di} \mathrm{c}_{\mathrm{j}}, \partial \mathrm{\partial} \mathrm{Q}_{\mathrm{j}}\right)}\left(\mathrm{I}-\mu \mathrm{G}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{G}\right) \mathrm{W}^{*} . \tag{3.2}
\end{equation*}
$$

Proof. Indeed, $W^{*}=\left(x^{*}, y^{*}\right) \in \mathrm{H}_{1} \times \mathrm{H}_{2}$ is a solution of (GSEVIP) (1.3), from Lemma 2.3 (2), for all $j \geqslant 1$, we have

$$
x^{*} \in \partial \mathrm{i}_{\mathrm{C}_{j}}{ }^{-1}(0)=\mathrm{F}\left(\mathrm{~J}_{\mu}^{\partial \mathrm{i}_{\mathrm{j}}}\right), \mathrm{y}^{*} \in \partial \mathrm{i}_{\mathrm{Q}_{j}}{ }^{-1}(0)=\mathrm{F}\left(\mathrm{~J}_{\mu}^{\partial \mathrm{i}_{\mathrm{i}}}\right), A x^{*}=\mathrm{B} y^{*}, \mathrm{GW}^{*}=\mathrm{Ax} x^{*}-\mathrm{By}{ }^{*}=0 .
$$

Thus for any $\mu>0$,

$$
J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W^{*}=J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)} W^{*}=\left(J_{\mu}^{\partial i_{c_{j}}} x^{*}, J_{\mu}^{\partial i_{Q_{j}}} y^{*}\right)=\left(x^{*}, y^{*}\right)=W^{*}
$$

Conversely, if $W^{*}=\left(x^{*}, y^{*}\right) \in H_{1} \times H_{2}$ satisfies (3.2), we have

$$
\left\{\begin{array}{l}
x^{*}=J_{\mu}^{\partial i_{c_{j}}}\left(x^{*}-\mu A^{*} J_{F}\left(A x^{*}-B y^{*}\right)\right) \tag{3.3}\\
y^{*}=J_{\mu}^{\partial i_{Q_{j}}}\left(y^{*}+\mu B^{*} J_{F}\left(A x^{*}-B y^{*}\right)\right)
\end{array}\right.
$$

From Lemma 2.3 (5) and $\Omega \neq \emptyset$, we have

$$
\left\langle x^{*}-\left(x^{*}-\mu A^{*} \mathrm{~J}_{\mathrm{F}}\left(A x^{*}-B y^{*}\right)\right), x-x^{*}\right\rangle \geqslant 0, \quad \forall x \in \partial i_{C_{j}}{ }^{-1}(0)
$$

Since $\mu>0$, we get

$$
\begin{equation*}
\left\langle\mathrm{J}_{\mathrm{F}}\left(A x^{*}-B y^{*}\right), A x-A x^{*}\right\rangle \geqslant 0, \quad \forall x \in \partial i_{Q_{j}}{ }^{-1}(0) \tag{3.4}
\end{equation*}
$$

Simplifying, from (3.3) and Lemma 2.3 (1), we have

$$
\begin{equation*}
\left\langle\mathrm{J}_{\mathrm{F}}\left(\mathrm{~A} x^{*}-\mathrm{B} \mathrm{y}^{*}\right), \mathrm{B} \mathrm{y}^{*}-\mathrm{By}\right\rangle \geqslant 0, \quad \forall \mathrm{y} \in \partial \mathrm{i}_{\mathrm{Q}_{\mathrm{j}}}{ }^{-1}(0) \tag{3.5}
\end{equation*}
$$

Adding up (3.4) and (3.5), we get

$$
\left\langle\mathrm{J}_{\mathrm{F}}\left(A x^{*}-B y^{*}\right), A x^{*}-B y^{*}\right\rangle \leqslant\left\langle\mathrm{J}_{\mathrm{F}}\left(\mathrm{~A} x^{*}-B y^{*}\right), A x-B y\right\rangle \forall x \in \partial{i_{C_{j}}}^{-1}(0), \forall y \in \partial{i_{Q_{j}}}^{-1}(0)
$$

So, we get

$$
\left\|A x^{*}-B y^{*}\right\|^{2} \leqslant\left\langle J_{F}\left(A x^{*}-B y^{*}\right), A x-B y\right\rangle, \quad \forall x \in \partial i_{C_{j}}{ }^{-1}(0), \forall y \in \partial i_{Q_{j}}{ }^{-1}(0)
$$

Since the set of solutions of (GSEVIP) (1.3) is $\Omega \neq \emptyset$, taking $W=\left(x_{0}, y_{0}\right) \in \Omega$ and $x=x_{0}, y=y_{0}$, we get

$$
\begin{equation*}
\left\|A x^{*}-B y^{*}\right\|=0 \text {, i.e., } A x^{*}=B y^{*} \tag{3.6}
\end{equation*}
$$

From (3.3), we have

$$
\left\{\begin{array}{l}
x^{*}=J_{\mu}^{\partial i_{c_{j}}} x^{*}, \tag{3.7}\\
y^{*}=J_{\mu}^{\partial i_{Q_{j}}} y^{*},
\end{array} \quad \text { i.e., } x^{*} \in F\left(J_{\mu}^{\partial i_{C_{j}}}\right)=\partial i_{C_{j}}{ }^{-1}(0), y^{*} \in F\left(J_{\mu}^{\partial i_{Q_{j}}}\right)=\partial i_{Q_{j}}{ }^{-1}(0), \forall j \geqslant 1,\right.
$$

which from (3.6) and (3.7) implies that $W^{*} \in \Omega$.
Lemma 3.3. If $\mu \in\left(0, \frac{2}{\mathrm{~L}}\right)$, where $\mathrm{L}=\|\mathrm{G}\|^{2}$, then $\mathrm{I}-\mu \mathrm{G}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{G}: \mathrm{H}_{1} \times \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \times \mathrm{H}_{2}$ is a nonexpansive mapping.
Proof. For any given $w, u \in \mathrm{H}_{1} \times \mathrm{H}_{2}$, we have

$$
\begin{aligned}
\left\|\left(I-\mu G^{*} J_{F} G\right) u-\left(I-\lambda G^{*} J_{F} G\right) w\right\|^{2} & =\left\|(u-w)-\mu G^{*} J_{F} G(u-w)\right\|^{2} \\
& =\|u-w\|^{2}+\mu^{2}\left\|G^{*} J_{F} G(u-w)\right\|^{2}-2 \mu\left\langle u-w, G^{*} J_{F} G(u-w)\right\rangle \\
& \leqslant\|u-w\|^{2}+\mu^{2} L\left\|J_{F} G(u-w)\right\|^{2}-2 \mu\left\langle G(u-w), J_{F} G(u-w)\right\rangle . \\
& =\|u-w\|^{2}+\mu^{2} L\|G(u-w)\|^{2}-2 \mu\|G(u-w)\|^{2} . \\
& =\|u-w\|^{2}-\mu(2-\mu L)\|G(u-w)\|^{2} . \\
& \leqslant\|u-w\|^{2} .
\end{aligned}
$$

This completes the proof.

Theorem 3.4. Let $\left\{W_{n}\right\}$ be the sequence defined by (3.1). If the set of solutions of (GSEVIP) (1.3) is $\Omega \neq \emptyset$ and the following conditions are satisfied:
(B1) $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, j}\right\} \subset[0,1]$, for any $n \geqslant 0, \alpha_{n}+\beta_{n}+\sum_{j=1}^{\infty} \gamma_{n, j}=1$;
(B2) $\sum_{n=0}^{\infty} \beta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$;
(B3) $\mu \in\left(0, \frac{2}{\mathrm{~L}}\right)$, where $\mathrm{L}=\|\mathrm{G}\|^{2}$;
(B4) $\liminf _{n \rightarrow \infty} a_{n} \gamma_{n, j}>0, \forall j \geqslant 1$,
then the sequence $\left\{\mathrm{W}_{\mathrm{n}}\right\}$ converges strongly to $\mathrm{W}^{*}=\mathrm{P}_{\Omega} \mathrm{V}_{0}$, which is a solution of (GSEVIP) (1.3).
Proof. We shall divide the proof into three steps.
Step (I). Showing that $\left\{W_{n}\right\}$ is bounded.
For any $p \in \Omega$, from Lemma 3.2, we have

$$
p=J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) p .
$$

Form Lemma 3.3, Lemma 2.3 (1), and condition (B3), we get

$$
\begin{align*}
& \left\|W_{n+1}-p\right\| \\
= & \left\|\alpha_{n} W_{n}+\beta_{n} V_{0}+\sum_{j=1}^{\infty} \gamma_{n, j} J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\| \\
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|+\beta_{n}\left\|V_{0}-p\right\|+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|J_{\mu}^{\left(\partial i_{c}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\| \\
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|+\beta_{n}\left\|V_{0}-p\right\|+\sum_{j=1}^{\infty=1} \gamma_{n, j}\left\|\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\| \tag{3.8}\\
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|+\beta_{n}\left\|V_{0}-p\right\|+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|W_{n}-p\right\| \\
= & \left(1-\beta_{n}\right)\left\|W_{n}-p\right\|+\beta_{n}\left\|V_{0}-p\right\| \\
\leqslant & \max \left\{\left\|W_{n}-p\right\|,\left\|V_{0}-p\right\|\right\} .
\end{align*}
$$

By induction, we have

$$
\left\|W_{n}-p\right\| \leqslant \max \left\{\left\|W_{0}-p\right\|,\left\|V_{0}-p\right\|\right\}, \quad \forall n \geqslant 0,
$$

which implies that $\left\{W_{n}\right\}$ is bounded.
Step (II). We show that the following inequality holds

$$
\begin{equation*}
\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2} \leqslant\left\|W_{n}-p\right\|^{2}-\left\|W_{n+1}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2} . \tag{3.9}
\end{equation*}
$$

From Lemma 2.4 and (3.1), we have

$$
\begin{aligned}
\left\|W_{n+1}-p\right\|^{2}= & \left\|\alpha_{n} W_{n}+\beta_{n} V_{0}+\sum_{j=1}^{\infty} \gamma_{n, j} J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\|^{2} \\
= & \left\|\alpha_{n}\left(W_{n}-p\right)+\beta_{n}\left(V_{0}-p\right)+\sum_{j=1}^{\infty} \gamma_{n, j}\left(J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right)\right\|^{2} \\
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2}+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\|^{2} \\
& -\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2} \\
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2}+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|\left(I-\mu G^{*} J_{F} G\right) W_{n}-p\right\|^{2} \\
& -\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \alpha_{n}\left\|W_{n}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2}+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|W_{n}-p\right\|^{2} \\
& -\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{C_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2} \\
\leqslant & \left(1-\beta_{n}\right)\left\|W_{n}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2}-\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2} \\
\leqslant & \left\|W_{n}-p\right\|^{2}+\beta_{n}\left\|V_{0}-p\right\|^{2}-\alpha_{n} \gamma_{n, j}\left\|W_{n}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|^{2} .
\end{aligned}
$$

Inequality (3.9) is proved.
Step (III). Since the set of solutions of (GSEVIP) (1.3) is $\Omega \neq \emptyset$ and C_{j} and $Q_{j}(j=1,2, \cdots)$ are nonempty closed convex subsets of H_{1} and H_{2}, respectively, from (1.2) and lemma 2.3, we can get the set of solutions of (GSEVIP) (1.3), Ω, is nonempty closed convex. Setting $W^{*}=P_{\Omega} V_{0}$, we have $W^{*} \in \Omega$. We will prove that $\left\{W_{n}\right\}$ converges strongly to W^{*}.

We consider two cases: (I) Suppose that the sequence $\left\{\left\|W_{n}-W^{*}\right\|\right\}$ is monotone.
Since $\left\{\left\|W_{n}-W^{*}\right\|\right\}$ is monotone, following Step (I), it is obvious that $\left\{\left\|W_{n}-W^{*}\right\|\right\}$ is convergent. From conditions (B2), (B4), and (3.9), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n}-J_{\mu}^{\left(\partial i c_{j}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|W_{n+1}-W^{*}\right\|^{2}= & \left\|\alpha_{n} W_{n}+\beta_{n} V_{0}+\sum_{j=1}^{\infty} \gamma_{n, j} J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-W^{*}\right\|^{2} \\
= & \left\|\alpha_{n}\left(W_{n}-W^{*}\right)+\beta_{n}\left(V_{0}-W^{*}\right)+\sum_{j=1}^{\infty} \gamma_{n, j}\left(J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-W^{*}\right)\right\|^{2} \\
\leqslant & \left\|\alpha_{n}\left(W_{n}-W^{*}\right)+\sum_{j=1}^{\infty} \gamma_{n, j}\left(J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n}-W^{*}\right)\right\|^{2} \\
& +2 \beta_{n}\left\langle V_{0}-W^{*}, W_{n+1}-W^{*}\right\rangle \quad(\text { by } L e m m a 2.1) \\
\leqslant & \left\{\alpha_{n}\left\|W_{n}-W^{*}\right\|+\sum_{j=1}^{\infty} \gamma_{n, j}\left\|W_{n}-W^{*}\right\|\right\}^{2}+2 \beta_{n}\left\langle V_{0}-W^{*}, W_{n+1}-W^{*}\right\rangle \\
= & \left(1-\beta_{n}\right)^{2}\left\|W_{n}-W^{*}\right\|^{2}+2 \beta_{n}\left\langle V_{0}-W^{*}, W_{n+1}-W^{*}\right\rangle .
\end{aligned}
$$

Since $\beta_{n} \in[0,1]$. Then we have

$$
\begin{equation*}
\left\|W_{n+1}-W^{*}\right\|^{2} \leqslant\left(1-\beta_{n}\right)\left\|W_{n}-W^{*}\right\|^{2}+2 \beta_{n}\left\langle V_{0}-W^{*}, W_{n+1}-W^{*}\right\rangle \tag{3.11}
\end{equation*}
$$

Since $\left\{W_{n}\right\}$ is bounded, there exists a subsequence $\left\{W_{n_{k}}\right\} \subset\left\{W_{n}\right\}$ such that $W_{n_{k}} \rightharpoonup W \in H_{1} \times H_{2}$. From (3.10), we get

$$
\lim _{n \rightarrow \infty}\left\|W_{n_{k}}-J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W_{n_{k}}\right\|=0
$$

Since $J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right)$ is a nonexpansive mapping, by Lemma 2.6 , we have

$$
W=J_{\mu}^{\left(\partial i_{c_{j}}, \partial i_{Q_{j}}\right)}\left(I-\mu G^{*} J_{F} G\right) W
$$

From Lemma 3.2, this shows that $W \in \Omega$. We get

$$
\limsup _{n \rightarrow \infty}\left\langle V_{0}-W^{*}, W_{n}-W^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle V_{0}-W^{*}, W_{n_{k}}-W^{*}\right\rangle \leqslant\left\langle V_{0}-W^{*}, W-W^{*}\right\rangle \leqslant 0
$$

Taking $a_{n}=\left\|W_{n}-W^{*}\right\|, b_{n}=\beta_{n}$, and $c_{n}=\beta_{n}\left\langle V_{0}-W^{*}, W_{n+1}-W^{*}\right\rangle$, all conditions of Lemma 2.2 are satisfied, so $\lim _{n \rightarrow \infty}\left\|W_{n+1}-W^{*}\right\|=0$.
(II) Suppose that the sequence $\left\{\left\|W_{n}-W^{*}\right\|\right\}$ is not monotone.

By Lemma 2.5, there exists a sequence of positive integers, $\{\theta(n)\}, n \geqslant n_{0}$ (where n_{0} is large enough) such that

$$
\begin{equation*}
\theta(n)=\max \left\{k \leqslant n:\left\|W_{k}-W^{*}\right\| \leqslant\left\|W_{k+1}-W^{*}\right\|\right\} . \tag{3.12}
\end{equation*}
$$

Clearly, $\{\theta(n)\}$ is nondecreasing and $\theta(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n \geqslant n_{0}$,

$$
\left\|W_{\theta(n)}-W^{*}\right\| \leqslant\left\|W_{\theta(n)+1}-W^{*}\right\|, \quad\left\|W_{n}-W^{*}\right\| \leqslant\left\|W_{\theta(n)+1}-W^{*}\right\| .
$$

Hence, $\left\{\left\|W_{\theta(\mathfrak{n})}-W^{*}\right\|\right\}$ is a nondecreasing sequence. By virtue of Case (I), $\lim _{n \rightarrow \infty}\left\|W_{\theta(n)}-W^{*}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|W_{\theta(n)+1}-W^{*}\right\|=0$, we have

$$
0 \leqslant\left\|W_{n}-W^{*}\right\| \leqslant \max \left\{\left\|W_{n}-W^{*}\right\|,\left\|W_{\theta(n)}-W^{*}\right\|\right\} \leqslant\left\|W_{\theta(n)+1}-W^{*}\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
$$

This implies that $W_{n} \rightarrow W^{*}$ and $W^{*}=P_{\Omega} V_{0}$ is a solution of (GSEVIP) (1.3).

4. Applications

In this section, two examples will be illustrated to verify the validity of the proposed algorithm in Section 3.

4.1. Application to the general split equality equilibrium problem in Banach space

Let H_{1}, H_{2} be two real Hilbert spaces and F is a real smooth Banach space. Let C_{1} and C_{2} are nonempty closed convex subsets of H_{1} and H_{2}, respectively, and $A: H_{1} \rightarrow F, B: H_{2} \rightarrow F$ are bounded linear operator. let $F_{i}: C_{1} \times C_{1} \rightarrow R$ and $G_{i}: C_{2} \times C_{2} \rightarrow R, i=1,2, \cdots$ be two equilibrium functions, where C and Q are nonempty closed convex subsets of H_{1} and H_{2}, respectively.
Assumption 4.1. Let $\mathrm{F}: \mathrm{C} \times \mathrm{C} \rightarrow \mathrm{R}$ be an equilibrium function satisfying the following assumptions:
(1) $\mathrm{F}(x, x)=0, \forall x \in C$;
(2) F is monotone, i.e., $F(x, y)+F(y, x) \leqslant 0, \quad \forall x, y \in C$;
(3) for each $x, y, z \in C, \lim \sup F(t z+(1-t) x, y) \leqslant F(x, y)$;
(4) for each $x \in C, y \longmapsto F(x, y)$ is convex and lower semi-continuous.

For Assumption 4.1, see [1, 21].
Lemma 4.2 ([11]). Let C be a nonempty closed convex subset of a Hilbert space H and $\mathrm{F}: \mathrm{C} \times \mathrm{C} \rightarrow \mathrm{R}$ be a equilibrium which satisfies Assumption 4.1. For all $\mathrm{r}>0$ and $x \in \mathrm{H}$, the resolvent of the equilibrium function F is the operator $\mathrm{T}_{\mathrm{r}}^{\mathrm{F}}: \mathrm{H} \rightarrow \mathrm{C}$ defined by

$$
\mathrm{T}_{\mathrm{r}}^{\mathrm{F}}(\mathrm{x})=\left\{z \in \mathrm{C}: \mathrm{F}(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geqslant 0, \forall y \in \mathrm{C}\right\} .
$$

Then T_{r}^{F} is well-defined and the followings hold:
(1) $\mathrm{T}_{\mathrm{r}}^{\mathrm{F}}$ is nonempty and single-valued;
(2) $\mathrm{T}_{\mathrm{r}}^{\mathrm{F}}$ is firmly nonexpansive, i.e., for any $x, y \in \mathrm{H}_{1}$

$$
\left\|T_{r}^{F}(x)-T_{r}^{F}(y)\right\|^{2} \leqslant\left\langle T_{r}^{F}(x)-T_{r}^{F}(y), x-y\right\rangle ;
$$

(3) $F\left(\mathrm{~T}_{\mathrm{r}}^{\mathrm{F}}\right)=E P(\mathrm{~F})$;
(4) $E P(\mathrm{~F})$ is closed and convex.

Let $\mathrm{H}_{1}, \mathrm{H}_{2}$ be two real Hilbert spaces. Let C_{1} and C_{2} be nonempty closed convex subsets of H_{1} and H_{2}, respectively. The general split equality equilibrium problem (GSEEP) is defined as follows: to find $x^{*} \in C_{1}, y^{*} \in C_{2}$, such that

$$
\begin{equation*}
F_{i}\left(x^{*}, x\right) \geqslant 0, \quad \forall x \in C_{1}, G_{i}\left(y^{*}, y\right) \geqslant 0, \forall y \in C_{2} \text { and } A x^{*}=B y^{*} \tag{4.1}
\end{equation*}
$$

We know that the general split equality equilibrium problem (GSEEP) (4.1) is equivalent to find $x^{*} \in$ $C_{1}, y^{*} \in C_{2}$, such that for each $\lambda>0$,

$$
x^{*} \in \bigcap_{i=1}^{\infty} E P\left(F_{i}, C_{1}\right)=\bigcap_{i=1}^{\infty} F\left(T_{r}^{F_{i}}\right), y^{*} \in \bigcap_{i=1}^{\infty} E P\left(G_{i}, C_{2}\right)=\bigcap_{i=1}^{\infty} F\left(T_{r}^{G_{i}}\right) \text {, such that } A x^{*}=B y^{*} \text {. }
$$

Letting $C=\bigcap_{i=1}^{\infty} F\left(T_{r}^{F_{i}}\right), Q=\bigcap_{i=1}^{\infty} F\left(T_{r}^{G_{i}}\right)$, by Lemma 4.2, C (resp. Q) is a nonempty closed and convex subset of C (res. Q).

The general split equality equilibrium problem (GSEEP) in Banach space is defined as follows:

$$
\begin{equation*}
p \in C, q \in Q \text {, such that } A p=B q \text {. } \tag{4.2}
\end{equation*}
$$

In order to solve problem (GSEEP) (4.2), we propose the following simultaneous type iterative algorithm.

Algorithm 4.3. For any given $W_{0}=\left(x_{0}, y_{0}\right), V_{0}=\left(v_{01}, v_{02}\right) \in H_{1} \times H_{2}$, the iterative sequence $W_{n} \in H_{1} \times H_{2}$ is generated by

$$
\begin{equation*}
W_{n+1}=\alpha_{n} W_{n}+\beta_{n} V_{0}+P_{C \times Q}\left(I-\mu_{n} G^{*} J_{F} G\right) W_{n} \quad n \geqslant 0, \tag{4.3}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, j}\right\}$ are the sequences in $[0,1]$ with $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, for all $n \geqslant 0$,

$$
\mathrm{P}_{\mathrm{C} \times \mathrm{Q}}=\binom{\mathrm{P}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{Q}}}, \mathrm{G}=\left(\begin{array}{ll}
\mathrm{A} & -\mathrm{B}
\end{array}\right), \mathrm{G}^{*}=\binom{\mathrm{A}^{*}}{-\mathrm{B}^{*}}, \mathrm{G}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{G}=\left(\begin{array}{cc}
\mathrm{A}^{*} \mathrm{~J}_{\mathrm{F}} A & -\mathrm{A}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{~B} \\
-\mathrm{B}^{*} \mathrm{~J}_{\mathrm{F}} A & \mathrm{~B}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{~B}
\end{array}\right) .
$$

Theorem 4.4. Let $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~F}, \mathrm{C}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{A}^{*}, \mathrm{~B}^{*}, \mathrm{P}_{\mathrm{C} \times \mathrm{Q}}, \mathrm{G}, \mathrm{G}^{*}$, be the same as above. Let $\left\{\mathrm{W}_{\mathrm{n}}\right\}$ be the sequence defined by (4.3). If the set of solutions of (GSEEP) (4.2) is $\Omega \neq \emptyset$, where $\Omega=\left\{\left(x^{*}, y^{*}\right) \in \mathrm{H}_{1} \times \mathrm{H}_{2}:\left(x^{*}, y^{*}\right) \in\right.$ $\left.\mathrm{C} \times \mathrm{Q}: A x^{*}=B y^{*}\right\}$, the following conditions are satisfied:
(B1) $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset[0,1]$, for any $n \geqslant 0$

$$
\alpha_{n}+\beta_{n}+\gamma_{n}=1 ;
$$

(B2) $\sum_{n=0}^{\infty} \beta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$;
(B3) $\mu_{n} \in\left(0, \frac{2}{\mathrm{~L}}\right)$, where $\mathrm{L}=\|\mathrm{G}\|^{2}$;
(B4) $\liminf _{n \rightarrow \infty} a_{n} \gamma_{n}>0$.
Then the sequence $\left\{W_{n}\right\}$ converges strongly to $W^{*}=P_{\Omega} V_{0}$, which is a solution of (GSEEP) (4.1).

4.2. Application to the general split equality feasibility problem in Banach space

Let H_{1}, H_{2} be two real Hilbert spaces and F is a real smooth Banach space. Let $C_{1, j}$ and $C_{2, j}, j=1,2, \ldots$ be nonempty closed convex subsets of H_{1} and H_{2}, respectively. The general split equality feasibility problem (GSEFP) in Banach space is defined as follows:

$$
\begin{equation*}
p \in \bigcap_{j=1}^{\infty} C_{1, j}, q \in \bigcap_{j=1}^{\infty} Q_{1, j} \text { such that } A p=B q . \tag{4.4}
\end{equation*}
$$

In order to solve problem (GSEFP) (4.4), we propose the following simultaneous type iterative algorithm.

Algorithm 4.5. For any given $W_{0}=\left(x_{0}, y_{0}\right), V_{0}=\left(v_{01}, v_{02}\right) \in H_{1} \times H_{2}$, the iterative sequence $W_{n} \in H_{1} \times H_{2}$ is generated by

$$
\begin{equation*}
W_{n+1}=\alpha_{n} W_{n}+\beta_{n} V_{0}+\sum_{j=1}^{\infty} \gamma_{n, j} P_{C_{j} \times Q_{j}}\left(I-\mu_{n} G^{*} J_{F} G\right) W_{n}, \quad n \geqslant 0 \tag{4.5}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are the sequences in $[0,1]$ with $\alpha_{n}+\beta_{n}+\sum_{j=1}^{\infty} \gamma_{n, j}=1$, for all $n \geqslant 0$,

$$
\mathrm{P}_{\mathrm{C}_{j} \times \mathrm{Q}_{j}}=\binom{\mathrm{P}_{\mathrm{C}_{j}}}{\mathrm{P}_{\mathrm{Q}_{j}}}, \mathrm{G}=\left(\begin{array}{ll}
A & -\mathrm{B}
\end{array}\right), \mathrm{G}^{*}=\binom{A^{*}}{-\mathrm{B}^{*}}, \mathrm{G}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{G}=\left(\begin{array}{cc}
\mathrm{A}^{*} \mathrm{~J}_{\mathrm{F}} A & -\mathrm{A}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{~B} \\
-\mathrm{B}^{*} \mathrm{~J}_{\mathrm{F}} A & \mathrm{~B}^{*} \mathrm{~J}_{\mathrm{F}} \mathrm{~B}
\end{array}\right) .
$$

Theorem 4.6. Let $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~F}, \mathrm{C}_{\mathrm{j}}, \mathrm{Q}_{\mathrm{j}}, \mathrm{A}, \mathrm{B}, \mathrm{A}^{*}, \mathrm{~B}, \mathrm{G}, \mathrm{G}^{*}, \mathrm{P}_{\mathrm{C}_{\mathrm{i}}}, \mathrm{P}_{\mathrm{Q}_{j}}$ be the same as above. Let $\left\{\mathrm{W}_{\mathrm{n}}\right\}$ be the sequence defined by (4.5). Assum the set of solution of (SEFPP) (4.4) is $\Omega \neq \emptyset$, and the following conditions are satisfied
(B1) $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n, j}\right\} \subset[0,1]$, for any $n \geqslant 0$

$$
\alpha_{n}+\beta_{n}+\sum_{j=1}^{\infty} \gamma_{n, j}=1 ;
$$

(B2) $\sum_{n=0}^{\infty} \beta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$;
(B3) $\mu_{n} \in\left(0, \frac{2}{\mathrm{~L}}\right)$, where $\mathrm{L}=\|\mathrm{G}\|^{2}$;
(B4) $\liminf _{n \rightarrow \infty} a_{n} \gamma_{n, j}>0, \forall j \geqslant 1$.
Then the sequence $\left\{\mathrm{W}_{\mathrm{n}}\right\}$ converges strongly to $\mathrm{W}^{*}=\mathrm{P}_{\Omega} \mathrm{V}_{0}$, which is a solution of (SEFPP) (4.4).

Acknowledgment

The work was supported by the National Natural Sciences Foundation of China (Grant NO: 11661012, 11671101), the National Natural Sciences Foundation of Guangxi (Grant NO: 2015GXNSFAA309018) and Special Funds of Guangxi Distinguished Experts Construction Engineering.

References

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145. 1, 4.1
[2] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453. 1
[3] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239. 1
[4] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084. 1, 1
[5] Y. Censor, A. Motova, A. Segal, Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 1244-1256. 1
[6] S.-S. Chang, On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl., 216 (1997), 94-111. 1, 2.1
[7] S.-S. Chang, H. W. J. Lee , C. K. Chan, W. B. Zhang, A modified halpern-type iteration algorithm for totally quasi- ϕ asymptotically nonexpansive mappings with applications, Appl. Math. Comput., 218 (2012), 6489-6497. 2.4
[8] S.-S. Chang, L. Wang, L.-J. Qin, Z.-L. Ma, Strongly convergent iterative methods for split equality variational inclusion problems in Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., 6 (2016), 1641-1650. 1
[9] S.-S. Chang, L. Wang, X. R. Wang, G. Wang, General split equality equilibrium problems with application to split optimization problems, J. Optim. Theory Appl., 166 (2015), 377-390. 1, 1
[10] C.-S. Chuang, Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl., 2013 (2013), 20 pages. 2.3
[11] P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136. 4.2
[12] L. Gasiński, Z.-H. Liu, S. Migórski, A. Ochal, Z.-J. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, J. Optim. Theory Appl., 164 (2015), 514-533. 1
[13] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, (1990). 2.2
[14] Z.-H. Liu, Existence results for quasilinear parabolic hemivariational inequalities, J. Differential Equations, 244 (2008), 1395-1409. 1
[15] Z.-H. Liu, X.-W. Li, D. Motreanu, Approximate controllability for nonlinear evolution hemivariational inequalities in Hilbert spaces, SIAM J. Control Optim., 53 (2015), 3228-3244.
[16] Z.-H. Liu, S.-D. Zeng, Equilibrium problems with generalized monotone mapping and its applications, Math. Methods Appl. Sci., 39 (2016), 152-163.
[17] Z.-H. Liu, S.-D. Zeng, D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799. 1
[18] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. 2.5
[19] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problem, Trans. Math. Program. Appl., 1 (2013), 1-11. 1, 1
[20] Z.-J. Peng, Z.-H. Liu, X.-Y. Liu, Boundary hemivariational inequality problems with doubly nonlinear operators, Math. Ann., 356 (2013), 1339-1358. 1
[21] S. Suantai, P. Cholamjiak, Y. J. Cho, W. Cholamjiak, On solving split equilibrium problems and fixed point problems of nonspreading multi-valued mappings in Hilbert spaces, Fixed Point Theory Appl., 2016 (2016), 16 pages. 4.1
[22] H.-K. Xu, A variable Krasnosel'skiu-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034. 1
[23] Q.-Z. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.
[24] J.-L. Zhao, Q.-Z. Yang, Several solution methods for the split feasibility problem, Inverse Problems, 21 (2005), 1791-1799. 1,1

[^0]: *Corresponding author
 Email addresses: jingzhao100@126.com (J. Zhao), 1245470565@qq. com (Y. S. Liang) doi:10.22436/jnsa.010.07.22

