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Abstract

In this paper, we are concerned with a new iterative scheme for general split equality variational inclusion problems in
Banach spaces. We also show that the iteration converges strongly to a common solution of the general split equality variational
inclusion problems (GSEVIP). The results obtained in this paper extend and improve some well-known results in the literature.
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1. Introduction

Many problems in physics, optimization, and economics reduce to find a solution of an equilibrium
problem. Some methods have been proposed to solve the equilibrium problem; see for instance [1, 4, 6, 9,
12, 14-17, 20, 24].

Let H; and H; be real Hilbert spaces with the inner product (:, -) and the norm || - ||. C; and C, are two
nonempty closed convex subsets of H; and Hy, respectively. If A : H; — H; is a bounded linear operator,
the split feasibility problem (SFP) is defined as follows: find x* € C; such that

Ax* € Co.

In 1994, Censor and Elfving [3] firstly introduced the (SFP) in finite-dimensional spaces for modeling
inverse problems which arise from phase retrievals and in medical image reconstruction [2]. It has been
found that the (SFP) can also be used in various disciplines such as image restoration, computer tomo-
graph and radiation therapy treatment planning [4, 5]. The (SFP) in an infinite-dimensional real Hilbert
space can be found in [22-24].
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Recently, Moudafi and Al-Shemas introduced the following split equality feasibility problem (SEFP):
to find x € Cq,y € C; such that
Ax = By, (1.1)

where A : H; — Hz and B : Hy — Hj are two bounded linear operators.
In order to solve the split equality feasibility problem (1.1), Moudafi and Al-Shemas [19], introduced
the following simultaneous iterative method:

{ Xn+1 = Pclxn —YA™ (Axn — Byn)]/
Yn+1 = PQlyn + YA (Axn — Byn)l,

and under suitable conditions they proved the weak convergence of the sequence (xn,yn) to a solution
of (1.1) in Hilbert spaces.

Let Hy, Hy be two real Hilbert spaces and F a real Banach space. A : H; — Fand B : H, — F are two
bounded linear operators and A* and B* are the adjoint mappings of A and B, respectively. For every
j=12,---, let G5 and Q; be nonempty closed convex subsets of H; and H», respectively. ic; and iQ;
denote the indicator functions of C; and Qj, while N¢, (x) and Nq;(y) are the normal cone of C; and Q;
at x and y, respectively, i.e.,

.. [0, ifxeqc, . [0, ifyeq,
ic;(x) = { +o00, ifx¢&Cj, o ly) = { +o0, ify¢&Qj,
Ng;(x) ={z € Hi: (z,v—x) > 0, W € Cj}, Nq;(y) ={z€ Ha: (z,v—y) = 0, € Qj}.

It is well-known that i, and iQ; are proper convex and lower semicontinuous functions on H; and H,,
respectively. And the sub-differentials aicj and dig, are maximal monotone operators. For j =1,2,---

dic,
and for all u > 0, we define the resolvent operator ]JC’ of dic, by

dic.

IH ]() = (I+ Hai’Cj)—l(') : Hl — Hl/
where

dic(x) ={z € Hy:ic;(x) + (zu—x) <ic;(u),Vu € Hi} ={z € Hy : (z,u—x) <0,Vu € G}
= ch (x),x € Cj.
Hence we have
dic,

u=J, '(x) &x—uepuNg(u) & x—uwy—u) <0,y € C; & u=Pc,(x).
Here Pc;, is the metric projection from H; onto C;. Therefore, we get
Jo =Pc, and Jn ¥ =Pqg, j=1,2,,
which implies

A— dic, .1 diq; .
dic,” (0) =F(Ju ") =F(P¢;), and dig;” (0) =F(Ju. ) =F(Pq;), j=12---. (1.2)

The general split equality variational inclusion problem (GSEVIP) in a Banach space is defined as
follows: find (p, q) € Hy x Hp, such that

p € [)dic, '(0), g€ ()0dig, '(0), and Ap=Bq. (1.3)
j=1 j=1
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The set of all solutions of (GSEVIP) (1.3) is denoted by Q, i.e,

Q={(p,q) €Hi x Hy:p € () dic,*(0), q € [) dig, '(0), and Ap = Bq}.
j=1 j=1

In this paper, we introduce a new iterative algorithm for solving the general split equality variational
inclusion problem (GSEVIP) (1.3) in a Banach space and show that the suggested the iteration algorithm
converges strongly to a solution of (GSEVIP) (1.3). The results of this paper extend and improve the
corresponding results announced by Chang et al. [8, 9], and Moudafi and Al-Shemas [19].

2. Preliminaries and lemmas

In this section, we give some definitions and preliminaries which will be used in the sequel. Let H be
a real Hilbert space and C be a nonempty closed convex subset of H.
An operator G : H — H is said to be
(i) a nonexpansive mapping, if
IGx = Gyl| < [x—yll, ¥x,y € H;

(ii) a firmly nonexpansive mapping, if
|Gx — Gyl* < (Gx — Gy,x —y),¥x,y € H.

We denote by Pc the Metric projection from H onto C. Obviously, Pc is a firmly nonexpansive mapping
from H onto C. Further, for any x € H, z=Pcx if and only if (x —z,z—y) > 0, for ally € C.
Let F be a real smooth Banach space. Jf is the dual mapping of F defined by

JE(x) = {x* € F*: (x,x*) = ||x||* = ||x*||%, x € F}.
Lemma 2.1 ([6]). Let H be a real Hilbert space. Then for all x,y € H, we have
I x+y [IP<Ilx 1> +2(y, x +y)-

Lemma 2.2 ([13]). Let {an}, {bn}, and {cn } be sequences of positive real numbers satisfying an < (1—bn)an +cn
forall m > 1. If the following conditions are satisfied
(1) bn €1[0,1] and Y 3, by = oo;

() Zf:l Cn < 00, or limsup g—“ <0,
nooo

then lim a, =0.
n—oo

Lemma 2.3 ([10]). Let H be a real Hilbert space, B : H — 2™ be a maximal monotone mapping and ]E be the
resolvent mapping of B defined by J& = (1+ BB)~1,B > 0, then

(1
(2
3
(4

foreach 3 >0, ]E is a single-valued and firmly nonexpansive mapping;
D(J§) =Hand F(J§) = B~1(0);

(I- ]g) is a firmly nonexpansive mapping for each 3 > 0;

suppose that B=1(0) # 0, then

~ ~— ~— —

= TR 112 + 1 Tgx = [l x —x* |

for each x € H, each x* € B—1(0), and each p > 0;
(5) suppose that B=1(0) # 0, then (x —JBx,Jix —w) > 0 for each x € H, each w € B=1(0), and each 5 > 0.
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Lemma 2.4 ([7]). Let H be a real Hilbert space and {xn} be a sequence in H. Then for any sequence {An} (An, €
(0,1)) with Y_37_1 Ay = 1, the following inequality holds

(o¢] (o.¢]
12 Anxn [P 3 An [l 3 (2 =2 (%= |2, 5,1 <.
n=1

n=1

Lemma 2.5 ([18]). Let {tn} be a sequence of real numbers. If there exists a subsequence {ni} of {n}, such that
tn, < tn,y1foralli> 1, then there exists a nondecreasing sequence {0(n)} with 6(n) — oo as n — oo, such that
for all (sufficiently large) positive integer number n, the following holds:

te(n) < tS(nJJrl/ th < te(n)+l-

In fact,
O(n) =max{k < n:te <tk

Lemma 2.6 (demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C — C be a nonexpansive mapping with Fix(T) # 0. Then 1 —T is said to be demi-closed at zero, if for any
sequence {xn} C C with xn — x and ||xn — Txn|| — 0, then x = Tx.

3. The main results

In this section, we show some strong convergence theorems for finding a common element of the
solution set of the general split equality variational inclusion problem (GSEVIP) (1.3) in a Banach space.

In order to solve problem (GSEVIP) (1.3), we propose the following simultaneous type iterative algo-
rithm.

Algorithm 3.1. For any given Wy = (xo,Yo), Vo = (vo1,vo2) € Hi x Hp, the iterative sequence {Wy} C
H; x Hy is generated by

> (dic; diq;) .
Whi1 = xnWn 4+ BnVo + Z'Yn,jlu (I—unG ]FG)Wn/ n =0, (3-1)
=1

where {a}, {Bn}, {Yn,;} are the sequences of nonnegative numbers satisfying

o
O('TL+[3TL+ZYT1J :1/ n>ol
j=1

dic.
(6icj,aiQ).) _ JH ) _ B . A* . _ A*]FA —A*]FB
" _<JTQ" G=(A =B) 6= { e ) STC={ pa BB )

We also need the following conclusion.

Lemma 3.2. If the set of solutions of (GSEVIP) (1.3) is Q # (), then W* = (x*,y*) € Hy x Hy is a solution of
(GSEVIP) (1.3) if and only if for each j > 1, and for any given u > 0

(9ic;,01Q;)

W=7, (I G JrG)W*. (3.2)

Proof. Indeed, W* = (x*,y*) € H; x Hy is a solution of (GSEVIP) (1.3), from Lemma 2.3 (2), for all j > 1,
we have

* - o —1 _ aicj * o —1 _ aiQ]‘ * * * * *
x* €0ic; (0) =F(Ju ), y" €dig,” (0)=F(Ju ), AX* =By*, GW" = Ax" —By* =0.
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Thus for any p > 0,

dic.,dio. dic.,0iq. dic, diq;
1O I ue e W = 10T W = (e, T YY) = () = W

Conversely, if W* = (x*,y*) € H; x H; satisfies (3.2), we have

{X —1u ' (x* — pA*Jr(Ax" — By*), (33)

y —Iu "(y* 4 uB*Jr(Ax* — By*)).
From Lemma 2.3 (5) and Q # (), we have
* * * * * * . —1
(= (X" — pAT e (AX" = By")),x —x") 2 0, Vx € dic,” (0).

Since p > 0, we get
(JF(AX* —By*),Ax —Ax*) > 0, Vx € dig, '(0). (3.4)

Simplifying, from (3.3) and Lemma 2.3 (1), we have
* * * .1
(Jr(Ax* —By®),By” —By) >0, Wy € dig, ' (0). (35)
Adding up (3.4) and (3.5), we get
(Jr(Ax* —By™), Ax* —By™) < (Jr(Ax* —By*),Ax —By) Vx € 6icj_1(0),Vy € aiQ]._l(O).
So, we get
|AX* — By*|* < (Jr(Ax* —By*),Ax—By), V¥x € dic, '(0),Vy € dig, ' (0).

Since the set of solutions of (GSEVIP) (1.3) is Q # 0, taking W = (xo,yo) € Q and x = xg, y = yo, we get

|Ax* —By*|| =0, ie., Ax" =By". (3.6)
From (3.3), we have
_— ic; o o o
Xt = ;. X i A X ig; A .
{ I”IQ] i, x" € F(Ju ) = dic, '(0),y" € F(J. V) = dig, 1(0),Vj > 1, (3.7)
which from (3.6) and (3.7) implies that W* € Q. O

Lemma 3.3. If p € (0, 2), where L = ||G||?, then I — pG*J¢G : Hy x Hy — Hy x Hy is a nonexpansive mapping.

Proof. For any given w,u € Hy x Hy, we have

11— G JrG)u— (I=AG TrG)W|* = [[(u—w) — uG*Jr G (u—w)|?
= [u—w|® + 12|G*TFG(u—w)|]* = 2p(u—w, G*JFG (L —w))
< u—w? + 12LTEG (w— w) | —21(G(u—w), JF G (u— w)).
= Ju—wl? + L[| G (w — W) |* = 21| G (u — w) ||~
= u—wl|? — (2 — pL)[| G (u—w)|*

< Jlu—wl

This completes the proof. O
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Theorem 3.4. Let {Wy,} be the sequence defined by (3.1). If the set of solutions of (GSEVIP) (1.3) is Q # () and the
following conditions are satisfied:
(B1) {atn}, {Bn} {vn;} C[0,1], foranyn >0, atn + Bn + 3521 ynj =1
(B2) > 7_oBn =oc0and lim By =0;
(B3) we (0,2), where L = ||G||%
(B4) liminfanyn; >0,Vj > 1,
n—oo

then the sequence {Whn} converges strongly to W* = Pq Vy, which is a solution of (GSEVIP) (1.3).

Proof. We shall divide the proof into three steps.

Step (I). Showing that {Wp} is bounded.
For any p € Q, from Lemma 3.2, we have

(dic.,di0.) .
p=Ju 9 (I—uG*JrG)p.

Form Lemma 3.3, Lemma 2.3 (1), and condition (B3), we get

Whi1—pl| et
1c.,010.
= o Wn +BaVo+ Y 21 vniln O (1— uG*JrG)Wy — ||
)

< ol Wa =Pl + Bl Vo=l + X0 vmsllT ¥ (1= G G)Wa — |
< o‘n”Wn _pH + BnHVO —P” + Z;)il Yn,j H(I - HG*JFG)WTL _pH

< o [Wn =Pl + BnlVo =PIl + 2521 Yni [Wn — Pl

= (1—=Bn)[Wn —pll+ BnlVo—pll

< max{|Wn —p/, [[Vo —pl[}-

(3.8)

By induction, we have
[Wn —p| < max{|Wo —pl|, [[Vo—Ppl}, ¥n=>0,

which implies that {Wy, } is bounded.
Step (II). We show that the following inequality holds

(0ic.,01i0.) N
oY [Wn=Ju 7 (1= uG™ e G)Wal* < [Wn —pI* = [Wn i1 — [ + BnllVo — P> (3.9)

From Lemma 2.4 and (3.1), we have

> (dic.,di0.) .
Wit =PI = [laenWn +BnVo+ > vnilu O (I—pG*JrG)Wy —plP?
j=1
s (dic;diq;) . )
= [loan(Wn —p) + Bn(Vo—P)+ D> Yn,;illn (I— uG*JrG)Wn —p)||
j=1
) ) = (dic;diq;) . )
< o [Wan =p[>+ BullVo —pIP + D vnjillly (I—uG*JrG)Wy — ||
j=1
(0ic.,010.) "
— o ¥njlWa—TJi D (1 uG* G Wy |2

< an[Wa =plI2+BrlVo—pIP + 3 vnill(1—nG JrG)Wr —p|?
j=1

(dic.,di0.) .
— o YnlWa =T 0 I (1 uG JrG) Wy |2
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< on|[Wn _P”2 + BnllVo _pH2 + ZYn,j [Wn _sz
j=1

(a ) .
LG G W 2

o“rﬂ/n)HWn
<(1—rsn)uvvn—p\|2+ﬁnuvo—puz ot Vi [Wa —
alc Q )

< W —=pIP + BnllVo— P> — otn¥Yn i [Wn — (

(ax ) .
G LG TG W 2

I—uG*JrG)Wal.

Inequality (3.9) is proved.

Step (IMI). Since the set of solutions of (GSEVIP) (1.3) is Q # () and C;j and Qj (j =1,2,---) are nonempty
closed convex subsets of H; and Hy, respectively, from (1.2) and lemma 2.3, we can get the set of solutions
of (GSEVIP) (1.3), Q, is nonempty closed convex. Setting W* = Pq V), we have W* € Q. We will prove
that {W,,} converges strongly to W*.

We consider two cases: (I) Suppose that the sequence {||W;, — W*||} is monotone.

Since {||Wy, — W*||} is monotone, following Step (I), it is obvious that {||W,, — W*||} is convergent. From
conditions (B2), (B4), and (3.9), we have

alc Q )
(

Tim Wi =Ty I—uG*JrG)Wy| =0, (3.10)

and

alc alQ] )

[Whi1 _W*Hz = |lonWn + BnVo + Z'YHJ] (I—uG*JrG)Wy _W*Hz

j=1

* * (ot oiq;) * *
= [Jotn (Wn — W*) + Bn (Vo — W¥) +Zvn) T 1= uG TG W — W) 2
j=1
alC alQJ)

< ot (Wi — WH) +Zvn] (I— uG* JrG) Wy — WH)|2
j=1

+2Bn (Vo —W*, Wy 1 —W*)  (by Lemma 2.1)

< A{an [Wn = WH[ + Zyn,j Wi = W[ +2Bn (Vo — W*, Wi 1 — W)
j=1
= (1= Br)?[Wn —W*|? + 2B (Vo — W*, Wy 11 — W*).

Since B, € [0,1]. Then we have
Wi = WP < (1= Bn)[[Win = WP +2Bn (Vo — W, Wi — W), (3.11)

Since {Wp} is bounded, there exists a subsequence {Wp, } C {Wy} such that W,,, = W € H; x Hy. From
(3.10), we get

alc a‘LQ)) %
hm Wi, —Ju (I—uG*JrG)Wp, || =0.
(dic,,di
Since ] ey 0ty (I—pnG*J§G) is a nonexpansive mapping, by Lemma 2.6, we have
(0ic.,010.) N
_]u G- uG* T G)W

From Lemma 3.2, this shows that W € Q. We get

lim sup(Vo —W*, Wy, —W*) = hm (VO—W Wi, — W) < (Vg — W5, W—-W*) <0.

n—oo
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Taking an = [[Wn —W*||, by = Bn, and cn = Bn (Vo — W*, Wy 11 — W), all conditions of Lemma 2.2 are
satisfied, so nlgrclx) [Wni41 —W*|| =0.
(IT) Suppose that the sequence {||W;, — W*||} is not monotone.
By Lemma 2.5, there exists a sequence of positive integers, {8(n)}, n > ng (where ny is large enough)
such that
O(n) = max{k < n: Wy —W*|| < [[Wy1 — W7} (3.12)

Clearly, {8(n)} is nondecreasing and 6(n) — co as n — oo and for all n > ny,
[Won) =Wl < [[Wom)11 =W, [[Wn =W <[[Wpn)41— W7

Hence, {||Wg(n) — W*||} is a nondecreasing sequence. By virtue of Case (I), lim [[Wyy)— W*| =0 and
n—oo

lim [[Wpn)+1 —W*|| =0, we have
n—oo

0 < [Wa — W < max{[[Wa — W[, [Wa(n) — W[} < [Wogn)1 — W' =0, as n— co.

This implies that W;, — W* and W* = PqVj is a solution of (GSEVIP) (1.3). O

4. Applications

In this section, two examples will be illustrated to verify the validity of the proposed algorithm in
Section 3.

4.1. Application to the general split equality equilibrium problem in Banach space

Let Hy, Hy be two real Hilbert spaces and F is a real smooth Banach space. Let C; and C; are nonempty
closed convex subsets of H; and Hy, respectively, and A : H; — F, B : Hy — F are bounded linear operator.
let Fi: C; x C; = Rand Gi: C2 x C; = R, 1 =1,2,-- - be two equilibrium functions, where C and Q are
nonempty closed convex subsets of H; and Hy, respectively.

Assumption 4.1. Let F: C xC — R be an equilibrium function satisfying the following assumptions:

(1) F(x,x)=0, ¥x € C;
(2) Fis monotone, i.e., F(x,y)+F(y,x) <0, Vx,ye€C;
(3) for each x,y,z € C, limsup F(tz+ (1 —t)x,y) < F(x,y);
t—0+
(4) for each x € C,y — F(x,y) is convex and lower semi-continuous.
For Assumption 4.1, see [1, 21].

Lemma 4.2 ([11]). Let C be a nonempty closed convex subset of a Hilbert space H and F: C x C — R be a
equilibrium which satisfies Assumption 4.1. For all v > 0 and x € H, the resolvent of the equilibrium function F is
the operator T : H — C defined by

1
TTx)={z ¢ C:F(z,y)+;<y—z,z—x> >0, vy e Ch.

Then T is well-defined and the followings hold:

(1) TF is nonempty and single-valued;
(2) TV is firmly nonexpansive, i.e., for any x,y € Hy

ITF () =T 1? < (TH () = T (y), x —u);

(3) E(T})=EP(F);
(4) EP(F) is closed and convex.
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Let H;, Hy be two real Hilbert spaces. Let C; and C, be nonempty closed convex subsets of H; and
Hy, respectively. The general split equality equilibrium problem (GSEEP) is defined as follows: to find
x* € C1, y* € Cy, such that

Fi(x*,x) >0, Vx € Cq,Gi(y*,y) >0, YVye C, and Ax" = By™. (4.1)

We know that the general split equality equilibrium problem (GSEEP) (4.1) is equivalent to find x* &
C1, y* € Cy, such that for each A > 0,

x* € [V EP(Fi, C1) = [ F(T{),y* € [ ) EP(Gs, C2) = ) F(TSY), such that Ax* = By*.
i=1

i=1 i=1 i=1

Letting C = (3>, F(T{H), Q = N, F(TS1), by Lemma 4.2, C (resp.Q) is a nonempty closed and convex
subset of C (res.Q).
The general split equality equilibrium problem (GSEEP) in Banach space is defined as follows:

pe C,qeQ, suchthat Ap =Bg. 4.2)

In order to solve problem (GSEEP) (4.2), we propose the following simultaneous type iterative algo-
rithm.

Algorithm 4.3. For any given Wy = (x0,Yo), Vo = (Vo1,vo2) € Hi x Hy, the iterative sequence Wy, € H; x Hy
is generated by
Wn+1 = (xnwn‘i‘BnVO‘l‘PCXQ(I_HnG*IFG)Wn nz 0/ (43)

where {&n}, {Bn}, {yn,;} are the sequences in [0, 1] with «n +pn +vn =1, foralln >0,

_( Pc _ B « [ AT et ~ [ ATEA —A*]EB
Theorem 4.4. Let Hy, Hp, F, C, Q, A, B, A*, B*, Pcxq, G, G¥, be the same as above. Let {Wy} be the sequence

defined by (4.3). If the set of solutions of (GSEEP) (4.2) is Q # (), where Q = {(x*,y*) € Hy x Hy : (x*,y*) €
C x Q : Ax* = By*}, the following conditions are satisfied:

(B1) {otn}, {Bn}, {yn} € [0,1], for anyn >0
on +Pn+yn=1

(B2) > 3 o PBn = o0 and liﬁm Bn=0;
n—oo
(B3) un € (0,2), where L = ||G||*;
(B4) liminfanyn > 0.
n—oo
Then the sequence {Wh} converges strongly to W* = Pq Vo, which is a solution of (GSEEP) (4.1).

4.2. Application to the general split equality feasibility problem in Banach space

Let Hy, Hy be two real Hilbert spaces and F is a real smooth Banach space. Let C1; and Cp5,j =1,2,---
be nonempty closed convex subsets of H; and Hj, respectively. The general split equality feasibility
problem (GSEFP) in Banach space is defined as follows:

pE ﬂ Cij,q€ ﬂ Q1,; such that Ap = Bq. (4.4)
j=1 j=1

In order to solve problem (GSEFP) (4.4), we propose the following simultaneous type iterative algo-
rithm.
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Algorithm 4.5. For any given Wy = (xo,Yo), Vo = (Vo1,vo2) € Hi x Hp, the iterative sequence W;, € Hy x Ha
is generated by

Wn+1 = OCan + BHVO + ZYn,jPCj x Qj (I - H‘TIG*]FG)WHI n =0, (45)
j=1

where {otn}, {Bn}, {Yn} are the sequences in [0,1] with oty + 1 + Z;il Yn;j =1, foralln >0,

[ Pc; _ B « [ A" « _ [ A'JFA —A%]sB
PC]XQJ_<PQ1)’G_(A B)’G _<_B*>/G ]FG_(_B*IFA B*IFB )

Theorem 4.6. Let Hy, Hp, F, Cj, Q;, A, B, A*, B*, G, G¥, Pc,, Po; be the same as above. Let {W,} be the
sequence defined by (4.5). Assum the set of solution of (SEFPP) (4.4) is Q # 0, and the following conditions are
satisfied

(B1) {otn}, {Bn}, {¥n,;} € [0,1], foranyn >0

o
on + Pn + Zyn,j =1
j=1

(B2) > %_oBn = coand Jim Bn =0;
(B3) wn € (0, ), where L = ||G|*
(B4) ling infanyn; >0,V > 1

n o0

Then the sequence {Wh} converges strongly to W* = P Vo, which is a solution of (SEFPP) (4.4).
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