
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 3643–3654

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Picard splitting method and Picard CG method for solving the absolute value
equation

Chang-Qing Lva,b, Chang-Feng Maa,∗

aCollege of Mathematics and Informatics, Fujian Key Laborotary of Mathematical Analysis and Applications, Fujian Normal University,
Fuzhou, 350117, P. R. China.
bSchool of Mathematics and Statistics, Zaozhuang University, Zaozhuang, 277160, P. R. China.

Communicated by Y.-Z. Chen

Abstract
In this paper, we combine matrix splitting iteration algorithms, such as, Jacobi, SSOR or SAOR algorithms with Picard

method for solving absolute value equation. Then, we propose Picard CG for solving the absolute value equation. We discuss
the convergence of those methods we proposed. At last, some examples are provided to illustrate the efficiency and validity of
methods that we present. c©2017 All rights reserved.

Keywords: Absolute value equation, Picard algorithm, matrix splitting iteration method, conjugate gradient method.
2010 MSC: 65H10, 47H10.

1. Introduction

We consider the absolute value equation (AVE)

Ax− |x| = b, (1.1)

where A ∈ Rn×n, b ∈ Rn, and |x| denotes each component of x with absolute value. In [2, 3, 16],
many mathematical programming problems can be reduced to a linear complementary (LCP) and LCP
is equivalent to an absolute value equation (1.1). And many methods are proposed for solving AVE (see
[5–15, 17, 19–24, 26]). Mangasaruan and Meyer [16] show that the equation (1.1) has a unique solution
for any right-hand side b if all singular values of the coefficient matrix A exceed one. Mangasaruan
[12] considered a generalized Newton method for AVE (1.1) and investigated its convergence properties.
Since the linear system of equations needs to be solved in each generalized Newton iteration step and its
coefficient matrix are changed correspondingly, the cost of the generalized Newton method is expensive.
Rohn et al. [24] propose another method to solve AVE (1.1), which is called Picard iteration method and
its iteration sequence is as follows

xk+1 = A−1(|xk|+ b).

∗Corresponding author
Email address: macf@fjnu.edu.cn (Chang-Feng Ma)

doi:10.22436/jnsa.010.07.24

Received 2017-06-15

http://dx.doi.org/10.22436/jnsa.010.07.24

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3644

Bai and Yang [1] considered the weakly nonlinear system Ax = φ(x) and proposed Picard-HSS method for
solving it. By comparing the weakly nonlinear system with the AVE (1.1), Salkuyeh [25] gave the Picard-
HSS method for solving the absolute value equation (1.1). Inspired by the idea of Picard iteration and
HSS splitting method, we propose Picard splitting iteration method and Picard CG method for solving
absolute value equation based on the Picard iteration, and prove the convergence of those methods. At
last, we give several numerical experiments.

The remainder of this paper is organized as follows. In Section 2, we give brief introduction of basic
splitting iteration and basic conjugate gradient method for solving linear equation system. In Section 3,
we propose a Picard splitting iteration and investigate its convergence. In Section 4, we show the Picard
conjugate gradient method and its convergence. In Section 5, we present some numerical experiments.
Finally, we give our conclusions in Section 6.

2. Matrix splitting method and conjugate gradient method

2.1. The splitting iteration method
A splitting of A is a decomposition A =M−N with M nonsingular.
A splitting yields an iterative method as follows: Ax = Mx−Nx = b implies Mx = Nx+ b, that is,

x =M−1Nx+M−1b = Rx+ c, where R =M−1N, c =M−1b. So we can take

xk+1 = Rxk + c. (2.1)

Iteration sequence (2.1) in the matrix-vector form can be equivalently rewritten as

xk+1 =

k∑
i=0

Rib.

Given x0, these methods generate a sequence xk converging to the solution A−1b of Ax = b and xk+1

is cheap to compute from xk. If xk defined in Eq. (2.1) is convergent, the splitting A = M−N is called
convergent splitting.

Lemma 2.1 ([18]). Suppose ‖ � ‖ is any operator norm. ρ(R) < 1 if and only if xk+1 = Rxk + c converges for any
initial vertex x0.

Suppose A ∈ Cn×n. Let A = Mi −Ni (i = 1, 2) be two splittings of the matrix A and x0 ∈ Cn be a
given initial vertex. xk is a two-step iteration sequence defined as{

M1x
k+ 1

2 = N1x
k + b,

M2x
k+1 = N2X

k+ 1
2 + b,

(2.2)

where k = 1, 2, · · · .

Lemma 2.2 ([18]). Let A = Mi −Ni (i = 1, 2) be two splittings of the matrix A and x0 ∈ Cn be a given initial
vertex. If xk is a two-step iteration sequence defined in Eq. (2.2), then

xk+1 = R̃1x
k + T̃(k = 1, 2, · · ·),

where
R̃1 =M−1

2 N2M
−1
1 N1, T̃ =M−1

2 (M1 +N2)M
−1
1 .

By Lemma 2.2, two-step iteration sequence (2.2) can be equivalently rewritten as

xk+1 = R̃k1 x
0 +

k∑
i=0

R̃i1T̃b. (2.3)

By Lemma 2.1, if ρ(R̃1) < 1, then the two-step iteration sequence (2.3) converges to the exact solution of
Ax = b for any initial guess x0 ∈ cn×n.

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3645

2.2. The conjugate gradient method
Algorithm 2.3 (Conjugate Gradient Method (CG)). (for Hermitian positive definite problems)

Given an initial guess x0, compute r0 = b−Ax0 and set p0 = r0.
k := 1;

while ‖rk‖ > ε
αk−1 =

〈rk−1,rk−1〉
〈pk−1,Apk−1〉 ,

xk = xk−1 +αk−1pk−1,
rk = rk−1 −αk−1Apk−1,
βk−1 =

〈rk,rk〉
〈rk−1,rk−1〉 ,

pk = rk +βk−1pk−1,
k:=k+1;

end.

3. The Picard splitting iteration method

In this section, we will combine Picard method with matrix splitting method for solving the absolute
value equation (1.1). The Picard iteration sequence for solving the AVE (1.1) is as follows

Axk+1 = |xk|+ b.

Let A = M(α) −N(α) and xk+1 can be approximately computed by splitting iteration such as Jacobi
method, SSOR method, SAOR, and HSS method. Let

M(α)x(k,l+1) = N(α)x(k,l) + |xk|+ b (3.1)

and
xk = x(k−1,lk−1),

where R1(α) =M(α)−1N(α) and l = 0, 1, · · · , lk, k = 0, 1, · · · . Eq. (3.1) can be equivalently rewritten as

xk+1 = Rlk1 (α)xk +

lk−1∑
i=0

Ri1(α)M(α)−1(|xk|+ b). (3.2)

From the above analysis, we can obtain Picard single-step splitting iteration algorithm as follows.

Algorithm 3.1 (Picard single-step splitting iteration algorithm). Choose any x0 ∈ Rn and ε > 0, r0 =
b+ |x0|−Ax0, k = 0;
while ‖rk‖/‖r0‖ > ε

l := 0,
x(k,l) = xk,
r(k,l) = b+ |xk|−Ax(k,l);
while ‖r(k,l)‖/‖r0‖ > ε
x(k,l) = R1(α)x

(k,l−1) +M−1(|xk|+ b),
r(k,l) = b+ |x(k,l)|−Ax(k,l),
l := l+ 1;
end.
xk+1 = x(k,lk);
rk+1 = b+ |xk+1|−Axk+1

k := k+ 1;
end.

For the uniqueness of solution of AVE (1.1), an interesting existence result is as follows.

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3646

Lemma 3.2 ([16]). The AVE (1.1) is uniquely solvable for any b if ‖A−1‖2 < 1.

Theorem 3.3. Suppose A =M(α) −N(α) is convergent splitting. If η = ‖A−1‖2 < 1 and ‖R1(α)‖2 <
1−η
1+η , then

the AVE (1.1) has a unique solution x∗ and the iteration sequence {xk} produced by Algorithm 3.1 converges to x∗

for any initial guess x0 ∈ cn and any sequence of positive integers lk, k = 1, 2, · · · .

Proof. According to Lemma 3.2 and η < 1, AVE (1.1) has a unique solution x∗. On the other hand, because
Eq. (3.1) can be rewritten as Eq. (3.2), the solution x∗ of AVE (1.1) satisfies the following equation

x∗ = Rlk1 (α)x∗ +

lk−1∑
i=0

Ri1(α)M(α)−1(|x∗|+ b). (3.3)

From Eqs. (3.2) and (3.3), we have

xk+1 − x∗ = Rlk1 (α)(xk − x∗) +

lk−1∑
i=0

Ri1(α)M(α)−1(|xk|− |x∗|). (3.4)

Since ρ(R1(α)) < 1, we have

lk−1∑
j=0

R1(α)M
−1(α) = (I− R1(α)

lk)(I− R1(α))
−1M(α)−1

= (I− R1(α)
lk)(M(α) −M(α)R1(α))

−1

= (I− R1(α)
lk)(M(α) −N(α))−1 = (I− R1(α)

lk)A−1.

(3.5)

From Eq. (3.4) and Eq. (3.5), we have

‖xk+1 − x∗‖2 = ‖Rlk1 (α)(xk − x∗) +

lk−1∑
i=0

Ri1(α)M(α)−1(|xk|− |x∗|)‖2

= ‖Rlk1 (α)(xk − x∗) − (I− R1(α)
lk)A−1(|xk|− |x∗|)‖2

= ‖R1(α)
lk
(
(xk − x∗) +A−1(|xk|− |x∗|)

)
−A−1(|xk|− |x∗|)‖2

6
(
‖R1(α)‖lk2 (1 + η) + η

)
‖xk − x∗‖2

6
(
‖R1(α)‖lk2 (1 + η) + η

)(
‖R1(α)‖

lk−1
2 (1 − η) + η

)
· · ·
(
‖R1(α)‖l1

2 (1 + η) + η
)
‖x1 − x∗‖2

6
(
‖R1(α)‖2(1 + η) + η

)(
‖R1(α)‖2(1 − η) + η

)
· · ·
(
‖R1(α)‖2(1 + η) + η

)
‖x1 − x∗‖2

=
(
‖R1(α)‖2(1 + η) + η

)k‖x1 − x∗‖2.

Since ‖R1(α)‖2 <
1−η
1+η , then the desired result can be obtained.

Remark 3.4. Suppose A ∈ Cn×n. Let D be the diagonal , −L be the strictly lower triangular parts, and −U
be the strictly upper triangular parts of A, respectively. If M = D, N = L+U, Algorithm 3.1 is called
Picard-Jacobi method. If M = D− L, N = U, Algorithm 3.1 is called Picard-GS method.

Now we consider two-step iteration method for solving AVE (1.1). Suppose A ∈ Cn×n. Let A =
Mi(α) −Ni(α) (i = 1, 2) be splitting of the matrix A and x0 ∈ Cn be a given initial vertex. If {xk} is a
two-step iteration sequence defined as{

M1(α)x
(k,l+ 1

2) = N1(α)x
(k,l) + |xk|+ b,

M2(α)x
(k,l+1) = N2(α)X

(k,l+ 1
2) + |xk|+ b,

(l = 0, 1, · · · , lk,k = 0, 1, · · ·), (3.6)

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3647

Eq. (3.6) can be equivalently rewritten as

xk+1 = R̃lk1 (α)xk +

lk−1∑
i=0

R̃i1(α)T̃(α)(|x
k|+ b)(k = 1, 2, · · ·), (3.7)

where xk+1 = x(k,lk) and

R̃1(α) =M
−1
2 (α)N2(α)M

−1
1 (α)N1(α), T̃(α) =M−1

2 (α)(M1(α) +N2(α))M
−1
1 (α). (3.8)

Algorithm 3.5 (Picard two step splitting iteration algorithm). Choose any x0 ∈ Rn and ε > 0, r0 =
b+ |x0|−Ax0, k = 0;
while ‖rk‖/‖r0‖ > ε,

l := 0,
x(k,l) = xk,
r(k,l) = b+ |xk|−Ax(k,l),
p(k,l+1) = r(k,l),
ρ(k,l) = r(k,l)Ar(k,l),
while ‖r(k,l)‖/‖r0‖ > ε
M1(α)x

(k,l+ 1
2) = N1(α)x

(k,l) + |xk|+ b,
M2(α)x

(k,l+1) = N2(α)x
(k,l+ 1

2) + |xk|+ b,
r(k,l+1) = b+ |x(k,l+1)|−Ax(k,l+1),
l := l+ 1;
end.
xk+1 = x(k,lk),
rk+1 = b+ |xk+1|−Axk+1,
k := k+ 1;

end.

Theorem 3.6. Suppose A = Mi −Ni, (i = 1, 2) is convergent splitting and K = (I − R̃1(α))
−1T̃(α). Let

η = ‖K‖2 < 1 and ‖R̃1(α)‖2 <
1−η
1+η . If the AVE (1.1) has a solution x∗, then the iteration sequence {xk} produced

by Algorithm 3.5 converges to x∗ for any initial guess x0 ∈ cn and any sequence of positive integer lk,k = 1, 2, · · · .

Proof. Since AVE (1.1) has a solution x∗ and Eq. (3.7) can be rewritten as Eq. (3.8), the solution x∗ satisfies
the following equation

x∗ = R̃lk(α)x∗ +

lk−1∑
i=0

R̃i(α)T̃(α)(|x∗|+ b) (k = 1, 2, · · ·). (3.9)

By Eqs. (3.7) and (3.9)

xk+1 − x∗ = R̃lk1 (α)(xk − x∗) +

lk−1∑
i=0

Ri1(α)T̃(α)(|x
k|− |x∗|).

Since ρ(R̃1(α)) < 1, we have

lk−1∑
j=0

R̃1(α)M
−1(α) = (I− R̃1(α)

lk)(I− R̃1(α))
−1T̃(α).

According to η = ‖K‖2 = ‖(I− R̃1(α))
−1T̃(α)‖2, we have

‖xk+1 − x∗‖2 = ‖R̃lk1 (α)(xk − x∗) − (I− R̃1(α)
lk)K(|xk|− |x∗|)‖2

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3648

= ‖R̃1(α)
lk
[
(xk − x∗) +K(|xk|− |x∗|)

]
−K(|xk|− |x∗|)‖2

6
(
‖R̃1(α)‖lk2 (1 + η) + η

)
‖xk − x∗‖2

6
(
‖R̃1(α)‖lk2 (1 + η) + η

)(
‖R̃1(α)‖

lk−1
2 (1 + η) + η

)
· · ·
(
‖R̃1(α)‖l1

2 (1 + η) + η
)
‖x1 − x∗‖2

6
(
‖R̃1(α)‖2(1 + η) + η

)(
‖R̃1(α)‖2(1 + η) + η

)
· · ·
(
‖R̃1(α)‖2(1 + η) + η

)
‖x1 − x∗‖2

=
(
‖R̃1(α)‖2(1 + η) + η

)k‖x1 − x∗‖2.

Since ‖R1(α)‖2 <
1−η
1+η , then ‖R̃1(α)‖2(1 + η) + η) < 1, when k→∞, the right hand side of above equation

tends to 0, thus the iteration sequence xk converges to x∗. The desired result can be obtained.

Remark 3.7. If M1 = 1
αD− L, N1 = 1−α

α D+U, M2 = 1
αD−U, N2 = 1−α

α D+ L, Algorithm 3.5 is called
Picard-SSOR algorithm. If M1 = D−rL

α , N1 = 1−α
α D+ α−r

α L+U, M2 = D−rU
α , N2 = 1−α

α D+ α−r
α U+ L,

Algorithm 3.5 is called Picard-SAOR algorithm. If H = A+AH

2 , H = A−AH

2 and M1 = αI+H, N1 = αI− S,
M2 = αI+ s, N2 = αI−H, Algorithm 3.5 is called Picard-HSS algorithm.

Theorem 3.8. Suppose iteration sequence {xk} generated by the Picard-SSOR algorithm. If η = ‖A−1‖2 < 1 and
‖R1(α)‖2 <

1−η
1+η , then the AVE (1.1) has a unique solution x∗ and the iteration sequence {xk} converges to x∗ for

any initial guess x0 ∈ cn and any sequence of positive integers lk,k = 1, 2, · · · .

Proof. Since η < 1, according to Lemma 3.2, AVE (1.1) has a unique solution x∗. By Theorem 3.6, we just
prove A−1 = K, where K = (I− R̃1(α))

−1T̃(α). According to Remark 3.7, we know that M1 = 1
αD− L,

N1 = 1−α
α D+U, M2 = 1

αD−U, N2 = 1−α
α D+ L. From Eq. (3.8) and Lemma 2.2, we can obtain

R̃1 =M−1
2 N2M

−1
1 N1 = (D−αU)−1 ((1 −α)D+αL) (D−αL)−1 ((1 −α)D+αU) ,

T̃ =M−1
2 (M1 +N2)M

−1
1 = α(2 −α)(D−αU)−1D(D−αL)−1.

Let
M =

1
α(2 −α)

(D−αL)D−1(D−αU)

and
N =

1
α(2 −α)

((1 −α)D+αL)D−1 ((1 −α)D+αU) .

Then A =M−N,

M−1N = (D−αU)−1D(D−αL)−1 ((1 −α)D+αL)D−1 ((1 −α)D+αU)

= (D−αU)−1(I−αLD−1)−1 ((1 −α)I+αLD−1) ((1 −α)D+αU)

= (D−αU)−1 ((1 −α)I+αLD−1) (I−αLD−1)−1 ((1 −α)D+αU)

= (D−αU)−1 ((1 −α)D+αL)D−1D(D−αL)−1 ((1 −α)D+αU) = R̃1.

(3.10)

Since M−1 = T̃(α) and Eq. (3.10), we have

K = (I− R̃1)
−1T̃ = (I−M−1N)−1M−1 = A−1.

Since η = ‖K‖2 = ‖A−1‖2 < 1, and by Theorem 3.6, the desired result can be obtained.

Similar to Theorem 3.8, we have the convergence of Picard-SAOR Algorithm.

Theorem 3.9. Suppose iteration sequence {xk} generated by the Picard-SAOR algorithm . If η = ‖A−1‖2 < 1 and
‖R1(α)‖2 <

1−η
1+η , then the AVE (1.1) has a unique solution x∗ and the iteration sequence {xk} converges to x∗ for

any initial guess x0 ∈ cn and any sequence of positive integers lk,k = 1, 2, · · · .

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3649

Proof. Since η < 1, according to Lemma 3.2, AVE (1.1) has a unique solution x∗. By Theorem 3.6, we just
prove A−1 = K, where K = (I− R̃1(α))

−1T̃(α). According to Remark 3.7, M1 = D−rL
α , N1 = 1−α

α D+
α−r
α L+U, M2 = D−rU

α , N2 = 1−α
α D+ α−r

α U+ L.
From Eq. (3.8) and Lemma 2.2, we can obtain

R̃1 =M−1
2 N2M

−1
1 N1

= (D− rU)−1 ((1 −α)D+ (α− r)U+αL) (D− rL)−1 ((1 −α)D+ (α− r)L+αU)

= (D− rU)−1 (D− rU−αA) (D− rL)−1 (D− rL−αA) ,

T̃ =M−1
2 (M1 +N2)M

−1
1

= α(D− rU)−1 ((2 −α)D+ (α− r)L+ (α− r)U) (D− rL)−1

= α(D− rU)−1((2 − r)D+ (r−α)A)(D− rL)−1.

Let
M =

1
α
(D−αL)((2 − r)D+ (r−α)A)−1(D−αU)

and
N =

1
α
(D− rU−αA) ((2 − r)D+ (r−α)A)−1 (D− rL−αA) .

Then A =M−N,

M−1N = (D−αU)−1((2 − r)D+ (r−α)A)(D−αL)−1

× (D− rU−αA) ((2 − r)D+ (r−α)A)−1 (D− rL−αA)

= (D−αU)−1 (D− rU−αA) (D−αL)−1

× ((2 − r)D+ (r−α)A)((2 − r)D+ (r−α)A)−1 (D− rL−αA)

= (D− rU)−1 (D− rU−αA) (D− rL)−1 (D− rL−αA) = R̃1.

(3.11)

Since M−1 = T̃(α) and Eq. (3.11),

K = (I− R̃1)
−1T̃ = (I−M−1N)−1M−1 = A−1.

Since η = ‖K‖2 = ‖A−1‖2 < 1, and by Theorem 3.6, the desired result can be obtained.

The next theorem provides sufficient conditions for the convergence of the Picard-HSS method to solve
AVE (1.1).

Theorem 3.10 ([25]). Let A ∈ Cn×n be a positive definite matrix, suppose iteration sequence {xk} generated by
the Picard-HSS algorithm. If η = ‖A−1‖2 < 1 and ‖R1(α)‖2 <

1−η
1+η , then the AVE (1.1) has a unique solution x∗

and the iteration sequence {xk} converges to x∗ for any initial guess x0 ∈ cn and any sequence of positive integers
lk,k = 1, 2, · · · .

4. The Picard CG method

In this section, we combine the picard method with CG iteration and propose the Pciard-CG algorithm
for solving the AVE (1.1). Suppose A is a symmetric positive definite matrix such that ‖A−1‖2 < 1. Let
A ∈ Rn×n be a nonsingular matrix and x ∈ Rn; A-norm of vector x is ‖A 1

2x‖2, denoted by ‖x‖A.

Algorithm 4.1 (Picard conjugate gradient algorithm). Choose any x0 ∈ Rn and ε > 0,
Let r0 = b+ |x0|−Ax0,
k := 0;

while ‖rk‖/‖r0‖ > ε

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3650

l := 0,
x(k,l) = xk, r(k,l) = b+ |xk|−Ax(k,l),
p(k,l+1) = r(k,l), ρ(k,l) = r

T
(k,l)r(k,l);

while ‖r(k,l)‖/‖r0‖ > ε
z(k,l) = Ap(k,l),
α(k,l) = ρ(k,l−1)/z

T
(k,l)p(k,l),

x(k,l) = x(k,l−1) +αp(k,l),
r(k,l) = r(k,l−1) −α(k,l−1)z(k,l−1),
ρ(k,l) = r

T
(k,l)r(k,l),

β(k,l) = ρ(k,l)/ρ(k,l−1),
p(k,l+1) = r(k,l) +βp(k,l),
l := l+ 1;
end.
xk+1 = x(k,lk),
rk+1 = b+ |xk+1|−Axk+1,
k := k+ 1;

end.

Lemma 4.2 ([4]). If the iteration solution {xk} is generated by Algorithm 4.1, then xk satisfies the following
inequality

‖xk − x∗‖A
‖x0 − x∗‖A

6
1

Ck(1 + 2
κ−1)

and
1

Ck(1 + 2
κ−1)

=
1

Ck(
b+a
b−a)

=
2σk

1 + σ2k , (4.1)

where Ck is k order Chebyshev polynomial, σ = (
√
b−
√
a)/(
√
b+
√
a) and κ = ‖A‖2‖A−1‖2 =

√
b√
a

.

Theorem 4.3. If A is a symmetric positive definite matrix such that η = ‖A−1‖2 < 1, then the AVE (1.1) has a
unique solution x∗ and the iteration sequence {xk} converges to x∗.

Proof. Since η < 1, according to Lemma 3.2, AVE (1.1) has a unique solution x∗.
We fix outer iteration step k, suppose x∗k is the exactly solution of the equation Ax = b+ |xk|, we can

obtain
Ax∗k = b+ |xk|.

Since x∗ is exactly solution of the AVE (1.1) satisfying the equation Ax∗ = b+ |x∗|, we can obtain that

x∗k − x
∗ = A−1(|xk|− |x∗|). (4.2)

By Lemma 4.2, Eq. (4.2), and

[Clk(1 +
2

κ− 1
)]−1 =

2σlk

1 + σ2lk
, η = ‖A−1‖2,

we have

‖xk+1 − x
∗‖A = ‖xk+1 − x

∗
k + x

∗
k − x

∗‖A

6 [Clk(1 +
2

κ− 1
)]−1‖xk − x∗k‖A + ‖x∗k − x∗‖A

6 [Clk(1 +
2

κ− 1
)]−1‖xk − x∗ + x∗ − x∗k‖A + ‖x∗k − x∗‖A

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3651

6 [Clk(1 +
2

κ− 1
)]−1 (‖xk − x∗‖A + ‖x∗ − x∗k‖A) + ‖x∗k − x∗‖A

6 [Clk(1 +
2

κ− 1
)]−1 (‖xk − x∗‖A + ‖A−1‖2‖xk − x∗‖A

)
+ ‖A−1‖2‖xk − x∗‖A

6

{
2σlk

1 + σ2lk
(1 + η) + η

}
‖xk − x∗‖A

6

{
2σlk

1 + σ2lk
(1 + η) + η

}{
2σlk−1

1 + σ2lk−1
(1 + η) + η

}
· · ·
{

2σl1

1 + σ2l1
(1 + η) + η

}
‖x1 − x

∗‖A

6

{
2σ

1 + σ2 (1 + η) + η

}k
‖x1 − x

∗‖A.

Since η = ‖A−1‖2 < 1, then 2σ
1+σ2 (1 + η) + η < 1, when k → ∞, the right hand side of above equation

tends to 0, thus the iteration sequence xk converges to x∗. This completes the proof.

5. Numerical experiments

In this section, we give some numerical experiments to illustrate Picard splitting iteration Algorithm
3.1, Algorithm 3.5 and Picard CG Algorithm 4.1. The iterations have been carried out by MATLAB
R2012b (8.0.0). In view of the influence of round-off errors, we regard a residual r as the zero vector if
‖r‖2 < 10−11, where ‖.‖2 denotes the 2-norm of the vector.

Example 5.1. We consider Eq. (1.1) with the following matrix:

A1 =


2 1 2 −3 4
3 4 2 2 1
0 4 7 2 4
−1 −1 −1 2 4
4 4 3 2 1

 .

Table 1: Numerical result of Example 5.1.

P-HSS P-SAOR P-SSOR P-JACOBI P-CG

linter number 38 43 39 39 42
cpu time(second) 0.0028 0.0045 0.0012 0.0018 0.0022
residual (e-10) 0.9079 0.9804 0.7878 0.6946 0.8247

The numerical experiments are shown in Table 1. From Table 1, it shows that P-HSS, P-SAOR, P-SSOR,
and P-JACOBI algorithms are effective and their iterative number, cpu time, and residual are almost the
same in size.

Example 5.2. We randomly choose a matrix A according to the following structure: A = round(100 ∗
(eye(n;n) − 0.02 ∗ (2 ∗ rand(n;n) − 1)), and choose b(i) = (−i)i, i = 1, 2, · · · ,n. The random A has the
structure for n = 6 as follows

A =



101 1 1 2 −1 0
−1 99 −2 0 −1 −2
1 −1 101 2 2 1
0 −1 −1 98 0 1
1 0 0 2 101 1
0 2 −2 −1 −1 101

 .

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3652

Table 2: Numerical result of Example 5.2.

n P-HSS P-SAOR P-SSOR P-JACOBI P-CG

500

linter number 11 7 6 6 18
cpu time(second) 0.1215 0.0791 0.0205 0.0397 0.0040
residual (e-10) 0.9977 0.9798 0.1023 0.3868 0.8139

1000

linter number 11 8 6 6 25
cpu time(second) 0.5007 0.3772 0.0954 0.1953 0.0573
residual (e-10) 0.9938 0.9234 0.2294 0.6016 0.4424

1500

linter number 11 9 6 6 31
cpu time(second) 1.1322 0.9344 0.2427 0.4852 0.1613
residual (e-10) 0.9657 0.9286 0.5023 0.5266 0.6099

2000

linter number 11 11 6 6 38
cpu time(second) 2.0305 1.8382 0.4888 0.9111 0.3541
residual (e-10) 0.9335 0.9824 0.9706 0.8667 0.8619

Numerical results for different values of n (n = 500, 1000, 1500, 2000) are reported in Table 2. From
Table 2, the iterative number of P-HSS, P-SAOR, P-SSOR, and P-JACOBI method keep unchanged as
order n increased. P-SSOR and P-JACOBI have the same iterative number, which is less than the other
algorithm’s. It is clear that the cpu time of the P-CG is less than the other algorithm’s.

Example 5.3. Choose matrix A = spdiags([−e, 4 ∗ e,−e], [−1, 0, 1],n,n), and b(i) = (−i)i, i = 1, 2, · · · ,n.
The matrix A has a structure for n = 6 as follows

A =



4 −1 0 0 0 0
−1 4 −1 0 0 0
0 −1 4 −1 0 0
0 0 −1 4 −1 0
0 0 0 −1 4 −1
0 0 0 0 −1 4

 .

Table 3: Numerical result of Example 5.3.

n P-HSS P-SAOR P-SSOR P-JACOBI P-CG

500

linter number 19 22 19 20 22
cpu time(second) 0.1599 0.3251 0.0756 0.2252 0.0039
residual (e-10) 0.3968 0.9763 0.2865 0.5890 0.8593

1000

linter number 19 22 19 20 22
cpu time(second) 0.7091 1.0285 0.3309 0.7877 0.0524
residual (e-10) 0.3980 0.9803 0.2872 0.5910 0.7093

1500

linter number 19 22 19 20 22
cpu time(second) 1.3815 2.2340 0.7224 1.6873 0.1157
residual (e-10) 0.3984 0.9816 0.2874 0.5917 0.6345

2000

linter number 19 22 19 20 22
cpu time(second) 2.3650 3.9210 1.2623 2.9596 0.2060
residual (e-10) 0.3986 0.9823 0.2875 0.5921 0.5855

Numerical results for different values of n(n = 500, 1000, 1500, 2000) are reported in Table 3. From
Table 3, we can see all algorithms keep unchanged as the order n is increasing. Those algorithms we
propose have almost the same iteration number. The cpu time of the P-CG is much less than the other
algorithms.

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3653

Example 5.4. We consider the nonsymmetric matrix

A =


3 2 2 · · · 2
0 3 2 · · · 2
...

...
. . .

...
...

0 0 0 3 2
2 2 2 2 3

 .

In the following, we give the result by running P-SSOR, P-SAOR and P-HSS algorithms.

Table 4: Numerical result of Example 5.4.

n P-HSS P-SAOR P-SSOR

500

linter number 50 21 13
cpu time(second) 0.0028 0.0116 0.0050
residual (e-10) Fail 9.6847 9.5762

In Table 4, as seen, both of P-SSOR and P-SAOR methods provide quite suitable results. However, we
see that the Picard-HSS method fail to converge in maximum iterations (in tables it is denoted by Fail).

6. Conclusion

In this paper, we propose Picard splitting iteration method and Picard CG method for solving absolute
value equation based on the Picard iteration and prove convergence of those algorithms. At last, we give
several numerical experiments to compare the efficiency among the Picard splitting iteration methods and
Picard CG method.

Acknowledgment

The authors thank the anonymous referee for helping to improve the original manuscript by valuable
suggestions. The research was supported by Fujian Natural Science Foundation (Grant No. 2016J01005)
and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB18010202).

References

[1] Z.-Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009),
2923–2936. 1

[2] R. W. Cottle, G. B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra and Appl., 1
(1968), 103–125. 1

[3] R. W. Cottle, J.-S. Pang, R. E. Stone, The linear complementarity problem, Computer Science and Scientific Computing,
Academic Press, Inc., Boston, MA, (1992). 1

[4] T.-X. Gu, X.-W. Xu, X.-P. Liu, H.-B. An, X.-D. Hang, Iterative methods and preconditioning techniques, (Chinese)
Science Press, Beijing, (2015). 4.2

[5] S.-L. Hu, Z.-H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), 417–424. 1
[6] S. Ketabchi, H. Moosaei, An efficient method for optimal correcting of absolute value equations by minimal changes in the

right hand side, Comput. Math. Appl., 64 (2012), 1882–1885.
[7] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory

Appl., 154 (2012), 1080–1087.
[8] S. Ketabchi, H. Moosaei, S. Fallahi, Optimal error correction of the absolute value equation using a genetic algorithm,

Math. Comput. Model., 57 (2013), 2339–2342.
[9] O. L. Mangasarian, Linear complementarity problems solvable by a single linear program, Math. Programming, 10

(1976), 263–270.
[10] O. L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), 3–8.
[11] O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36 (2007), 43–53.
[12] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), 101–108. 1

C.-Q. Lv, C.-F. Ma, J. Nonlinear Sci. Appl., 10 (2017), 3643–3654 3654

[13] O. L. Mangasarian, Primal-dual bilinear programming solution of the absolute value equation, Optim. Lett., 6 (2012),
1527–1533.

[14] O. L. Mangasarian, Absolute value equation solution via dual complementarity, Optim. Lett., 7 (2013), 625–630.
[15] O. L. Mangasarian, Absolute value equation solution via linear programming, J. Optim. Theory Appl., 161 (2014),

870–876. 1
[16] O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359–367. 1, 3.2
[17] M. A. Noor, J. Iqbal, K. I. Noor, E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 6

(2012), 1027–1033. 1
[18] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New

York-London, (1970). 2.1, 2.2
[19] O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), 363–372. 1
[20] J. Rohn, A theorem of the alternatives for the equation Ax+B|x| = b, Linear Multilinear Algebra, 52 (2004), 421–426.
[21] J. Rohn, An algorithm for solving the absolute value equation, Electron. J. Linear Algebra, 18 (2009), 589–599.
[22] J. Rohn, On unique solvability of the absolute value equation, Optim. Lett., 3 (2009), 603–606.
[23] J. Rohn, An algorithm for computing all solutions of an absolute value equation, Optim. Lett., 6 (2012), 851–856.
[24] J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value equations and sufficient

conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. 1
[25] D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), 2191–2202. 1, 3.10
[26] A.-X. Wang, H.-J. Wang, Y.-K. Deng, Interval algorithm for absolute value equations, Cent. Eur. J. Math., 9 (2011),

1171–1184. 1

	Introduction
	 Matrix splitting method and conjugate gradient method
	The splitting iteration method
	The conjugate gradient method

	The Picard splitting iteration method
	The Picard CG method
	Numerical experiments
	Conclusion

