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Abstract

In this paper, d-dimensional (dD) quasi-periodically forced nonlinear Schrödinger equation with a general nonlinearity

iut −∆u+Mξu+ εφ(t)(u+ h(|u|2)u) = 0, x ∈ Td, t ∈ R

under periodic boundary conditions is studied, where Mξ is a real Fourier multiplier and ε is a small positive parameter, φ(t)
is a real analytic quasi-periodic function in t with frequency vector ω = (ω1,ω2 . . . ,ωm), and h(|u|2) is a real analytic function
near u = 0 with h(0) = 0. It is shown that, under suitable hypothesis on φ(t), there are many quasi-periodic solutions for the
above equation via KAM theory. c©2017 All rights reserved.
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1. Introduction and main result

Craig-Wayne-Bourgain method and infinite-dimensional KAM theory are two main approaches to
deal with the problem of the existence of finite-dimensional tori for infinite-dimensional systems, such
as Hamiltonian PDEs. The first one is a generalization of the Lyapunov-Schmidt reduction and the
Newtonian method and allows one to avoid explicitly using the Hamiltonian structure of the systems.
The reader is referred to Craig-Wayne [9], Bourgain [4–8]. The second approach is the extension of
classical KAM theory. In this context the first results were obtained by Wayne [24], Kuksin [18], and
Pöschel [21]. There are also many results on the existence of periodic solutions, quasi-periodic solutions
for one dimensional Hamiltonian PDEs, see[1, 13, 14, 19–22, 25, 26] and the references therein. However,
they meet difficulties in higher dimensional Hamiltonian PDEs.

Bourgain proved the existence of quasi-periodic solutions for partial differential equations in higher
dimensional spaces with Dirichlet boundary conditions or periodic boundary conditions by the Craig-
Wayne-Bourgain method. The reader is referred to Bourgain [6–8]. Berti-Bolle proved in [2, 3] that
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the wave equations and Schrödinger equations with a multiplicative potential on Td,d > 1, finitely
differentiable nonlinearities admit the existence of quasi-periodic solutions via Nash-Moser method.

Geng-You [12, 15, 16] and Eliasson-Kuksin [11] constructed quasi-periodic solutions of higher dimen-
sional Hamiltonian PDEs respectively by method from an infinite dimensional KAM theory. For the
completely resonant cubic Schrödinger equation on a torus Td, the existence of quasi-periodic solutions
were proved by Procesi and Procesi [23]. Later Geng-You [17] proved an infinite dimensional KAM theory.
They used the theorem to study the higher dimensional nonlinear Schrödinger equation

iut −∆u+Mξu+ f(|u|2)u = 0, x ∈ Td, t ∈ R

with periodic boundary conditions.
All works mentioned above do not conclude the case with forced terms. It seems that the methods of

the KAM for PDE theory have not been used to study the existence of quasi-periodic solutions for higher
dimensional Schrödinger equations with quasi-periodic forcing of the form

iut −∆u+ µu+ f(t, x,u) = 0, µ > 0

with periodic boundary conditions.
In this paper, the existence and the linear stability of quasi-periodic solutions for quasi-periodically

forced higher dimensional Schrödinger equation with periodic boundary conditions will be proved. This
result has been obtained by Berti and Bolle [3]. However the approach used in the paper is based on KAM
theory, while the proof in [3] is based on Lyapunov-Schmidt decomposition and a Nash-Moser scheme.
Comparing with Nash-Moser method, the KAM approach has its own advantages what besides obtaining
the existence of quasi-periodic solutions it allows one to construct a local normal form in a neighborhood
of the obtained solutions, and provides more information of the dynamics, for instance on the stability
of the solutions. More concretely, d-dimensional (dD) quasi-periodically forced nonlinear Schrödinger
equation with a general nonlinearity

iut −∆u+Mξu+ εφ(t)(u+ h(|u|2)u) = 0, x ∈ Td, t ∈ R (1.1)

under periodic boundary conditions

u(t, x1, x2, · · · , xd) = u(t, x1 + 2π, x2, · · · , xd) = · · · = u(t, x1, x2, · · · , xd−1, xd + 2π) (1.2)

is studied, where Mξ is a real Fourier multiplier and ε is a small positive parameter, φ(t) is a real analytic
quasi-periodic function in t with frequency vector ω = (ω1,ω2 . . . ,ωm) ⊂ [ρ̃, 2ρ̃]m for some constant
ρ̃ > 0, and h(|u|2) is a real analytic function near u = 0 with h(0) = 0.

The main step is to reduce the equation (1.1) to a setting where KAM theory as developed by Geng-You
[17] can be applied. This needs to reduce the linear part of Hamiltonian system to constant coefficients by
a linear quasi-periodic change of variables with the same basic frequencies as the initial system. However,
it cannot be guaranteed in general. A large part of the present paper will be devoted to the proof of
reducibility of infinite-dimensional linear quasi-periodic systems. In fact, the question of reducibility of
infinite-dimensional linear quasi-periodic systems is also interesting itself and remains open in the general
case. There are two important works in this line. Firstly, Bambusi and Graffi [1] gave a general proof of
reducibility of quasiperiodically forced PDEs. More recently, Kuksin and Eliasson [10] showed how such
a problem can be reduced to a problem of persistence of tori, and thus solved by applying a standard
KAM theorem. However, it would seem that their results cannot be directly applied to the problems in
this paper because of the difference in the infinite dimensional KAM theories.

Assume that the operator A = −∆+Mξ with the periodic boundary conditions has eigenvalues λj
satisfying

λil = |il|
2 + ξl = il1

2 + · · ·+ ild2 + ξl, il = (il1, · · · , ild) ∈ Zd, 1 6 l 6 n,
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λj = |j|2 = j1
2 + · · ·+ jd2, j = (j1, · · · , jd) ∈ Zd, j 6= i1, · · · , in,

and the corresponding eigenfunction φj(x) =
√

1
(2π)d

ei<j,x> form a basis in the domain of the operator.

Denote S = {i1 = (i11, · · · , i1d), · · · , in = (in1, · · · , ind)} ⊂ Zd and assume that i1, · · · , in are the distin-
guished sites of Fourier modes where 0 ∈ S in order to take care of (λj,k) = (0, 0), and the parameter
ξ = (ξ1, · · · , ξn) ∈ [0, 1]n ⊂ Rn.

In the present paper, the equation (1.1) is a small perturbation of the linear equation iut = ∆u−Mξu

when ε � 1. The existence of the quasi-periodic solutions of equation (1.1) will be studied when ε 6= 0.
For the purpose, throughout this paper, it will be assumed that

(H) φ(t) is a real analytic quasi-periodic function in t with frequency vector ω, and [φ] 6= 0 where [φ]
denotes the time average of φ, coinciding with the space average.

The following is the main result of this paper. The proof is based on a KAM theorem of PDE inspired
by Geng-You [17].

Theorem 1.1 (Main theorem). Let ρ̃ be a positive constant, and (H) holds. For given set S = {i1 = (i11, · · · , i1d),
· · · , in = (in1, · · · , ind)} ⊂ Zd with n > 2, then for arbitrary 0 < γ < 1, 0 < ρ < 1 and γ ′ > 0 be small enough,
there is small enough positive ε∗(ρ,γ,γ ′) such that for any 0 < ε < ε∗, there exists a subset Ω ⊂ [ρ̃, 2ρ̃]m with
measΩ > (1 − γ)ρ̃m and there is a subset Σγ ′ ⊂ Σ := Ω× [0, 1]n with meas (Σ \ Σγ ′) = O(γ ′) , such that
for any (ω, ξ1, . . . , ξn) ∈ Σγ ′ , the nonlinear Schrödinger equation (1.1) possesses an n-dimensional quasi-periodic
solution. Moreover, the obtained solutions are real analytic and linealy stable.

The rest of the paper is organized as follows. In Section 2 the Hamiltonian setting and reducibility
of Schrödinger equations are discussed. In Section 3 the equations obtained in Section 2 are transformed
into some partial Birkhoff normal forms for using the KAM theorem in [17]. In Section 4 it is introduced
the infinite dimensional KAM theorem in [17] in order to prove the main result of Theorem 1.1. In Section
5 the main result of Theorem 1.1 is proved. Lemma 4.9 is proved in Appendix.

2. Reducibility of Schrödinger equations

Let us rewrite the Schrödinger equation (1.1) as follows

iut = −Au− εφ(t)(u+ h(|u|2)u), A = −∆+Mξ, x ∈ Td, t ∈ R. (2.1)

Equation (2.1) may be rewritten as

ut = i
∂H

∂ū
,

which may be viewed as the Hamiltonian system with Hamiltonian function

H =< Au,u > +εφ(t)

∫
Td

(|u|2 + χt(|u|
2))dx,

where χt is a primitive of h and < ·, · > denotes the scalar product in L2.
We introduce coordinates q = (· · · ,qj, · · · )j∈Zd and its complex conjugate q̄ = (· · · , q̄j, · · · )j∈Zd

through the relations
u(t, x) =

∑
j∈Zd

qj(t)φj(x).

The coordinates are taken from some Hilbert space la of sequences q = (· · · ,qj, · · · )j∈Zd with finite norm

‖q‖a =
∑
j∈Zd

|qj|e
|j|a.
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Below we will assume that a > 0. Let α ≡ (. . . ,αj, . . .)j∈Zd ,β ≡ (. . . ,βj, . . .)j∈Zd , and αj and βj ∈ N

with finitely many nonzero components of positive integers. The product qαq̄β denotes
∏
j q
αj
j q̄

βj
j ,

|α| =
∑
j∈Zd αj, |β| =

∑
j∈Zd βj. We obtain the Hamiltonian

H = Λ+G,

where

Λ =
∑
j∈Zd

λj|qj|
2 + εφ(t)|qj|

2, G ≡ εφ(t)
∫

Td
χt(|u|

2)dx = εφ(t)
∑

α,β,|α|+|β|>4,
∑
j∈Zd

(αj−βj)j=0

Gαβq
αq̄β.

with |Gαβ| 6 C,C > 0 is some absolute constant. The equations of motion are

q̇j = i
∂H

∂q̄j
= iλjqj + iεφ(t)qj + i

∂G

∂q̄j
, j ∈ Zd (2.2)

with respect to the symplectic structure i
∑
j∈Zd dqj ∧ dq̄j on la × la.

Let ϕ(ϑ) be the shell of φ(t), we introduce a pair of action-angle variables (J, ϑ) ∈ Rm ×Tm, then (2.2)
can be written as a Hamiltonian system

ϑ̇ =ω, J̇ = −
∂H

∂ϑ
, q̇j = i

∂H

∂q̄j
, j ∈ Zd

with the Hamiltonian

H =< ω, J > +
∑
j∈Zd

(λj + εϕ(ϑ))|qj|
2 + εĜ,

where

Ĝ =
∑

α,β,|α|+|β|>4,
∑
j∈Zd

(αj−βj)j=0

Ĝαβ(ϑ)q
αq̄β (2.3)

with

Ĝαβ(ϑ) =

{
ϕ(ϑ)Gαβ,

∑
j∈Zd(αj −βj)j = 0,

0,
∑
j∈Zd(αj −βj)j 6= 0. (2.4)

Denote
H̄ =< ω, J > +

∑
j∈Zd

(λj + εϕ(ϑ))|qj|
2, (2.5)

then

H = H̄+ εĜ. (2.6)

In the following, we will investigate the reducibility of Hamiltonian (2.5). To make this reducibility,
we introduce the following notations and spaces.

Define the sequences

σν = σ0

(
1 −

∑ν
s=1 s

−2

2
∑∞
s=1 s

−2

)
, ν = 1, 2, . . .

and it is easy to see σν > σν+1 > σ0/2. For some Γ > 0 and a fixed 0 < ρ < 1, we let

Γν = Γ

(
1 +C

+∞∑
s=ν

ερs

)
, ν = 0, 1, . . . ,
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where C is a constant that will be decided later. We let

ε0 = ε, εν = ε(1+ρ)ν , ν = 1, 2, . . . ,
Θ(σν) = {ϑ = (ϑ1, . . . , ϑm) ∈ Cm/2πZm : |Imϑs| < σν, s = 1, 2, . . . ,m} ,ν = 0, 1, 2, . . . ,

and define

Daν =
{
(ϑ, J,q, q̄) ∈ Cm/2πZm ×Cm × la × la : |Imϑ| < σν, |J| < Γ 2

ν, ‖q‖a < Γν, ‖q̄‖a < Γν
}

,
ν = 0, 1, 2, . . . ,

Da∞ =
{
(ϑ, J,q, q̄) ∈ Cm/2πZm ×Cm × la × la : |Imϑ| < σ0/2, |J| < Γ 2, ‖q‖a < Γ , ‖q̄‖a < Γ

}
,

where | · | denotes the sup-norm for complex vectors and la denotes complex Hilbert space. For a one
order Whitney smooth function F(ω) on closed bounded set Ω∗, we define

‖F‖∗Ω∗ = sup
ω∈Ω∗

(|F|+ |∂ωF|).

If F(ω) is a vector function from Ω∗ to la,s (or Rm1×m2) which is one order whitney smooth on Ω∗, we
define

‖F‖∗a,Ω∗ = ‖(‖Fi(ω)‖∗Ω∗)i‖a

or ‖F‖∗Ω∗ = max
16i16m1

∑
16i26m2

(‖Fi1i2(ω)‖∗Ω∗)

 .

For arbitrary σDa > 0, ΓDa > 0, we let

Da =
{
(ϑ, J,q, q̄) ∈ Cm/2πZm ×Cm × la × la : |Imϑ| < σDa , |J| < Γ 2

Da , ‖q‖a < ΓDa , ‖q̄‖a < ΓDa
}

.

Let w̃ = (ϑ, J,q, q̄) ∈ Da, we denote the weighted norm for w̃ by letting

|w̃|a = |ϑ|+
1
Γ 2
Da

|J|+
1
ΓDa
‖q‖a +

1
ΓDa
‖q̄‖a.

If F(η;ω) is a vector function from Da×Ω∗ to la (or Rm1×m2), which is one order whitney smooth on ω,
we define

‖F‖∗a,Da×Ω∗ = sup
η∈Da

‖F‖∗a,Ω∗

(
or ‖F‖∗Da×Ω∗ = sup

η∈Da
‖F‖∗Ω∗

)
.

To function F, associate a Hamiltonian vector field defined as XF = {FJ,−Fϑ, iFq̄,−iFq}, we denote the
weighted norm for XF by letting

|XF|
∗
a,Da×Ω∗ = ‖FJ‖∗Da×Ω∗ +

1
Γ 2
Da
‖Fϑ‖∗Da×Ω∗ +

1
ΓDa
‖Fz̄‖∗a,Da×Ω∗ +

1
ΓDa
‖Fq‖∗a,Da×Ω∗ .

Let w = (q, q̄) ∈ la × la be a doubly infinite complex sequence. Let A(η;ω) be an operator from la × la
to la × la for (η;ω) ∈ Da ×Ω∗, we define the norm

‖w‖a = ‖q‖a + ‖q̄‖a,

‖A(η;ω)‖a,Da×Ω∗ = sup
(η;ω)∈Da×Ω∗

sup
w 6=0

‖A(η;ω)w‖a
‖w‖a

,

‖A(η;ω)‖∗a,Da×Ω∗ = ‖A‖a,Da×Ω∗ + ‖∂ωA‖a,Da×Ω∗ .

Let B(η;ω) be an operator from Da to Da for (η;ω) ∈ Da ×Ω∗, we define the operator norm

|B(η;ω)|a,Da×Ω∗ = sup
(η;ω)∈Da×Ω∗

sup
w̃ 6=0

|B(η;ω)w̃|a
|w̃|a

, |B(η;ω)|∗a,Da×Ω∗ = |B|a,Da×Ω∗ + |∂ωB|a,Da×Ω∗ .



M. Zhang, J. Rui, J. Nonlinear Sci. Appl., 10 (2017), 3670–3693 3675

Let 0 6= k ∈ Zm, and let

R1
k =

{
ω ∈ [ρ̃, 2ρ̃]m : | < k,ω > | 6

ρ̃

C∗|k|m+1

}
,

we have
measR1

k 6 C1|k|
−1ρ̃m−1 ρ̃

C∗|k|m+1 6
C1

C∗|k|m+2 ρ̃
m.

Let Ω1 =
⋃

06=k∈Zm R1
k, we get

measΩ1 6
∑

06=k∈Zm

measR1
k 6 C1C

−1
∗ ρ̃

m
∑

06=k∈Zm

1
|k|m+2 6 C2C

−1
∗ ρ̃

m.

For arbitrary fixed 0 < γ < 1, we have
measΩ1 6 γρ̃m

if C∗ � 1. Let Ω = [ρ̃, 2ρ̃]m\Ω1, we get

measΩ > (1 − γ)ρ̃m.

Lemma 2.1. For given σ0 > 0, and arbitrary fixed 0 < γ < 1, 0 < ρ < 1 there is an ε∗(γ) > 0 such that for any
0 < ε < ε∗(γ) and ω ∈ Ω, there is a real analytic canonical transformation Σ0∞ defined on Da∞ ×Ω such that the
following statements hold:

(i) there is some absolute constant C > 0 independent on j such that

|Σ0∞ − id|∗a,Da∞×Ω 6 Cερ,

where id is the identity mapping;
(ii) the transformation Σ0∞ changes Hamiltonian (2.5) into

H̄ ◦ Σ0∞ =< ω, J > +
∑
j∈Zd

µj|qj|
2,

where
µj = λj + ε[φ] + ε

(1+ρ)µ∗j , ‖µ∗j ‖∗Ω 6 C, j ∈ Zd,

and for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ µ∗j+j̃t̃ and limt̃→∞ ∂ωµ∗j+j̃t̃ exist and

‖µ∗
j+j̃t̃

− lim
t̃→∞µ∗j+j̃t̃‖∗Ω 6

1
|t̃|

.

Proof. First of all, we will construct iteratively a series {Hl} of Hamiltonian functions of the form

Hl = H
2
l + Rl, l = 0, 1, . . . ,ν, (2.7)l

where
H2
l :=< ω, J > +

∑
j∈Zd

λj,lqjq̄j, Rl := εl
∑
j∈Zd

Rj,l(ϑ,ω)qjq̄j,

with Rj,l(ϑ,ω) =
∑
k∈Zm Rj,l,k(ω)ei<k,ϑ> and Rj,0 = ϕ(ϑ). Furthermore

‖Rj,l‖∗Θ(σl)×Ω 6 C, l = 0, 1, . . . ,ν, (2.8)l

and for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ Rj+j̃t̃,l and limt̃→∞ ∂ωRj+j̃t̃,l exist and

‖Rj+j̃t̃,l − lim
t̃→∞Rj+j̃t̃,l‖∗Θ(σl)×Ω 6

1
|t̃|

. (2.9)l
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And

λj,0 = λj, λj,l = λj +

l−1∑
s=0

µj,l,s, l > 1, (2.10)l

here
µj,l,0 = ε[φ], µj,l,s = εsµ

∗
j,l,s, ‖µ∗j,l,s‖∗Ω 6 C, s = 1, 2, . . . ,ν, (2.11)l

and for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ µ∗j+j̃t̃,l,s and limt̃→∞ ∂ωµ∗j+j̃t̃,l,s exist and

‖µ∗
j+j̃t̃,l,s − lim

t̃→∞µ∗j+j̃t̃,l,s‖∗Ω 6
1
|t̃|

. (2.12)l

Clearly, we have that H0 = H̄ for l = 0, and ‖Rj,0‖∗Θ(σ0)×Ω 6 C, where C is an absolute constant
independent on j, l. And for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ Rj+j̃t̃,0 and limt̃→∞ ∂ωRj+j̃t̃,0
exist and

‖Rj+j̃t̃,0 − lim
t̃→∞Rj+j̃t̃,0‖∗Θ(σl)×Ω = 0 6

1
|t̃|

.

Let XFν be the Hamiltonian vector field associated with a function Fν :

Fν = ενFν = εν
∑
j∈Zd

fj,ν(ϑ;ω)qjq̄j

with
fj,ν(ϑ;ω) =

∑
k∈Zm

fj,ν,k(ω)ei<k,ϑ> (2.13)

and [fj,ν] = 0, and let XtFν denote its time-t map.
We look for a change of variables Sν defined on a domain Daν+1 by the time-one map X1

Fν
of the

Hamiltonian vector field XFν , such that the system (2.7)ν is transformed into the form (2.7)ν+1 and
satisfies (2.8)ν+1, (2.9)ν+1, (2.10)ν+1, (2.11)ν+1, and (2.12)ν+1. In fact, the new Hamiltonian Hν+1 can be
written as

Hν+1 := Hν ◦X1
Fν

= H2
ν + Rν + {H2

ν,Fν}+ εν
∫ 1

0
(1 − t)

{
{H2
ν,Fν}, Fν

}
◦XtFνdt+ εν

∫ 1

0
{Rν, Fν} ◦XtFνdt.

(2.14)

The function Fν is determined by the homological equation

Rν + {H2
ν,Fν} = εν

∑
j∈Zd

[Rj,ν]qjq̄j,

which is equivalent to
− < ω,∂ϑfj,ν(ϑ;ω) > +Rj,ν(ϑ;ω) = [Rj,ν]. (2.15)

Inserting (2.13) into (2.15) we get

i < k,ω > fj,ν,k(ω) = Rj,ν,k(ω), k 6= 0.

Hence, we get

fj,ν(ϑ;ω) =
∑

06=k∈Zm

Rj,ν,k(ω)

i < k,ω >
ei<k,ϑ>. (2.16)

We can get by Cauchy’s estimate and (2.8)ν,

|Rj,ν,k| 6 ‖Rj,ν‖∗Θ(σν)×Ωe
−|k|σν 6 Ce−|k|σν (2.17)
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and
|∂ωRj,ν,k| 6 ‖Rj,ν‖∗Θ(σν)×Ωe

−|k|σν 6 Ce−|k|σν . (2.18)

By Cauchy’s estimate and (2.9)ν, we have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ Rj+j̃t̃,ν,k
and limt̃→∞ ∂ωRj+j̃t̃,ν,k exist and

‖Rj+j̃t̃,ν,k − lim
t̃→∞Rj+j̃t̃,ν,k‖

∗
Ω 6

1
|t̃|

. (2.19)

Thus, we have

sup
(ϑ;ω)∈Θ(σν+1)×Ω

|fj,ν| 6 CC∗ρ̃
−1

∑
06=k∈Zm

|k|m+1e−σν|k|eσν+1|k|.

So, using Lemma 3.3 in [26], we get, for (ϑ;ω) ∈ Θ(σν+1)×Ω ,

|fj,ν| 6 CC∗ρ̃
−1(ν+ 1)4m+2 6 C(ν+ 1)6m+6, (2.20)

where C := CC∗ρ̃
−1. Moreover, by (2.10)ν and (2.11)ν, it follows that

|∂ωλj,ν| 6 Cε. (2.21)

Thus, in view of (2.16)-(2.18) and (2.21), we have, for (ϑ;ω) ∈ Θ(σν+1)×Ω,

∣∣∂ωfj,ν∣∣ 6 ∑
06=k∈Zm

(∣∣∣∣∂ωRj,ν,k(ω)

< k,ω >

∣∣∣∣+ ∣∣∣∣Rj,ν,k(ω)k

< k,ω >2

∣∣∣∣) |ei<k,ϑ>|

6 C
∑

06=k∈Zm

(
C∗ρ̃

−1|k|m+1 + |k|(C∗ρ̃
−1|k|m+1)

2)
e−σν|k|eσν+1|k|

6 2CC2
∗ρ̃

−2
∑

06=k∈Zm

|k|2m+3e−σν|k|eσν+1|k|

6 2CC2
∗ρ̃

−2(ν+ 1)6m+6 6 C(ν+ 1)6m+6,

(2.22)

where C := 2C ·C2
∗ρ

−2. In view of (2.20) and (2.22) we have

‖fj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+6, (2.23)

and from (2.19), we have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ fj+j̃t̃,ν and limt̃→∞ ∂ωfj+j̃t̃,ν
exist and

‖fj+j̃t̃,ν − lim
t̃→∞ fj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+6. (2.24)

In view of (2.16), we have

∂ϑfj,ν(ϑ;ω) =
∑

06=k∈Zm

Rj,ν,k(ω)

< k,ω >
ei<k,ϑ> · k, ∂ϑϑfj,ν(ϑ;ω) =

∑
06=k∈Zm

Rj,ν,k(ω)

< k,ω >
ei<k,ϑ> · ikkT ,

where k is an m column vector and kkT is an m×m matrix. Similar to above discussion, we get the
following estimates

‖∂ϑfj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+8, (2.25)

‖∂ϑϑfj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+10 (2.26)
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for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ ∂ϑfj+j̃t̃,ν, limt̃→∞ ∂ω∂ϑfj+j̃t̃,ν, limt̃→∞ ∂ϑϑfj+j̃t̃,ν,
and limt̃→∞ ∂ω∂ϑϑfj+j̃t̃,ν exist and

‖∂ϑfj+j̃t̃,ν − lim
t̃→∞∂ϑfj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+8, (2.27)

‖∂ϑϑfj+j̃t̃,ν − lim
t̃→∞∂ϑϑfj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+10. (2.28)

Let
λj,ν+1 = λj,ν + εν[Rj,ν],

then by (2.8)ν and (2.9)ν it is easy to see that λj,ν+1 satisfies the conditions (2.10)ν+1, (2.11)ν+1, and
(2.12)ν+1.

To get the estimates for the flow XtFν , we let

Bj,ν(ϑ;ω) =

(
0 fj,ν(ϑ;ω)

fj,ν(ϑ;ω) 0

)
, J2 = i

(
0 1
−1 0

)
.

In view of (2.23)-(2.28), we have

‖Bj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+6,

‖∂ϑBj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+8,

‖∂ϑϑBj,ν‖∗Θ(σν+1)×Ω 6 C(ν+ 1)6m+10,

and for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ Bj+j̃t̃,ν, limt̃→∞ ∂ϑBj+j̃t̃,ν, limt̃→∞ ∂ϑϑBj+j̃t̃,ν,
limt̃→∞ ∂ωBj+j̃t̃,ν, limt̃→∞ ∂ω∂ϑBj+j̃t̃,ν, and limt̃→∞ ∂ω∂ϑϑBj+j̃t̃,ν exist and

‖Bj+j̃t̃,ν − lim
t̃→∞Bj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+6,

‖∂ϑBj+j̃t̃,ν − lim
t̃→∞∂ϑBj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+8,

‖∂ϑϑBj+j̃t̃,ν − lim
t̃→∞∂ϑϑBj+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+10.

Let

Bν(ϑ;ω) =



. . . . . . 0 0 0 0 . . . · · ·
...

. . . 0 0 0 0
. . .

...
. . . 0 0 0 0 fj,ν 0 . . .

. . . 0 0
. . . · · · 0 0 . . .

. . . 0 0 · · · . . . 0 0 . . .

. . . 0 fj,ν 0 0 0 0 . . .
...

. . . 0 0 0 0
. . .

...

· · · . . . 0 0 0 0 . . .
. . .


, J = i

(
0 Ẽ∞×∞

−Ẽ∞×∞ 0

)
,

where Bν(ϑ;ω) is a matrix in which the other elements are 0 except the skew diagonal elements, and
Ẽ∞×∞ is a matrix in which the other elements are 0 except the skew diagonal elements are 1. Moreover,
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we note that the vector field XFν is as follows
ϑ̇ = 0,
d

dt

(
qj
q̄j

)
= ενJ2Bj,ν(ϑ;ω) ·

(
qj
q̄j

)
, j ∈ Zd,

J̇ = εν
∑
j∈Zd

∂ϑfj,ν(ϑ;ω)qjq̄j,

or equivalently, 
ϑ̇ = 0,
ẇ = ενJBν(ϑ;ω) ·w,
J̇ = εν

∑
j∈Zd

∂ϑfj,ν(ϑ;ω)qjq̄j.
(2.29)

Integrating the above equation from 0 to t, we get XtFν :

ϑ = ϑC,(
qj(t)
q̄j(t)

)
= exp

(
ενJ2Bj,ν(ϑ

C;ω)t
)
·
(
qj(0)
q̄j(0)

)
, j ∈ Zd,

J(t) = J(0) +
∫t

0
εν
∑
j∈Zd

∂ϑfj,ν(ϑ
C;ω) · qj(t) · q̄j(t)dt,

(2.30)

where ϑC is a constant vector in Cm/2πZm and (ϑC, J(0),q(0), q̄(0)) is the initial value. Obviously,
J2Bj,ν(ϑ;ω) are the diagonal matrices, thus we have exp

(
ενJ2Bj,ν(ϑ

C;ω)t
)

are the diagonal matrices.
That is qj(t) and q̄j(t) only depend on respectively the initial value qj(0) and q̄j(0). The above equation
(2.30) is equivalent to 

ϑ = ϑC,
w(t) = exp

(
ενJBν(ϑ

C;ω)t
)
·w(0),

J(t) = J(0) +
∫t

0
εν
∑
j∈Zd

∂ϑfj,ν(ϑ
C;ω) · qj(t) · q̄j(t)dt,

(2.31)

where (ϑC, J(0),w(0)) is the initial value. In view of εν = ε(1+ρ)ν , we have

|ε1−ρ
ν (ν+ 1)6m+10(C∗ρ̃

−1)
2ν
| 6 C, ν = 0, 1, . . . (2.32)

as ε < 1, where C is an absolute constant independent on ν, ε. From (2.23), we obtain, for ϑ ∈ Θ(σν+1) ,

ενJ2Bj,ν(ϑ;ω) = εν(ν+ 1)6m+6B∗1j,ν(ϑ;ω) = ερνB
∗
j,ν(ϑ;ω),

where
‖B∗j,ν(ϑ;ω)‖∗Θ(σν+1)×Ω 6 C,

thus we have

‖ενJBν(ϑ;ω)‖∗a,Θ(σν+1)×Ω 6 Cερν. (2.33)

From (2.24), we have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ B∗j+j̃t̃,ν and limt̃→∞ ∂ωB∗j+j̃t̃,ν
exist and

‖B∗
j+j̃t̃,ν − lim

t̃→∞B∗j+j̃t̃,ν‖∗Θ(σν+1)×Ω 6
1
|t̃|

.
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From (2.25), we obtain,

∂ϑ

(
ενJ2Bj,ν(ϑ;ω) ·

( qj
q̄j

))
= εν(ν+ 1)6m+8 · ∂ϑ

(
B∗1j,ν(ϑ;ω) ·

( qj
q̄j

))
= ερν · ∂ϑ

(
B∗j,ν(ϑ;ω) ·

( qj
q̄j

))
,

where ∥∥∥∥∂ϑ(B∗j,ν(ϑ;ω) ·
( qj
q̄j

))∥∥∥∥∗
Θ(σν+1)×Ω

6 C(|qj|+ |q̄j|),

thus we have

‖∂ϑ (ενJBν(ϑ;ω) ·w) ‖∗Daν+1×Ω
6 CερνΓν+1. (2.34)

We have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ ∂ϑB∗j+j̃t̃,ν and limt̃→∞ ∂ω∂ϑB∗j+j̃t̃,ν exist
from (2.27), and

‖∂ϑB∗j+j̃t̃,ν − lim
t̃→∞∂ϑB∗j+j̃t̃,ν‖∗Θ(σν+1)×Ω 6

1
|t̃|

. (2.35)

Therefor by (2.33) and (2.34), we have

exp (ενJBν(ϑ;ω)t) = Id+ g∞ν (ϑ;ω, t), (2.36)

where g∞ν (ϑ;ω, t) is a diagonal matrix and

‖g∞ν (ϑ;ω, t)‖∗a,Θ(σν+1)×Ω 6 Cερν, ‖∂ϑ (g∞ν (ϑ;ω, t) ·w) ‖∗Daν+1×Ω
6 CερνΓν+1, t ∈ [0, 1]. (2.37)

Let

gJ,ν(ϑ,w;ω, t) =
∫t

0
εν
∑
j∈Zd

∂ϑfj,ν(ϑ;ω) · qj(t) · q̄j(t)dt,

then
J(t) = J+ gJ,ν(ϑ,w;ω, t). (2.38)

In view of (2.25), (2.37), and (2.32), we have

‖gJ,ν(ϑ,w;ω, t)‖∗Daν+1×Ω
6 CερνΓ

2
ν, t ∈ [0, 1], (2.39)

and for arbitrary w ′ ∈ la × la, we have

‖∂w (gJ,ν(ϑ,w;ω, t)) ·w ′‖∗Daν+1×Ω
6 CερνΓν · ‖w ′‖a, t ∈ [0, 1]. (2.40)

In view of (2.26), (2.37), and (2.32), we have

‖∂ϑ (gJ,ν(ϑ,w;ω, t)) ‖∗Daν+1×Ω
6 CερνΓ

2
ν, t ∈ [0, 1]. (2.41)

Let
XtFν = ΠY + gν(ω, t) : Daν+1 ×Ω 7→ Daν, (2.42)

by (2.31), (2.36), and (2.38), we have
Πϑ ◦XtFν(ϑ, J,w) = ϑ : Daν+1 ×Ω 7→ Θ(σν),
Πw ◦XtFν(ϑ, J,w) = (Id+ g∞ν (ϑ;ω, t)) ·w : Daν+1 ×Ω 7→ la × la,
ΠJ ◦XtFν(ϑ, J,w) = J+ gJ,ν(ϑ,w;ω, t) : Daν+1 ×Ω 7→ Cm,

(2.43)

where ΠY,Πω denote the projectors

ΠY : Ya ×Ω 7−→ Ya, Πω : Ya ×Ω 7−→ Ω,
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and Πϑ,ΠJ, and Πw denote the projectors of Ya = Cm/2πZm ×Cm × la × la on the first, second, and
third factor respectively. In view of the first equation of (2.37), (2.39), and (2.43), we get

|XtFν −ΠY|
∗
a,Daν+1×Ω

=
∣∣(0,g∞ν (ϑ;ω, t)w,gJ,ν(ϑ,w;ω, t)

)∣∣∗
a,Daν+1×Ω

=
‖g∞ν (ϑ;ω, t)w‖∗a,Daν+1×Ω

Γν+1
+
‖gJ,ν(ϑ,w;ω, t)‖∗Daν+1×Ω

Γ 2
ν+1

6
‖g∞ν (ϑ;ω, t)‖∗a,Θσν+1×Ω

· ‖w‖a
Γν+1

+
‖gJ,ν(ϑ,w;ω, t)‖∗Daν+1×Ω

Γ 2
ν+1

6 3Cερν 6 Cερν,

(2.44)

where C := 3C. In view of (2.43), we have

DXtFν =

 Idm×m 0 0
∂ϑ(g

∞
ν (ϑ;ω, t)w) Id∞×∞ + g∞ν (ϑ;ω, t) 0

∂ϑ(gJ,ν(ϑ,w;ω, t)) ∂w(gJ,ν(ϑ,w;ω, t)) Idm×m

 ,

where D is the differentiation operator with respect to (ϑ,w, J). In view of (2.37), (2.40), and (2.41), for
w̃ = (ϑ ′,w ′, J ′), (ϑ,w, J) ∈ Daν+1, we have

|
(
DXtFν − Id

)
w̃|a

=
∣∣ (0,∂ϑ(g∞ν (ϑ;ω, t)w)ϑ ′ + g∞ν (ϑ;ω, t)w ′,∂ϑ(gJ,ν(ϑ,w;ω, t))ϑ ′ + ∂w(gJ,ν(ϑ,w;ω, t))w ′

) ∣∣
a

=
‖∂ϑ(g∞ν (ϑ;ω, t)w)ϑ ′ + g∞ν (ϑ;ω, t)w ′‖a

Γν+1
+

|∂ϑ(gJ,ν(ϑ,w;ω, t))ϑ ′ + ∂w(gJ,ν(ϑ,w;ω, t))w ′|
Γ 2
ν+1

6
Cε
ρ
νΓν+1|ϑ

′|+Cερν‖w ′‖a
Γν+1

+
Cε
ρ
νΓ

2
ν|ϑ
′|+CερνΓν‖w ′‖a
Γ 2
ν+1

6 Cερν|ϑ
′|+Cερν

‖w ′‖a
Γν+1

+ 2Cερν|ϑ
′|+ 2Cερν

‖w ′‖a
Γν+1

6 3Cερν|w̃|a 6 Cερν|w̃|a,

where C := 3C. Therefore, we have

|DXtFν − Id|a,Daν+1×Ω < Cε
ρ
ν.

Similarly, we can get
|∂ω(DXtFν − Id)|a,Daν+1×Ω < Cε

ρ
ν,

and

|DXtFν − Id|
∗
a,Daν+1×Ω

< Cερν. (2.45)

We now estimate the smaller terms of (2.14). Note that those terms are a polynomial of qjq̄j. Thus, we
can write

εν

∫ 1

0
(1 − t)

{
{H2
ν,Fν}, Fν

}
◦XtFνdt+ εν

∫ 1

0
{Rν, Fν} ◦XtFνdt = ε

2
ν

∑
j∈Zd

R̃j,ν+1(ϑ;ω)qjq̄j,

where by
{H2
ν,Fν} = εν

∑
j∈Zd

[Rj,ν]qjq̄j − Rν.
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We know that R̃j,ν+1(ϑ;ω) are the linear combination of the product of fj,ν(ϑ;ω) and Rj,ν(ϑ;ω). In view
of (2.23) and (2.8)ν we get

fj,ν(ϑ;ω) = (ν+ 1)6m+6f∗j,ν(ϑ;ω), ‖f∗j,ν‖∗Θ(σν+1)×Ω 6 C

and
‖Rj,ν(ϑ;ω)‖∗Θ(σν+1)×Ω 6 C,

respectively. Thus,

R̃j,ν+1(ϑ;ω) = (ν+ 1)6m+6R̃∗j,ν+1(ϑ;ω), ‖R̃∗j,ν+1‖∗Θ(σν+1)×Ω 6 C,

and from (2.24) and (2.9)ν, we have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits limt̃→∞ R̃j+j̃t̃,ν+1 and
limt̃→∞ ∂ωR̃j+j̃t̃,ν+1 exist and

‖R̃j+j̃t̃,ν+1 − lim
t̃→∞ R̃j+j̃t̃,ν+1‖Θ(σν+1)×Ω 6

1
|t̃|
(ν+ 1)6m+6.

Then
Rj,ν+1 := ε1−ρ

ν R̃j,ν+1, ‖Rj,ν+1‖∗Θ(σν+1)×Ω 6 C

because of ε1−ρ
ν (ν+ 1)6m+6 6 1 as ε < 1. And we have for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, the limits

limt̃→∞ Rj+j̃t̃,ν+1 and limt̃→∞ ∂ωRj+j̃t̃,ν+1 exist and

‖Rj+j̃t̃,ν+1 − lim
t̃→∞Rj+j̃t̃,ν+1‖Θ(σν+1)×Ω 6

1
|t̃|

.

In view of ε2−(1−ρ)
ν = εν+1, this implies (2.7)ν+1 is defined in Daν+1 and λj,ν+1 satisfies (2.10)ν+1,(2.11)ν+1

and (2.12)ν+1 and Rj,ν+1 satisfy (2.8)ν+1 and (2.9)ν+1.
Obviously, we know

Da0 ⊃ Da1 ⊃ · · · ⊃ Daν ⊃ · · · ⊃ Da∞.

Moreover, in view of (2.42), (2.44), and (2.45), let

Sν = X1
Fν

= ΠY + gν(ω, 1) : Daν+1 ×Ω 7−→ Daν,

then we have
|Sν −ΠY|

∗
a,Daν+1×Ω

6 Cερν, |DSν − Id|
∗
a,Daν+1×Ω

6 Cερν. (2.46)

Now we are ready to prove the limiting transformation S0 ◦ S1 ◦ · · · converges to a transformation Σ0∞
and that this transformation integrates the equation (2.5). For ω ∈ Ω and 0 6 r 6 N let us denote by ΣrN
the map

ΣrN(·;ω) = Sr(·;ω) ◦ · · · ◦ SN−1(·;ω) : DaN 7−→ Dar

as usual, Σrr is the identity mapping. The following statement is similar to Lemmas 2.4 and 2.5 (pp. 63,
64) in [18]. For r, l > 0 , we have

Σrr+l −ΠY = (Sr −ΠY) ◦ (Σr+1
r+l ×Πω) + (Σr+1

r+l −ΠY). (2.47)

In view of (2.46), we have∣∣(Sr −ΠY) ◦ (Σr+1
r+l ×Πω)

∣∣∗
a,Dar+l×Ω

= |(Sr −ΠY)(Σ
r+1
r+l(η;ω);ω) − (Sr −ΠY)(η;ω) + (Sr −ΠY)(η;ω)|

∗
a,Dar+l×Ω

6 |(Sr −ΠY)(Σ
r+1
r+l(η;ω);ω) − (Sr −ΠY)(η;ω)|

∗
a,Dar+l×Ω

+ |(Sr −ΠY)(η;ω)|∗a,Dar+l×Ω

6 |DSr − Id|
∗
a,Dar+1×Ω

· |Σr+1
r+l −ΠY|

∗
a,Dar+l×Ω

+ |Sr −ΠY|
∗
a,Dar+1×Ω

6 Cερr · |Σr+1
r+l −ΠY|

∗
a,Dar+l×Ω

+Cερr .

(2.48)
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Let
Drr+l = |Σrr+l −ΠY|

∗
a,Dar+l×Ω

,

from (2.47) and (2.48), we can get

Drr+l = Cε
ρ
r (D

r+1
r+l + 1) +Dr+1

r+l.

Therefore, by induction and Dr+lr+l = 0, we have

Drr+l + 1 6 (Dr+lr+l + 1)
r+l−1∏
s=r

(Cερs + 1) =
r+l−1∏
s=r

(Cερs + 1) 6 1 + 3Cερr

as ε small enough. Thus we have
|Σrr+l −ΠY|

∗
a,Dar+l×Ω

6 3Cερr . (2.49)

In view of the definition of Sν, we know

DΣrr+l =

r+l−1∏
s=r

DSs.

And from (2.46), we have
|DΣrr+l − Id|

∗
a,Dar+l×Ω

6 3Cερr (2.50)

as above. Let η0 ∈ Da∞ and for s > 1 let ηs = Σll+s(η0;ω). Then by (2.46), (2.49), and (2.50), we have

dist(ηN+1,ηN) = dist
(
Σll+N+1(η0;ω),Σll+N(η0;ω)

)
= |Σll+N+1(η0;ω) − Σll+N(η0;ω)|

∗
a,Da∞×Ω

6
∣∣(Σll+N −ΠY)(Sl+N(η0;ω);ω) − (Σll+N −ΠY)(η0;ω)

∣∣∗
a,Da∞×Ω

+ |(Sl+N −ΠY)(η0;ω)|∗a,Da∞×Ω
6 |DΣll+N − Id|

∗
a,Dal+N×Ω

· |Sl+N −ΠY|
∗
a,Dal+N+1×Ω

+ |Sl+N −ΠY|
∗
a,Dal+N+1×Ω

6 (3Cερl + 1) ·Cερl+N 6 2Cερl+N.

(2.51)

So the sequence {ηs} is fundamental and converges to a point η∞ ∈ Ya. The right hand side of (2.51) does
not depend on η0. So the sequence {Σll+N(·;ω)} converges uniformly in Da∞ to an analytic map

Σl∞(·;ω) : Da∞ 7−→ Dal ,

which sends η0 to η∞. For each l 6 l1 <∞, the following relations is obviously held,

Σll1
(·;ω) ◦ Σl1∞(·;ω) = Σl∞(·;ω).

From (2.49), we have the estimate
|Σl∞ −ΠY|

∗
a,Da∞×Ω 6 3Cερl

by going to the limit. This proves (i). We remark that the Hamiltonian (2.5) satisfies the conditions (2.7)ν-
(2.12)ν, with ν = 0, the above iterative procedure can run repeatedly. Thus, we can get (ii). This completes
the proof.

Noting that the transformation Σ0∞ is linear and diagonal, and from (i) of Lemma 2.1, we get

qj ◦ Σ0∞ = qj + ε
ρg̃∗j,∞(ϑ;ω)qj,
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where
‖g̃∗j,∞(ϑ;ω)‖∗Θ(σ0/2)×Ω 6 C.

And for any fixed j ∈ Zd, j̃ ∈ Zd \ {0}, we have limt̃→∞ g̃∗j+j̃t̃,∞(ϑ;ω) and limt̃→∞ ∂ωg̃∗j+j̃t̃,∞(ϑ;ω) exist
and

‖g̃∗
j+j̃t̃,∞ − lim

t̃→∞ g̃∗j+j̃t̃,∞‖∗Θ(σ0/2)×Ω 6
1
|t̃|

. (2.52)

Hence, by (ii) of Lemma 2.1, Hamiltonian (2.5) is changed into by Σ0∞
H0 := H̄ ◦ Σ0∞ =< ω, J > +

∑
j∈Zd

µjqjq̄j,

and Hamiltonian (2.3) is changed into

G̃ = Ĝ ◦ Σ0∞ =
∑

α,β,|α|+|β|>4,
∑
j∈Zd

(αj−βj)j=0

G̃αβ(ϑ;ω)qαq̄β, (2.53)

where

G̃αβ(ϑ;ω) = Ĝαβ(ϑ)
(

1 + ερĜ∗αβ(ϑ;ω)
)

, ‖Ĝ∗αβ(ϑ;ω)‖∗Θ(σ0/2)×Ω 6 C. (2.54)

And from (2.52), we have for any fixed i, j ∈ Zd and ĩ, j̃ ∈ Zd \ {0}, if αi+ĩt̃ > 1 and αj+j̃t̃ > 1, denote

G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃−ej+j̃t̃,β
qi+ĩt̃qj+j̃t̃q

α−ei+ĩt̃−ej+j̃t̃ q̄β = G̃αβq
αq̄β, (2.55)

where ei is a vector in which the other elements are 0 except the ith element is 1, then the limits
limt̃→∞ G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃−ej+j̃t̃,β and limt̃→∞ ∂ωG̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃−ej+j̃t̃,β exist and

‖G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃−ej+j̃t̃,β − lim
t̃→∞ G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃−ej+j̃t̃,β‖∗Θ(σ0/2)×Ω 6

ερ

|t̃|
,

similarly, if αi+ĩt̃ > 1 and βj+j̃t̃ > 1, denote

G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃,β−ej+j̃t̃
qi+ĩt̃q̄j+j̃t̃q

α−ei+ĩt̃ q̄β−ej+j̃t̃ = G̃αβq
αq̄β,

then the limits limt̃→∞ G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃,β−ej+j̃t̃ and limt̃→∞ ∂ωG̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃,β−ej+j̃t̃ exist and

‖G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃,β−ej+j̃t̃ − lim
t̃→∞ G̃i+ĩt̃,j+j̃t̃,α−ei+ĩt̃,β−ej+j̃t̃‖∗Θ(σ0/2)×Ω 6

ερ

|t̃|
,

if βi+ĩt̃ > 1 and βj+j̃t̃ > 1, denote

G̃i+ĩt̃,j+j̃t̃,α,β−ei+ĩt̃−ej+j̃t̃
q̄i+ĩt̃q̄j+j̃t̃q

αq̄β−ei+ĩt̃−ej+j̃t̃ = G̃αβq
αq̄β,

then the limits limt̃→∞ G̃i+ĩt̃,j+j̃t̃,α,β−ei+ĩt̃−ej+j̃t̃
and limt̃→∞ ∂ωG̃i+ĩt̃,j+j̃t̃,α,β−ei+ĩt̃−ej+j̃t̃

exist and

‖G̃i+ĩt̃,j+j̃t̃,α,β−ei+ĩt̃−ej+j̃t̃
− lim
t̃→∞ G̃i+ĩt̃,j+j̃t̃,α,β−ei+ĩt̃−ej+j̃t̃

‖∗Θ(σ0/2)×Ω 6
ερ

|t̃|
.

This implies the Hamiltonian (2.6) is changed by the transformation Σ0∞ into

H = H0 + εG̃. (2.56)

As in [22], we can prove the following lemma.
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Lemma 2.2. For a > 0, the gradients G̃q, G̃q̄ are real analytic for real argument as maps from some neighborhood
of origin in la × la into la, with ‖G̃q‖a = O(‖q‖3

a), ‖G̃q̄‖a = O(‖q‖3
a), that is, there is a constant C such that

‖G̃q‖a 6 C‖q‖3
a, ‖G̃q̄‖a 6 C‖q‖3

a

uniformly for (ϑ,ω) ∈ Θ(σ0/2)×Ω. The Hamiltonian G̃ depends on the “time” ϑ = (ω1t, . . . ,ωmt) and param-
eter ω = (ω1, . . . ,ωm).

Proof. Due to (2.53), then for (ϑ,ω) ∈ Θ(σ0/2)×Ω,

∂G̃

∂qi
=

∑
α−ei,β,|α−ei|+|β|>3,

∑
j(αj−βj)j=0

G̃αβ(ϑ,ω)qα−ei q̄β.

From (2.4) and (2.54), we have

‖G̃q‖a =
∑
i∈Zd

|G̃qi |e
|i|a 6 C

∑
i∈Zd

∑
α−ei,β,|α−ei|+|β|>3,

∑
j(αj−βj)j=0

|qα−ei q̄β|e|(αi−1−βi)i+
∑
j 6=i(αj−βj)j|a

6 C
∑
i∈Zd

∑
α−ei,β,|α−ei|+|β|>3,

∑
j(αj−βj)j=0

|qα−ei |e|(αi−1)i+
∑
j 6=i jαj|a|q̄β|e|

∑
j jβj|a

6 C‖q‖|α|−1
a ‖q̄‖|β|a 6 C‖q‖|α|+|β|−1

a 6 C‖q‖3
a

as required. Similarly, we have ‖G̃q̄‖a 6 C‖q‖3
a. This completes the proof.

3. Partial Birkhoff normal form

Next we transform the Hamiltonian (2.56) into some partial Birkhoff normal form by introducing
the action-angle variable so that it may serve as a small perturbation of some integrable system in a
sufficiently small neighborhood of the origin.

For given n vectors in Zd, say S = {i1, · · · , in}, we denote Zd1 = Zd \ S. We introduce the action-angle
variable by setting

qj =

{ √
Ije

−iθj , j ∈ S,
zj, j ∈ Zd1 .

(3.1)

By the symplectic change (3.1), the Hamiltonian equation (2.56) becomes

H0 + εG̃ = < ω, J > +
∑
j∈S

µjIj +
∑
j∈Zd1

µjzjz̄j + P(ϑ, θ, J, I, z, z̄;ω, ξ).

Denote

N = < ω, J > +
∑
j∈S

µjIj +
∑
j∈Zd1

µjzjz̄j.

Hence, the total Hamiltonian (2.56) is

H = N+ P, (3.2)

where P is just εG̃ with the (ϑ, J,qi1 , · · · ,qin , q̄i1 , · · · , q̄in ,qj, q̄j)-variables expressed in terms of the
(ϑ, J, θ, I, zj, z̄j)-variables.
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Next, we will give out the estimates of the perturbed term P. To this end we need some notations
which are taken from [17]. Let la be now the Hilbert space of all complex sequences w = (. . . ,wj, . . .)j∈Zd1
with

‖w‖a =
∑
j∈Zd1

|wj|e
a|j| <∞, a > 0.

Set x = ϑ⊕ θ with θ = (θj)j∈S,y = J⊕ I, z = (zj)j∈Zd1
and ζ = ω⊕ (ξj)j∈S, and let us introduce the

phase space
Pa = T̂m+n ×Cm+n × la × la 3 (x,y, z, z̄),

where T̂m+n is the complexiation of the usual (m+n)-torus Tm+n. Set

Da(s
′, r) := {(x,y, z, z̄) ∈ Pa : |Imx| < s ′, |y| < r2, ‖z‖a + ‖z̄‖a < r}.

We define the weighted phase norms

|W|r = |x|+
1
r2 |y|+

1
r
‖z‖a +

1
r
‖z̄‖a

for W = (x,y, z, z̄) ∈ Pa . Denote by Σ the parameter set Ω× [0, 1]n. For a map U : D(s ′, r)× Σ → Pa,
define its Lipschitz semi-norm |U|Lr :

|U|Lr = sup
ζ 6=ζ ′

|∆ζζ ′U|r

|ζ− ζ ′|
,

where ∆ζζ ′U = U(·, ζ) −U(·, ζ ′), and where the supremum is taken over Σ. Let ᾱ ≡ (. . . , ᾱj, . . .)j∈Zd1
, β̄ ≡

(. . . , β̄j, . . .)j∈Zd1
, ᾱj and β̄j ∈N with finitely many nonzero components of positive integers. The product

zᾱz̄β̄ denotes
∏
j z
ᾱj
j z̄

β̄j
j . Let

P(x,y, z, z̄) =
∑
ᾱ,β̄

Pᾱβ̄(x,y)zᾱz̄β̄,

where Pᾱβ̄ =
∑
k,b Pkbᾱβ̄y

bei<k,x> are C1
W functions in parameter ζ in the sense of Whitney. Define the

weighted norm of P by
‖P‖Da(s ′,r),Σ ≡ sup

‖z‖a<r,‖z̄‖a<r

∑
ᾱ,β̄

‖Pᾱβ̄‖|zᾱ||z̄β̄|,

where, if Pᾱβ̄ =
∑
k∈Zm+n,b∈Nm+n Pkbᾱβ̄(ζ)y

bei<k,x>, Pᾱβ̄ is short for

‖Pᾱβ̄‖ ≡
∑
k,b

|Pkbᾱβ̄|Σr
2|b|e|k|s

′
, |Pkbᾱβ̄|Σ ≡ sup

ζ∈Σ
(|Pkbᾱβ̄|+ |∂ζPkbᾱβ̄|)

the derivative with respect to ζ is in the sense of Whitney. Denote by XP the vector field corresponding
the Hamiltonian P with respect to the symplectic structure dx∧ dy+ idz∧ dz̄, namely,

XP = (∂yP,−∂xP,∇z̄P,−∇zP).

Its weighted norm is defined by

‖XP‖Da(s ′,r),Σ ≡‖Py‖Da(s ′,r),Σ +
1
r2 ‖Px‖Da(s ′,r),Σ +

1
r
(
∑
j∈Zd1

‖Pzj‖Da(s ′,r),Σe
|j|a +

∑
j∈Zd1

‖Pz̄j‖Da(s ′,r),Σe
|j|a).

Lemma 3.1. The perturbation P(x,y, z, z̄; ζ) is real analytic for real argument (x,y, z, z̄)∈ Da(s ′, r) for some given
s ′, r > 0, and Lipschitz in the parameters ζ ∈ Σ, and for each ζ ∈ Σ its gradients with respect to z, z̄ satisfy

∂zP, ∂z̄P ∈ A(la, la),
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where A(la, la) denotes the class of all maps from some neighborhood of the origin in la into la, which is real
analytic in the real and imaginary parts of the complex coordinate z. In addition, for the perturbed term P we have
the following estimates

‖XP‖Da(s ′,r),Σ 6 Cε, ‖∂ζXP‖Da(s ′,r),Σ 6 Cε,

where s ′ = σ0/2 and r = ε1/2.

Proof. From (3.1) and ‖z‖a 6 r = ε1/2, we get ‖q‖a 6 Cε1/2 where q = q⊕ z with q = (. . . ,qj, . . .)j∈S.
And |P| = |εG̃| = O(ε3) on D(s ′, 2r). Using Cauchy estimates for ∂xP, ∂yP, ∂z̄P and ∂zP, we obtain |∂xP| =
O(ε3), |∂yP| = O(ε2), |∂z̄P| = O(ε5/2), |∂zP| = O(ε5/2) on D(s ′, r). Hence, we have ‖XP‖Da(s ′,r),Σ 6 Cε.
Using again Cauchy estimates with respect to ζ, we also have ‖∂ζXP‖Da(s ′,r),Σ 6 Cε.

4. An infinite-dimensional KAM theorem

In order to prove our main result (Theorem 1.1), we need to state a KAM theorem which was proved
by Geng-You [17]. Here we recite the theorem from [17].

Let us consider the perturbations of a family of Hamiltonian

N =
∑
j∈S

ω̂j(ξ)yj +
∑
j∈Zd1

Ω̂j(ξ)zjz̄j

in n-dimensional angle-action coordinates (x,y) and infinite-dimensional coordinates (z, z̄) with symplec-
tic structure ∑

j∈S
dxj ∧ dyj + i

∑
j∈Zd1

dzj ∧ dz̄j.

The tangent frequencies ω̂ = (ω̂j)j∈S and normal ones Ω̂ = (Ω̂j)j∈Zd1
depend on n parameters

ξ ∈ Π ⊂ Rn,

with Π a closed bounded set of positive Lebesgue measure.
For each ξ there is an invariant n-torus Tn0 = Tn × {0, 0, 0} with frequencies ω̂(ξ). In its normal space

described by the zz̄-coordinates the origin is an elliptic fixed point. Hence Tn0 is linear stable. The aim
is to prove the persistence of a large portion of this family of linearly stable rotational tori under small
perturbations H = N+ P of N. To this end the following assumptions are made.

Assumption 4.1 (Non-degeneracy). The map ξ 7→ ω̂(ξ) is a C1
W diffeomorphism between Π and its image.

Assumption 4.2 (Asymptotics of normal frequencies).

Ω̂j = |j|2 + Ω̃j,

where Ω̃,
js are C1

W functions of ξ with C1
W-norm bounded by some small positive constant L.

Assumption 4.3 (Melnikov’s non-resonance conditions). There exist γ ′, τ > 0 such that

| < k, ω̂ > | >
γ ′

|k|τ
, k 6= 0, | < k, ω̂ > +Ω̂j| >

γ ′

|k|τ
,

| < k, ω̂ > +Ω̂j + Ω̂l| >
γ ′

|k|τ
, | < k, ω̂ > +Ω̂j − Ω̂l| >

γ ′

|k|τ
, |k|+ ||j|− |l|| 6= 0.

Assumption 4.4 (Regularity). P is real analytic in x,y, z, z̄ and Whitney smooth in ξ; in addition

‖XP‖Da(s ′,r),Π <∞.
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Assumption 4.5 (Special form). P admits a special form of the following

D ={P : P =
∑

k∈Zn,b∈Nn,ᾱ,β̄

Pkbᾱβ̄(ξ)y
bei<k,x>zᾱz̄β̄},

where k, ᾱ, β̄ have the following relation

n∑
s=1

ksis +
∑
j∈Zd1

(ᾱj − β̄j)j = 0.

Assumption 4.6 (Töplitz-Lipschitz property). For any fixed j, l ∈ Zd, c̃ ∈ Zd \ {0}, the limits

lim
t̃→∞ Ω̃j+c̃t̃, lim

t̃→∞
∂2P

∂zj+c̃t̃∂zl−c̃t̃
, lim

t̃→∞
∂2P

∂zj+c̃t̃∂z̄l+c̃t̃
, lim

t̃→∞
∂2P

∂z̄j+c̃t̃∂z̄l−c̃t̃

exist. Moreover, there exists K > 0, such that when |t̃| > K,N+ P satisfies∣∣∣∣Ω̃j+c̃t̃ − lim
t̃→∞ Ω̃j+c̃t̃

∣∣∣∣
Π

6
ε

|t̃|
,∥∥∥∥ ∂2P

∂zj+c̃t̃∂zl−c̃t̃
− lim
t̃→∞

∂2P

∂zj+c̃t̃∂zl−c̃t̃

∥∥∥∥
Da(s ′,r),Π

6
ε

|t̃|
e−|j+l|a,∥∥∥∥ ∂2P

∂zj+c̃t̃∂z̄l+c̃t̃
− lim
t̃→∞

∂2P

∂zj+c̃t̃∂z̄l+c̃t̃

∥∥∥∥
Da(s ′,r),Π

6
ε

|t̃|
e−|j−l|a,∥∥∥∥ ∂2P

∂z̄j+c̃t̃∂z̄l−c̃t̃
− lim
t̃→∞

∂2P

∂z̄j+c̃t̃∂z̄l−c̃t̃

∥∥∥∥
Da(s ′,r),Π

6
ε

|t̃|
e−|j+l|a.

We can now state the basic KAM theorem which is attributed to Geng-You [17].

Theorem 4.7 ([17, Theorem 2]). Assume that the Hamiltonian H = N+ P satisfies Assumptions 4.1-4.6. Let
γ ′ > 0 be small enough, there exists a positive constant ε =ε(n,d,K,τ,γ ′,s ′,r,a), such that if ‖XP‖Da(s ′,r),Π < ε,
then the following holds true: there exist a Cantor subset Πγ ′ ⊂ Π with meas(Π \Πγ ′) = O(γ ′) and two maps
(analytic in x and C1

W in ξ)
Ψ : Tn ×Πγ ′ → Da(s

′, r), ω̃ : Πγ ′ → Rn,

where Ψ is ε

(γ ′)2 -close to the trivial embedding Ψ0 : Tn ×Π → Tn × {0, 0, 0} and ω̃ is ε-close to the unperturbed
frequency ω̂. Then for any ξ ∈ Πγ ′ and x ∈ Tn, the curve t → Ψ(x+ ω̃(ξ)t, ξ) is a quasi-periodic solution of
the Hamiltonian equations governed by H = N+ P. Moreover, the obtained solutions are real analytic and linearly
stable.

In order to apply the above theorem to our problem, we need to introduce a new parameter ω̄ below.
For fixed ω− ∈ Ω arbitrarily and for ω ∈ ¯̄Ω := {ω ∈ Ω | |ω −ω−| 6 ε}, we can introduce new

parameter ω̄ by the following
ω = ω− + εω̄, ω̄ ∈ [0, 1]m.

Hence, the Hamiltonian (3.2) becomes

H =< ω̂(ζ), ŷ > + < Ω̂(ζ), ẑ > +P (4.1)

where ω̂(ζ) = ω⊕ ω̆, ζ = ω̄⊕ ξ, ẑ = (|zj|
2)j∈Zd1

, x̂ = ϑ⊕ θ, ŷ = J⊕ I with

ω̆i = µi, i ∈ S, (4.2)

Ω̂j = µj, j ∈ Zd1 . (4.3)

Denote ω̆(ζ) = (. . . ,µi, . . .)i∈S, Ω̂(ζ) = (. . . ,µj, . . .)j∈Zd1
.
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Lemma 4.8. Let Π = [0, 1]m+n. Then we have XP ∈ A(la, la) and

‖XP‖Da(s ′,r)×Π 6 Cε ‖∂ζXP‖Da(s ′,r)×Π 6 Cε.

The proof of the above lemma is the same as one of lemma 3.1 and we omit it. Now we give the
following lemma which will be applied in the sequel and will be proved in Appendix.

Lemma 4.9. Let γ ′ > 0, τ > m+n+ 1, then for the parameter set Π = [0, 1]m+n, there is a subset Πγ ′ ⊂ Π with

meas(Π \Πγ ′) = O(γ
′), (4.4)

such that, for any ζ ∈ Πγ ′ ,

|< k, ω̂(ζ) > +l| >
γ ′

(|k|+ δ(|k|))τ−1 , ∀k ∈ Zm+n, l ∈ Z, |k|+ |l| 6= 0, (4.5)

where δ(x) = 1 as x = 0 and δ(x) = 0 as x 6= 0.

5. Proof of main theorem

In the following, we will verify Assumptions 4.1-4.6 for the above Hamiltonian (4.1).
Verifying Assumption 4.1: In view of (4.2), we have

∂ω̂

∂ζ
=

(
εIm 0
ε · ∂ω̆∂ω In

)
, for ζ ∈ Π,

where Im denotes the unit m×m-matrix. It is easy to check that det(∂ω̂∂ζ ) 6= 0. Thus assumption 4.1 is
verified.

Verifying Assumption 4.2: Take L = Cε, the proof is obvious.
Verifying Assumption 4.3: By Lemma 4.9, there exists a subset Πγ ′ ⊂ Π with meas(Π \Πγ ′) = O(γ ′)

such that for any ζ ∈ Πγ ′ ,

|< k, ω̂(ζ) > +l+O(ε)| >
γ ′

(|k|+ δ(|k|))τ
, ∀k ∈ Zm+n, l ∈ Z, |k|+ |l| 6= 0,

where ε be small enough. Hence for any ζ ∈ Πγ ′ ,

| < k, ω̂(ζ) > | >
γ ′

|k|τ
, k 6= 0,

| < k, ω̂(ζ) > +Ω̂j| >
γ ′

(|k|+ δ(|k|))τ
,

| < k, ω̂(ζ) > +Ω̂j + Ω̂l| >
γ ′

(|k|+ δ(|k|))τ
,

| < k, ω̂(ζ) > +Ω̂j − Ω̂l| >
γ ′

(|k|+ δ(|k|))τ
, |k|+ ||j|− |l|| 6= 0.

Assumption 4.3 is verified.
Verifying Assumption 4.4: Assumption 4.4 can be verified easily fulfilled by Lemma 4.8.
Verifying Assumption 4.5: From (2.53), we have

G̃ =
∑

α,β,|α|+|β|>4,
∑
j∈Zd

(αj−βj)j=0

G̃αβ(ϑ;ω)qαq̄β,
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where
G̃αβ = 0 if

∑
j∈Zd

(αj −βj)j 6= 0.

Denote by es the infinite dimensional vector with the sth component being 1 and the other components
being zero, and k2 ≡ (k21, . . . ,k2n),k2s = αis − βis , 1 6 s 6 n, ᾱ ≡ (. . . , ᾱj, . . .)j∈Zd1

, β̄ ≡ (. . . , β̄j, . . .)j∈Zd1
,

ᾱj = αj and β̄j = βj, j ∈ Zd1 then

G̃ =
∑

∑
j∈Zd

(αj−βj)j=0

εG̃αβq
αq̄β

=
∑

∑n
s=1(αis−βis)is+

∑
j∈Zd1

(αj−βj)j=0

εG̃αβq
αi1
i1
q̄
βi1
i1
· · ·qαinin q̄

βin
in
qα−

∑n
s=1αiseis q̄β−

∑n
s=1βiseis

=
∑

∑n
s=1(αis−βis)is+

∑
j∈Zd1

(ᾱj−β̄j)j=0

εG̃αβ
√
Ii1

αi1+βi1 · · ·
√
Iin
αin+βin · ei

∑n
s=1(αis−βis)θis · zᾱz̄β̄

:=
∑

∑n
s=1 k2sis+

∑
j∈Zd1

(ᾱj−β̄j)j=0

Pk2b2ᾱβ̄
(ϑ, J; ζ)Ib2ei<k2,θ>zᾱz̄β̄ ≡ P.

Thus

Pk2b2ᾱβ̄
(ϑ, J; ζ) = εG̃αβ, Pk2b2ᾱβ̄

(ϑ, J; ζ) = 0, if
n∑
s=1

k2sis +
∑
j∈Zd1

(ᾱj − β̄j)j 6= 0,

i.e., P ∈ D.
Verifying Assumption 4.6: By Lemma 2.1 (ii), we have for any fixed j ∈ Zd1 and c̃ ∈ Zd \ {0}, the limits

limt̃→∞ Ω̃j+c̃t̃ and limt̃→∞ ∂ζΩ̃j+c̃t̃ exist and∣∣∣∣Ω̃j+c̃t̃ − lim
t̃→∞ Ω̃j+c̃t̃

∣∣∣∣
Π

= ε(1+ρ)
∥∥∥∥µ∗j+c̃t̃ − lim

t̃→∞µ∗j+c̃t̃
∥∥∥∥∗
Ω

6
ε(1+ρ)

|t̃|
.

By P is just εG̃ with the (ϑ, J,qi1 , · · · ,qin , q̄i1 , · · · , q̄in ,qj, q̄j)-variables expressed in terms of the (ϑ, J, θ, I,
zj, z̄j)-variables and (2.55), we have for any fixed j, l ∈ Zd1 and c̃ ∈ Zd \ {0}, the limits limt̃→∞ ∂2P

∂zj+c̃t̃∂zl−c̃t̃

and limt̃→∞ ∂2∂ζP
∂zj+c̃t̃∂zl−c̃t̃

exist and

∂2P

∂zj+c̃t̃∂zl−c̃t̃
=

∂2(εG̃)

∂qj+c̃t̃∂ql−c̃t̃
=

∑
αj+c̃t̃>1,αl−c̃t̃>1,

∑
i∈Zd

(αi−βi)i=0

G̃j+c̃t̃,l−c̃t̃,α−ej+c̃t̃−el−c̃t̃,βq
α−ej+c̃t̃−el−c̃t̃ q̄β.

Thus, ∥∥∥∥ ∂2P

∂zj+c̃t̃∂zl−c̃t̃
− lim
t̃→∞

∂2P

∂zj+c̃t̃∂z̄l−c̃t̃

∥∥∥∥
Da(s ′,r),Π

6 ε

∥∥∥∥G̃j+c̃t̃,l−c̃t̃,α−ej+c̃t̃−el−c̃t̃,β − lim
t̃→∞ G̃j+c̃t̃,l−c̃t̃,α−ej+c̃t̃−el−c̃t̃,β

∥∥∥∥∗
Ω

· ‖q‖a · e−|(
∑
i∈Zd

(αi−βi)i)−(j+c̃t̃+l−c̃t̃)|a 6
ε(1+ρ)

|t̃|
e−|j+l|a.

Similarly, we have ∥∥∥∥ ∂2P

∂zj+c̃t̃∂z̄l+c̃t̃
− lim
t̃→∞

∂2P

∂zj+c̃t̃∂z̄l+c̃t̃

∥∥∥∥
Da(s ′,r),Π

6
ε(1+ρ)

|t̃|
e−|j−l|a,
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and ∥∥∥∥ ∂2P

∂z̄j+c̃t̃∂z̄l−c̃t̃
− lim
t̃→∞

∂2P

∂z̄j+c̃t̃∂z̄l−c̃t̃

∥∥∥∥
Da(s ′,r),Π

6
ε(1+ρ)

|t̃|
e−|j+l|a.

Thus H satisfies Assumption 4.6.
By applying Theorem 4.7 ([17, Theorem 2]), we get Theorem 1.1.

Appendix

Proof of Lemma 4.9. Let

R2
k,l =

{
ζ ∈ [0, 1]m+n : |< k, ω̂(ζ) > +l| <

γ ′

(|k|+ δ(|k|))τ−1

}
,

and
Π̄ =

⋃
k∈Zm+n

⋃
l∈Z,|k|+|l|6=0

R2
k,l.

When k 6= 0, by the Fubini theorem to estimate measR2
k,l it is sufficient to estimate the one-dimensional

measure of the intersection of R2
k,l with every line parallel to some fixed direction. In particular, to the

direction given by the vector k|k|−1. The intersection of R2
k,l with the line Lη̃ = {η̃+ tk|k|−1 : t ∈ R}, η̃ ∈

Rm+n, is equal to the set {
t ∈ R : |T(t)| <

γ ′

(|k|+ δ(|k|))τ−1

}
, (5.1)

where
T(t) = (< k, ω̂(ζ) > +l)|ω=η̃+tk|k|−1 .

Observe that (∂/∂t)ω · k = |k|, so for t1 > t2 we have

T(t1) − T(t2) =< k, (t1 − t2)k|k|
−1 >= |k|(t1 − t2).

Thus, the measure of the set (5.1) is no larger than γ ′|k|−1

(|k|+δ(|k|))τ−1 by Appendix C in [18]. This estimate
jointly with the Fubini theorem implies that

measR2
k,l 6

γ ′|k|−1

(|k|+ δ(|k|))τ−1 .

Let k = 0, then

|< k, ω̂(ζ) > +l| = |l| > 1 > γ ′.

When |l| > 2 + |k||ω̂|, we have

| < k, ω̂(ζ) > +l| > |l|− (1 + |k||ω̂|) > 1,

which implies the sets R2
k,l are empty. Set

|k|∞ = max{|k1|, |k2|, . . . , |km+n|},

note that ∑
|k|∞=p

1 6 2(m+n)(2p+ 1)m+n−1, |k|∞ 6 |k| 6 (m+n)|k|∞,
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we obtain

measΠ̄ = meas
⋃

06=k∈Zm+n

2+[[|k||ω̂|]]⋃
l=−2−[[|k||ω̂|]]

R2
k,l

6
∑

06=k∈Zm+n

(4 + 2[[|k||ω̂|]])
γ ′|k|−1

(|k|+ δ(|k|))τ−1

6 C0
∑

06=k∈Zm+n

γ ′

|k|τ−1

6 C0(m+n)γ ′
∞∑
p=1

(2p+ 1)m+n−1p−(τ−1),

where [[•]] stands for the integer part of •, and C0 is a constant depending on |ω̂| only. Because series∑∞
p=1(2p+ 1)m+n−1p−(τ−1) is convergent for τ > m+ n+ 1, we have measΠ̄ = O(γ ′). Let Πγ ′ = Π \ Π̄

we have (4.4) and (4.5). This completes the proof.
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[21] J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23
(1996), 119–148. 1
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