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Abstract

In this paper, d-dimensional (dD) quasi-periodically forced nonlinear Schrédinger equation with a general nonlinearity
i —Au+Meuted(t)(u+h(WPu) =0, xeTq teR

under periodic boundary conditions is studied, where Mg is a real Fourier multiplier and ¢ is a small positive parameter, ¢(t)
is a real analytic quasi-periodic function in t with frequency vector w = (w1, wy ..., wm), and h(lulz) is a real analytic function
near u = 0 with h(0) = 0. It is shown that, under suitable hypothesis on ¢(t), there are many quasi-periodic solutions for the
above equation via KAM theory. (©2017 All rights reserved.
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1. Introduction and main result

Craig-Wayne-Bourgain method and infinite-dimensional KAM theory are two main approaches to
deal with the problem of the existence of finite-dimensional tori for infinite-dimensional systems, such
as Hamiltonian PDEs. The first one is a generalization of the Lyapunov-Schmidt reduction and the
Newtonian method and allows one to avoid explicitly using the Hamiltonian structure of the systems.
The reader is referred to Craig-Wayne [9], Bourgain [4-8]. The second approach is the extension of
classical KAM theory. In this context the first results were obtained by Wayne [24], Kuksin [18], and
Poschel [21]. There are also many results on the existence of periodic solutions, quasi-periodic solutions
for one dimensional Hamiltonian PDEs, see[1, 13, 14, 19-22, 25, 26] and the references therein. However,
they meet difficulties in higher dimensional Hamiltonian PDEs.

Bourgain proved the existence of quasi-periodic solutions for partial differential equations in higher
dimensional spaces with Dirichlet boundary conditions or periodic boundary conditions by the Craig-
Wayne-Bourgain method. The reader is referred to Bourgain [6-8]. Berti-Bolle proved in [2, 3] that
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the wave equations and Schrédinger equations with a multiplicative potential on T4,d > 1, finitely
differentiable nonlinearities admit the existence of quasi-periodic solutions via Nash-Moser method.

Geng-You [12, 15, 16] and Eliasson-Kuksin [11] constructed quasi-periodic solutions of higher dimen-
sional Hamiltonian PDEs respectively by method from an infinite dimensional KAM theory. For the
completely resonant cubic Schrodinger equation on a torus T¢, the existence of quasi-periodic solutions
were proved by Procesi and Procesi [23]. Later Geng-You [17] proved an infinite dimensional KAM theory.
They used the theorem to study the higher dimensional nonlinear Schrédinger equation

iy —Au+Meu+f(luP)u=0, xeTq teR

with periodic boundary conditions.

All works mentioned above do not conclude the case with forced terms. It seems that the methods of
the KAM for PDE theory have not been used to study the existence of quasi-periodic solutions for higher
dimensional Schrodinger equations with quasi-periodic forcing of the form

iug —Au+pu+f(t,x,u) =0, pw>=0

with periodic boundary conditions.

In this paper, the existence and the linear stability of quasi-periodic solutions for quasi-periodically
forced higher dimensional Schrédinger equation with periodic boundary conditions will be proved. This
result has been obtained by Berti and Bolle [3]. However the approach used in the paper is based on KAM
theory, while the proof in [3] is based on Lyapunov-Schmidt decomposition and a Nash-Moser scheme.
Comparing with Nash-Moser method, the KAM approach has its own advantages what besides obtaining
the existence of quasi-periodic solutions it allows one to construct a local normal form in a neighborhood
of the obtained solutions, and provides more information of the dynamics, for instance on the stability
of the solutions. More concretely, d-dimensional (dD) quasi-periodically forced nonlinear Schrodinger
equation with a general nonlinearity

g —Au+Meu+ed(t)(u+h(uPHu) =0, xeT? teR (1.1)
under periodic boundary conditions
u(t/X1/X2/ o /Xd) = u(tlxl + 27T/X21 o /Xd) == u(t/XLXZ/ ©o,Xd—1,%a + 27[) (12)

is studied, where M is a real Fourier multiplier and ¢ is a small positive parameter, ¢ (t) is a real analytic
quasi-periodic function in t with frequency vector w = (w1, wz...,wm) C [p,2p]™ for some constant
p >0, and h(lulz) is a real analytic function near u = 0 with h(0) = 0.

The main step is to reduce the equation (1.1) to a setting where KAM theory as developed by Geng-You
[17] can be applied. This needs to reduce the linear part of Hamiltonian system to constant coefficients by
a linear quasi-periodic change of variables with the same basic frequencies as the initial system. However,
it cannot be guaranteed in general. A large part of the present paper will be devoted to the proof of
reducibility of infinite-dimensional linear quasi-periodic systems. In fact, the question of reducibility of
infinite-dimensional linear quasi-periodic systems is also interesting itself and remains open in the general
case. There are two important works in this line. Firstly, Bambusi and Graffi [1] gave a general proof of
reducibility of quasiperiodically forced PDEs. More recently, Kuksin and Eliasson [10] showed how such
a problem can be reduced to a problem of persistence of tori, and thus solved by applying a standard
KAM theorem. However, it would seem that their results cannot be directly applied to the problems in
this paper because of the difference in the infinite dimensional KAM theories.

Assume that the operator A = —A + Mg with the periodic boundary conditions has eigenvalues A;
satisfying

Ay =P+ & =i+ a4+ &, =, ha)€eZ9 1<1<n,
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A=l =32+ +id% =0 .da) €ZY, j#i, -, in,

and the corresponding eigenfunction ¢;(x) = ,/—15e!<I*> form a basis in the domain of the operator.

(2m)
Denote S = {i; = (i11, - ,i14), - ,in = (in1, - ,ind)} € Z9 and assume that iy, --- , i, are the distin-
guished sites of Fourier modes where 0 € S in order to take care of (Aj, k) = (0,0), and the parameter
£=(&, -, &) €0, 1" C R™
In the present paper, the equation (1.1) is a small perturbation of the linear equation iuy = Au—M;u
when ¢ < 1. The existence of the quasi-periodic solutions of equation (1.1) will be studied when ¢ # 0.
For the purpose, throughout this paper, it will be assumed that

(H) &(t) is a real analytic quasi-periodic function in t with frequency vector w, and [¢p] # 0 where [¢]
denotes the time average of ¢, coinciding with the space average.

The following is the main result of this paper. The proof is based on a KAM theorem of PDE inspired
by Geng-You [17].

Theorem 1.1 (Main theorem). Let p be a positive constant, and (H) holds. For given set S = {i; = (i11,--- ,114),
v in = (int, - ,inad)} C ZY withn > 2, then for arbitrary 0 <y < 1,0 < p < 1 and y’' > 0 be small enough,
there is small enough positive ¢*(p,y,vy') such that for any 0 < e < e*, there exists a subset Q C [p,2p]™ with
meas Q > (1—y)p™ and there is a subset L, C X := Q x [0,1]™ with meas (X \ Z,/) = O(y') , such that
forany (w, &, ...,&n) € L/, the nonlinear Schrodinger equation (1.1) possesses an n-dimensional quasi-periodic
solution. Moreover, the obtained solutions are real analytic and linealy stable.

The rest of the paper is organized as follows. In Section 2 the Hamiltonian setting and reducibility
of Schrodinger equations are discussed. In Section 3 the equations obtained in Section 2 are transformed
into some partial Birkhoff normal forms for using the KAM theorem in [17]. In Section 4 it is introduced
the infinite dimensional KAM theorem in [17] in order to prove the main result of Theorem 1.1. In Section
5 the main result of Theorem 1.1 is proved. Lemma 4.9 is proved in Appendix.

2. Reducibility of Schrodinger equations
Let us rewrite the Schrédinger equation (1.1) as follows
iy = —Au—ep(t)(ut+h(uP)u), A=—-A+M; xecT? teR. (2.1)
Equation (2.1) may be rewritten as

_on
oon’

which may be viewed as the Hamiltonian system with Hamiltonian function

Ut

H=< Au,u > +ed(t) er(lulz +x¢ () dx,

where ¥ is a primitive of h and < -,- > denotes the scalar product in |
We introduce coordinates q = (---,qj, - )jeza and its complex conjugate § = (---,§j, - )jeza
through the relations

u(t,x) = ) q;(t)d;(x).

jezd
The coordinates are taken from some Hilbert space 1* of sequences q = (- -, qj, - - - )jcza with finite norm

lalla =) lqslee.

jez4
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Below we will assume that a > 0. Let « = (..., ,...)jeza, B = (..., Bj,...)jeza, and oy and Pj € N

with finitely many nonzero components of positive integers. The product q*gP denotes ILq ]‘X ’q ]ﬁ 7,
ol = 3 jeza &, Bl = 2_jcza Bj. We obtain the Hamiltonian

H=A+G,
where
A=Y MlgP+edlgl, 6= ecb(t)J xe(uf)dx = ed(t) > Gapq*gP.
jeza T o B ol+HIBI>4, Y pa (05— B;)j=0

with |Gyl < C, C > 0 is some absolute constant. The equations of motion are

) : 3G,
qula:quj+1a¢(t)qj+1ﬁ, jez? (2.2)

with respect to the symplectic structure i} ;.4 dqj /A dgj on 1% x 1.
Let @(9) be the shell of ¢(t), we introduce a pair of action-angle variables (J,9) € R™ x T™, then (2.2)
can be written as a Hamiltonian system

oH oH
55 Gi=iy, jezd
0q;

with the Hamiltonian

H <w]>+Z i el ))Iqj|2+eé,

jezd
where
G= > Gop(®)q*gh (2.3)
OC/B/‘“‘_HB‘}‘LIZJezd(0(]_(3])]:0
with
= ©D)Gup, 2 jezaly—PB5)j =0,
Gup(®) = jess = o) 24
25 () {0, P 2.4
Denote
=<w,J>+ ) (Aj+ep®)lg;l, (2.5)
jeza
then
H=H+eG. (2.6)

In the following, we will investigate the reducibility of Hamiltonian (2.5). To make this reducibility,
we introduce the following notations and spaces.

Define the sequences
Yo s’ )
Oy = 0y 1—T P V:1,2,...
N < 2 Zs:l s2

and it is easy to see 0, > 041 > 0¢/2. For some I' > 0 and a fixed 0 < p < 1, we let

+o00o
rvzr<1+czsg>, v=0,1,...,

s=V
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where C is a constant that will be decided later. We let

o=¢, ey=ctP) v—=12. .,
Oloy) =0 =®,...,9m) €eC™/20Z™ : |ImY| < 0v,s=1,2,...,m},v=0,1,2,...,

and define

D¢ = {(S,I,q,q) eCM2nZ™ x C™ x 1% x 1% : [Imd] < ov,|]| < I‘%, lalla < Ty, |lGlla < FV},
v=0,12,...,
D3 = {(S,I,q,q) e C™/2nZ™ x C™ x 1% x 1% : Imd| < 00/2,]]| < T2, lqlla < T, |Glla < F},

where | - | denotes the sup-norm for complex vectors and 1¢ denotes complex Hilbert space. For a one
order Whitney smooth function F(w) on closed bounded set Q*, we define

[Flla- = sup ([F+ [0 F).
wen*

If F(w) is a vector function from Q* to 1%* (or R™*™2) which is one order whitney smooth on Q*, we
define

IFlls, 0 = IF(@)lgo)illa [or IFlG- = max 3 (IFyi(w)lln:)

I<yism
iy 1<ih<my

For arbitrary opa > 0,Ipe > 0, we let
D={(9,],4,4) € C™/2nZ™ x C™ x 1% x 1* : [Imd| < opa,[]| < M, lalla < Toe, [|d]la < Moa }.
Let w = (9,],q,q) € D¢, we denote the weighted norm for W by letting

1

Wla = B + l%ia

1 1
IJl + quHﬁ%ﬁHqHa.

If F(n; w) is a vector function from D¢ x Q* to 1¢ (or R™1*™2), which is one order whitney smooth on w,
we define

[Flla,pexa- = sup [[Fllgq- <0r [Fllibexq- = sup HH‘B*)'
neb«a nebDa

To function F, associate a Hamiltonian vector field defined as Xf = {Fj, —Fy,iFg, —iFq}, we denote the
weighted norm for Xg by letting

1 1 1
Xtla,paxar = IFjllbaxar + = Fsllbaxar + m—IFzllapaxar + =—IFqlla,paxa:-
rDa rDa rDa

Let w = (q,q) € 1¢ x 1¢ be a doubly infinite complex sequence. Let A(1; w) be an operator from 1¢ x 1¢
to 1¢ x 1¢ for (n; w) € D% x Q*, we define the norm

Wlla = llalla +alla,

||A(n;w)||a,Da><Q* = sup sup
(M;w)eDax Q* w0 |

[AM; w)llg,paxar = [Allapexar + [0wAlapexqx
Let B(1; w) be an operator from D¢ to D for (n; w) € D® x Q*, we define the operator norm

B(n; w)w| "
IB(n; wla,paxax = sup sup ————, [B(m;w)[} paxa+ = Bla,paxar +10wBla,paxax
(m;w)eDax Q* W#0 |W|a
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Let0#£k € Z™, and let

1_ < HATL. p
R _{we[p,2p]m.|<k,w>|<(:*|k|m},

we have ~
C*|k|m+1 = C*|k|m+2 :

measz]l< < Cqilk[~tpm!

Let O! = Uy srezm R, we get

1

1.
W <CCp™.

measQ! < Z measR} < C;C,'p™ Z
0£keZ™ 0£kezZm

For arbitrary fixed 0 <y < 1, we have

m

measQ! < Yp
if C, > 1. Let Q = [p,2pI™\Q!, we get
measQ > (1—vy)p™.

Lemma 2.1. For given oo > 0, and arbitrary fixed 0 <y < 1,0 < p < 1 there is an €*(y) > 0 such that for any
0<e<e*(y)and w € Q, there is a real analytic canonical transformation L9, defined on D& x Q such that the
following statements hold:

(i) there is some absolute constant C > 0 independent on j such that
|20, — df% paxo < Ce®,

where id is the identity mapping;
(ii) the transformation £, changes Hamiltonian (2.5) into
Aofd =<w,J>+ > wulqif
jezd

where
by = Ay elg) + e, s < ¢, jezd,

and for any fixed j € 74,5 € Z9\ {0}, the limits lim;_, ., p]ikﬁf and lim;_, o awu]f;ﬁ exist and

—_

* T * o )* -

Proof. First of all, we will construct iteratively a series {H;} of Hamiltonian functions of the form
Hi=H?+R;, 1=0,1,...,v, (2.7)1

where
HE =<, ] >+ ) MNaigiqy, Ru=e ) Rjud,w)g;a;,
jEZd )eZd

with Rj1(9, w) = 1 czm Rjrlrk(w)ei<k"9> and Rjo = @(9). Furthermore

IRjllowyxa <C 1=01,...,v, (2.8)1

and for any fixed j € Z4,j € Z9\ {0}, the limits lim;_, Rj 3¢, and limg_, o, 0w Ry 53¢, exist and

1
I F R L
|’Rj+jt,1 {ILH;IO R5+jt,1|’®(01)><(2 < i (2.9);
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And
Ao=A, MNi=A+ Z Ws, L=1, (2.10)y
here
wiLo = eldl, wis =eskie Iislla <G s=1,2,...,v, (2.11),
and for any fixed j € Z4,7 € Z9\ {0}, the limits lim;_, |.,L)+]t ls and lim;_, o awu;ﬁ,l,s exist and
I 58 0s — lim U]+)tls|’Q <H (2.12)¢

Clearly, we have that Hy = H for 1 = 0, and IRj0l&(0p)xa < €, where C is an absolute constant
independent on j, l. And for any fixed j € 74,7 € Z4\{0}, the limits lim;_, R
exist and

j+55,0 and limg_, o, 0w R; 57

. 1
HR;’HLO - {lgﬂo Rj+]7{,OH*®(01)><Q =0< m
Let X5, be the Hamiltonian vector field associated with a function J7 :

Iy =¢evFy = ¢y Z fj,v(ﬁ;w)qjqj
jeza
with
)V 19 w Z f) vk 1<k,19> (2.13)
kezZm
and [fjy] = 0, and let X! denote its time-t map.

We look for a change of variables S, defined on a domain D§_; by the time-one map X}TV of the
Hamiltonian vector field X, such that the system (2.7), is transformed into the form (2.7),4; and
satisfies (2.8)v 11, (2.9)v 11, (2.10)y 11, (2.11)y 11, and (2.12)y 1. In fact, the new Hamiltonian H, 1 can be
written as

Hyi1:=Hy o X},

1 1 (2.14)
= H2 +Ry +{H2, T} + ey J (1—1) {{H3, TV}, Fy } o X5 dt+ey J {Ry,Fy}o X} dt.
0 0
The function F, is determined by the homological equation
Ry +{H, T} =&y Y [Rj+1q;d;,
jezs
which is equivalent to
— < w,0pfjv(¥; w) > +R; v (O w) = [Ry]. (2.15)
Inserting (2.13) into (2.15) we get
i< k,w > fj/vlk(w) = levlk(w), k 75 0.
Hence, we get
R; v k(w) i
f: . — 1Y, 1<k,1()>. .
(B = ) RS e (2.16)
0£keZ™

We can get by Cauchy’s estimate and (2.8)+,

R v il < IR vl oy 1o < Ce Koy (2.17)
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and
DR vkl < IRV 156y )€ Y < CeIklov, (2.18)

By Cauchy’s estimate and (2.9)y, we have for any fixed j € 74,7 € Z9\ {0}, the limits limg_, Rj vk
and limg_,, 0wR; ;514 exist and

IRy 57— lim Ry eyl < |1t| (2.19)
Thus, we have
sup i <CCp™t Y mHem rIMeovalkl,
(9;w)€O(0y41)xQ 0£kezZ™
So, using Lemma 3.3 in [26], we get, for (J; w) € O(0y4+1) X Q,
4] < CCp H(v+1)*™ 2 < Cv+1)°™T, (2.20)

where C := CC,p~!. Moreover, by (2.10)y and (2.11),, it follows that
10wAj,v| < Ce. (2.21)

Thus, in view of (2.16)-(2.18) and (2.21), we have, for (9; w) € O(oy 1) X Q,

OwRj v k(W) Rj v x(w)k i
a f < ).V, ).V, 1<k,19>
[Pwfi| 0752,“(‘ ko> | |<kw>? l |

<C > (Cop M KI(CLp ™) e ol Meol
0£keZm (2.22)
< 2CC§§’2 Z ‘k‘2m+3€fcv|k|ecv+1\k|
0£kezZm
<2CCZH 2 (v4+ 1) < Clv +1)M

where C :=2C- C2p~2. In view of (2.20) and (2.22) we have

Hf]'ﬂ/”%(o'VJrl)x_O_ < C(V+1)6m+6/ (223)

and from (2.19), we have for any fixed j € Z4,j € Z%\ {0}, the limits lim;_, ., fii58 and img_, o 0wy 57
exist and

1
m f, (v+1)6m+e, (2.24)

. *
Hf _’Ehﬁoo )+]7’E,vH®(GV+1)><Q < m

j+itv
In view of (2.16), we have
R; . R: .
dofiv (O w) = Z Mel<kfﬁ> K, dppfjv (D w) = Z MeKknb -ikkT,

Otezm <k, w> Otczm <k w>

where k is an m column vector and kk' is an m x m matrix. Similar to above discussion, we get the
following estimates

190 F5 50y, w0 < CV+1)™E, (2.25)
C

o <
199055+ 50y, xa < Clv+1)omH0 (2.26)
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for any fixed j € Z4,j € Z9\ {0}, the limits lim;_, 0915451y, IMi_y00 00 00T 55 v, HMi_ o 090 i 57/

and limg_,, 0w 099 f; 3¢ exist and
1
“anJ+)t v hm asf]+)t vH@ (Oys1)XQ < |;£| (v+ 1)6m+8’ (2.27)
. . 1 6m-+10
||a193f]+]t v {11_)1’1’;0 aﬁﬁfj+]f{/v||®(gv+l) <« Q < m(\/ + 1) . (2.28)

Let
7\j/v+1 = }\j/'v + ey [Rj,v]/
then by (2.8), and (2.9)y it is easy to see that A;. 1 satisfies the conditions (2.10)y 1, (2.11)y41, and

(212)v 41
To get the estimates for the flow X% , we let

. _ 0 fiv (9 w) . 0 1
Bj,v(ﬁrw)_ ( f],'v(l()/w) 0 >/ 82_1( -1 0 >

In view of (2.23)-(2.28), we have

"Bj,\/‘|g(o‘v+l)xﬂ <C
109Bjvll©(0,,1)x0 < Clv+1
asC

1099Bjv 6 (0y.,1)x

and for any fixed j € Z4,j € Z%\ {0}, the limits lim;_, B 5t v, img_o 09By 57, limg_, oo 099B; 51 v,

limg_, o 0w By 514, iMoo 0w 09B; 574, and limg_, , 0099 B; 57, exist and
1
HBJ’+)7‘EV hm B)+]tv”® (Oyi1)XQ < m(v+1)6m+6
I . 1 6m+s
19585 51, i 98B 51+ lo(oy,)x0 < m(VJrl)
. . 1
109085 58+ — {11_&)10 05085 5ty 160y, 1)x0 < m(v+1)6m+10.
Let
0 0 0 0
0 0 0 0
0 0 0 0 fjy 0
By (9 w) = 00 00 , 3=1< 0 E°°X°°>,
0 f;j 0 0 0 0
0 0 0 0
0 0 0 0

where B, (9; w) is a matrix in which the other elements are 0 except the skew diagonal elements, and
Ecoxoo is @ matrix in which the other elements are 0 except the skew diagonal elements are 1. Moreover,
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we note that the vector field X5, is as follows

d=0,
d qj > < qdj > ; d
— _ =¢evd2B;v (D, w) - — ’ €z,
qt<qj Byaw (7))
J=ev ) 05 (9;w)q;a5,
jezd
or equivalently,
¥ =0,

W = evJBy (D w) - w,

. ) (2.29)
] =¢vy Z 05f; v (9; w)q;q;.
jezs
Integrating the above equation from 0 to t, we get X :
9 =9°,
< g;(t) ez(p (5\/32 jv (07 w) ) a;(0) ) ) , (2.30)
J(t) = J(0)+ L ev Y Bofi(0%w) - q;(t) - gs(t)dt,

jezd

where 9¢ is a constant vector in C™/2nZ™ and (9¢,](0),q(0),q(0)) is the initial value. Obviously,
J2B; v (¥; w) are the diagonal matrices, thus we have exp (eVHZBj,V(SG; w)t) are the diagonal matrices.
That is gj(t) and g;(t) only depend on respectively the initial value g;(0) and g;(0). The above equation
(2.30) is equivalent to

9 =9°,
w(t) = exp (61/33\/(19@; w)t) -w(0), 231)
() = J(0) +J0 ev Y Bofi (0% w) - q5(t) - gs(t)dt,

jez4d

where (9%,7(0),w(0)) is the initial value. In view of ¢, = ¢(1+0)Y we have
el (v + 1) 5 Y < C, v=0,1,... (2.32)
as ¢ < 1, where C is an absolute constant independent on v, ¢. From (2.23), we obtain, for & € ©(oy41) ,

ev32Bjv (9 w) = ey (v + 1) ™OBIL (9; w) = 0B, (9; w),

v,V

where
1B~ (® wll6(6y.1)xa < C

thus we have

|evdB+ (¥ W)l g o o < Cef. (2.33)

0—1/+1)

From (2.24), we have for any fixed j € Z4,j € Z9\ {0}, the limits lim;_, ., B]:i{,v and limg_, 6wB;‘+)¢{,V

exist and

—_

* : * *
1B 560 — im Bisivll6(0y <0 < -
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From (2.25), we obtain,

2 <evasz,vw;w)-( 9 )> = ey (v+ 18 0y (B;ilv(s,-w)-( iy )) =80y (B;V(s;w)-( b )>,

dj

where

2 (B;V(a;w) (D ))

4dj

thus we have

)

*

< Cllgjl +1q50),
G(GV+I)XQ

Ha{) (evdB+ (D; w) -w) H*D3H><Q < CESFVJrL

We have for any fixed j € Z4,j € Z4\ {0}, the limits lim;_, OSB;*H

from (2.27), and
|0sBY

= — lim aeB
IR AT SN

Therefor by (2.33) and (2.34), we have

v and lim;_, 0,09B

—_

it ooy xa <

t

exp (evdB+ (%, w)t) =1d + g3 (% w, t),

where g3°(9; w, t) is a diagonal matrix and

195w, g e(0y.0)x0 < Cev, (109 (97(D;

Gv+1)
Let .
gj~ (19/W; w, t) = J Ev Z

0 jeza
then

w,t) - w)[pe xao < Ceflvyr, tel01]

055, (D; w) - q;(t) - g;(t)dt,

In view of (2.25), (2.37), and (2.32), we have
H 9y~ (9, w; w,t) ”*Df}_*_1 X

and for arbitrary w’ € 1% x 1¢, we have

o <CefT2, telo,1],

”aw (g],v({)/w/’ w/t)) 'W/H*DsHXQ < CEE,F\, : HW/”a/ t e [0,1].

In view of (2.26), (2.37), and (2.32), we have

195 (g5v(®, wiw, 1) [e o < CefTy, te(0,1].

Let

X5, =Tly +gv(w,t) : DSy x Qs DS,

by (2.31), (2.36), and (2.38), we have

My o X5 (9,],w) = (Id+ g3 (9;

w,t))-w: Dy xQ—1%x17,

{ MooXy (8,],w) =9: DYy x Qs Bloy),

”] OX&V(S,J,W) = ]—i— g],V(S,w;w,t) : D?/+1 X Q — Cm,

where Ty, Iy, denote the projectors

My :Y* x Q+— Y,

My : Y x QO — Q,

4dj

* ~
j+itv

(2.34)

exist

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
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and ITy, Iy, and TT,, denote the projectors of Y¢ = C™/2nZ™ x C™ x 1¢ x 1¢ on the first, second, and
third factor respectively. In view of the first equation of (2.37), (2.39), and (2.43), we get

* *
X5, — ﬂ9|a,DS+1><Q =1(0, g3 (%; w, thw, gj (9, W; w, 1)) a,D8, X0

195 (%; w,t)WHz,Dg/IHXQ gy~ (D, w; w, t) ||T33H><Q
- 2
Fvt N (2.44)
19300, 05, o Wla  lgrv@wia, by o
< v + v
rv+1 r\2/—0—1

<3Cef < Cef,
where C := 3C. In view of (2.43), we have

Idimxm 0 0
DX5 = | 09(9¥@® @, W)  Ideoxoo + 93X (% w,t) 0 ,
aﬁ(gl,v(ﬁzwz (,U,t)) aw(gl,v(ﬁrwl (U,t)) Idmxm

where D is the differentiation operator with respect to (9, w,]). In view of (2.37), (2.40), and (2.41), for

w=(d,w']),[®w,]) € Dy, ,, we have

| (DX5, —1d) Wlq
= (0,05 (g3 (% w, hW)D' + g¥(9; w, thw’, D9 (gy v (B, W; w, 1))8” + D (g1, (B, Wy w, t))w') | |
199 (g5 (8, w, t)w)d’ + g3 (%, w, t)W'[|a n 105 (g7,v (D, w; w, 1)) + 04 (g5 v (D, w; w, t) )w'|

rv—!—l r3+1
< CeSTy 1|+ Celw||a n CeST210/| + CeSTy W ]|
v M
w’ W
< CeSP'I + ngm +2CePl9| +2c55m
rv+1 v+1

< 3CefWlq < Ceflg,

where C := 3C. Therefore, we have

|DX§rV — Id|a,D$+1><Q < CES,.

Similarly, we can get
0w (DX5, —1d)la,pa,, x0 < Cef,

and
IDX5, —1dlg pa, xa < Cef. (2.45)

We now estimate the smaller terms of (2.14). Note that those terms are a polynomial of q;g;. Thus, we
can write

1 1
E‘\/J (1-1) {{H%// v, Fv} © Xg‘\,dt'f‘ Y J {Ry,Fy}o ngvdt = 5%/ Z Rj,v+1(‘9;w)qjqj/
0 0 .
jezs

where by

(H2, Ty} =&y Z [Rj~1q;@; — Ry.
jez4
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We know that ﬁj,-erl('a; w) are the linear combination of the product of fj (9; w) and R; , (¥; w). In view
of (2.23) and (2.8), we get

fiv (W) = (v+ 1D (0 w0), 11500, )x0 < C

and
IRjv (¥ Wl o,,1)x0 < C
respectively. Thus,

5 6 65 D% *
RJ':V‘H(%’.w) (v+1) m R] v+1(8;w)/ HRj,v—o—lHQ(GVH)xQ <C,

and from (2.24) and (2.9)y, we have for any fixed j € Z¢,j € Z%\{0), the limits lim¢_,, R; ¢, and
limg_, o, awﬁj+j{,\,+1 exist and

5 B 1 6m-+6
IR; 5ev 41— M Ry 56 lle(o,m)xa < m(v+1) e
t—o0

Then
. — 1-pR. . *
Rj~v+1:=¢y "Rjv41, ||RJ,V+1H®(0'V+1)><_Q <C

because of ¢}, ° (v4+1)°™" < 1as e < 1. And we have for any fixed j € Z4,j € Z9\ {0}, the limits

limg_, o Ry 5¢,v41 and limg_, o, 0w R, 57,41 exist and

—_

||Rj+]7{,\/+1 11_)111 R]+]t v+1||® (Oyi1)XxQ S |t|

In view of sv (1=e) _ = €y, 1, this implies (2.7)y 11 is defined in DS, ; and A; 1 satisfies (2.10)y41,(2.11)y 41
and (2.12)y 41 and Rj 1 satisfy (2.8)y 1 and (2.9)y41.
Obviously, we know
Dy DD D>---D>DyD>---DDg.

Moreover, in view of (2.42), (2.44), and (2.45), let
Sv =Xk, =Ty +gv(w,1): DS,y x Q+— DY,
then we have

|S — ﬂg|a Da XQ S CEV, |DSV - Id|z,D3+1XQ < Ceg (246)

Now we are ready to prove the limiting transformation Spo S; o --- converges to a transformation £%,
and that this transformation integrates the equation (2.5). For w € Q) and 0 < v < N let us denote by Xy
the map

NG w) =S (sw)o - 0Sy_1(;w): DY > DY

as usual, X7 is the identity mapping. The following statement is similar to Lemmas 2.4 and 2.5 (pp. 63,
64) in [18]. For r,1 > 0, we have

=Ty = (Sy —TTy) o (Z11] x TTe) + (Z71] — TTy). (2.47)

In view of (2.46), we have

|(Sr —TTy) o (Zrle x T )\

aD?  xQ
= 1Sy = TTy) (Z1 0 w); @) — (S = TTy) (@) + (Sy —Ty) ( w)lg pa
< ISy =Ty (I3 w); @) = (Sr =Thy) 0 )l pa oo T1(Sr =TTy) (M W)l5 Do <0 (2.48)
< DSy —1dlg e o [EE — Tyl e o+ 1Sy =Tyl e o
< Cef - [I1H — ﬂglaDa XQ+C5T.
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Let
DIH :|ZI+1 n*é|aDﬂ L xQ

from (2.47) and (2.48), we can get

1 1
rr1=Ce (DI +1) + DIy

Therefore, by induction and Diﬂ =0, we have

r+1-1 r+1-1
Di +1< (DI +1) J] (Cef+1)= JJ (Cel+1) <1+3Ce?
S=T S=T
as ¢ small enough. Thus we have
|Xr 1 —TTy IZ,D;]HXQ < 3CeP. (2.49)
In view of the definition of S, we know
r+1-1

r+1 H DS

And from (2.46), we have

DEf 1 —1dl} pa o < 3Ce? (2.50)

as above. Letnp € DS and for s > 1 letng = ZHS (no; w). Then by (2.46), (2.49), and (2.50), we have

dist(nn1,mMN) = dist (ZLLNH(TIO; w), Lt N (Mo; w))

= 128 N1 (0 @) = ZE (M0 @)l pe 0

< [(Zten =TTy (Sten o w); ) = (Zhn =TTy )0 W) pa v (2.51)
+1(Sten = TTy)(Mo; W)IG pa 0

< DI, n— Id|aD‘1 v 1SN =TTyl pa o +ISten =TTyl pa

TN+1 % Leng1 X Q
< (3Cef +1)- C€1+N < 2Cep, -

So the sequence {1} is fundamental and converges to a point 1., € Y. The right hand side of (2.51) does
not depend on ng. So the sequence {Z} (+; w)} converges uniformly in DZ to an analytic map

Li(;w) 1 D — DY,
which sends 1 to 1. For each 1 < 1; < oo, the following relations is obviously held,
I (w) ol (s w) =L (5 w).

From (2.49), we have the estimate
|Z<Eo — Ty |a,Dgo><Q < 3C£{)

by going to the limit. This proves (i). We remark that the Hamiltonian (2.5) satisfies the conditions (2.7)+-
(2.12)y, with v = 0, the above iterative procedure can run repeatedly. Thus, we can get (ii). This completes
the proof. O

Noting that the transformation L9 is linear and diagonal, and from (i) of Lemma 2.1, we get
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where
13500 (% W& (5 /2)x 02 < C-

And for any fixed j € Z4,j € Z9\ {0}, we have lim;_, ,, §* (%, w) and lim;_, 0,7 (9; w) exist

j+jt,00 j+jt,00
and
1
||g]+)too _t im 9)+]tooH@ (00/2) x < m (2'52)
Hence, by (ii) of Lemma 2.1, Hamiltonian (2.5) is changed into by £,
Hp := ]:lOZgo =<w,] >+ Z 1 q;54;,
jeza
and Hamiltonian (2.3) is changed into
G=Gox? = > Gop(®;w)q*gP, (2.53)
06,5,|(X\+|f5\24leezd(“]—ﬁj)]:0
where
G (9;w) = Gop(9) (1+°Cap (8,@)),  1G5p (8 )5 (0/21x0 < C- (2.54)
And from (2.52), we have for any fixed i,j € Z¢ and 1,j € Z4\ {0}, if o; , ;3 > 1 and «; 57 = 1, denote
Gi i)+ 7E ey, e 0B Jia it 0459~ T 971qP = Gopq™aP, (2.55)
where e; is a vector in which the other elements are 0 except the ith element is 1, then the limits
limg_, Gl+1t]+]t x—eqiii—€; 0B and lim;_, 0w Gl+1t1+3t x—eiiii—es 5o exist and
~ L~ . eP
||G‘i.JF{{,j+j{,0€*€i+{{78j+;{,ﬁ - {ll)n;o Gl+1t JHita—e 1 1— e 0B HG)(GO/Z) xQ < mr

similarly, if «; >1andfp > 1, denote

i+it = j+it

A = _ax—e raBeg A x=f3
Giitjtitaey 0 B—eyy diritdjgid” a7 9t =Gapq™q”,

then the limits lim;_, ., G; and limz_, ., 0 G exist and

i+ +jta—e 53, — € 5t 1'.—0—{{,]'+]7’E,¢x—ei+ﬁ,|3—ej+ﬁ
el

*
it a—e 1 B—ej 5t H@(ao/z) xQ S m/

[}

1G5 ey o B—ey g — M

if B;, 57 >1and B > 1, denote

j+it
e p—e; :—e; _ B
Gl"‘lt J+iteB—e; 11— e)+]tql+ltq]+ iq q HETE T = G apq q

and lim;_, ., 04 G; exist and

then the limits limg_, . G55 RS I S TR L0 Bepi—€; 5t

eP

G R A — < —_
||Gl+lt,]+)t,0€,f3—€i+ﬁ—€j+]7{ t1—>m Gl—l—lt)—l—]tocﬁ € i e]+]t||® (0p/2)xQ |t|

This implies the Hamiltonian (2.6) is changed by the transformation £ into
H = Hy + ¢G. (2.56)

As in [22], we can prove the following lemma.
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Lemma 2.2. For a > 0, the gradients G, G4 are real analytic for real arqument as maps from some neighborhood
of origin in 1% x 1% into 1%, with ||Gqlla = O(|q]1%), IGqlla = O(||q||2), that is, there is a constant C such that

IGqlla < Cllalla, [IGalla < Cllalla

uniformly for (9, w) € O(0o/2) x Q. The Hamiltonian G depends on the “time” ¥ = (wat, ..., wmt) and param-
eter w = (W1,...,Wm).

Proof. Due to (2.53), then for (9, w) € ©(0p/2) x Q,

oG X e,
e = > Gap(®, w)q* *1gP.
W euplaedtIBIZ3,Y, (o B;)i=0

From (2.4) and (2.54), we have

||Gq||a = Z |qu|e\i|a <C Z Z |q0¢*eiqf~”|e|(0<i*1*f51)i+z#i(cxj7[3j)j|a
iezs LeZd a—ey B la—ei|+IBI>3,%; (05— B;)j=0
<C Z Z |qocfei|e\(oq—l)i+z#ijo¢j\a|qf3|e|Zj5[5j\a

i€Zd a—ey, B loa—eil+IB123,3 5 (5—By)j=0

-1, = —1
< Clall& Mgl < cllql &P < gl

as required. Similarly, we have ||G4/|a < C||q|f%,. This completes the proof. O

3. Partial Birkhoff normal form

Next we transform the Hamiltonian (2.56) into some partial Birkhoff normal form by introducing
the action-angle variable so that it may serve as a small perturbation of some integrable system in a
sufficiently small neighborhood of the origin.

For given n vectors in A say S ={i1, -+ ,in}, we denote Zf =74\ S. We introduce the action-angle
variable by setting

- 0y
q;':{ VEe™, jes, (3.1)

Zi, ) € Zii .
By the symplectic change (3.1), the Hamiltonian equation (2.56) becomes

Ho+eG=<w]>+) wh+ Y wzz+P,6,],Lzzw,k).
jes jez§

Denote

N=<w,]> —f—ZHjIj + Z HiZiZ;.
JES jezg

Hence, the total Hamiltonian (2.56) is
H=N+P, (3.2)

where P is just ¢G with the (9, J,qi, - »9in, Qiys -+ Gins G5, Gj)-variables expressed in terms of the
(9,],6,1,z;,z;)-variables.
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Next, we will give out the estimates of the perturbed term P. To this end we need some notations
which are taken from [17]. Let 1¢ be now the Hilbert space of all complex sequences w = (... S Wi, . J) jezd
with

wila = > wjle®ll <00, a>o0.
jezi

Setx =90 @0 with 0 = (0;)jes,y =J@ L z = (Zj)jezii and ¢ = w @ (&j)jes, and let us introduce the
phase space

Pa _ MmN CMEN 18 x 19 5 (x,Y,2,2),

where T™+™ is the complexiation of the usual (m + n)-torus T™*™. Set
Da(s’,1) :=1{(x,y,2,2) € P*: [Imx| < s, [yl < 1% ||z]|a + [|Z]|a < T}

We define the weighted phase norms

1
Wi = I+ ll+ - zlla + 2]

for W = (x,y,z,z) € P* . Denote by L the parameter set Q x [0,1]™. For a map U : D(s’,r) x £ — P9,
define its Lipschitz semi-norm |U|f :
Az Ul
Uy = sup ——=—7,
o 10—l
where A¢o/U = U(, ) —U(-, '), and where the supremum is taken over L. Let & = (..., &;, .. )Jezd,B =
(oo By ) jezds oc] and B; € N with finitely many nonzero components of positive integers. The product

2%zP denotes | |j 205! ’. Let
i %
P(x,y,z2) E Psp(x,y)z

where Psp =3 1y, Pkbéq—sl_;bei<k'X> are C},, functions in parameter ¢ in the sense of Whitney. Define the

weighted norm of P by

IPloasrmz= sup ) [IPsplllz%lIz®),
lzla<rizlo<r &7
where, if Pyg =Y i czmin penmin Proap (Q)yPe=F*>, Py is short for
IPspll = Z |Pkba[‘3\;1’2|b|e|k|s , Proapls = sup(Prpapl +10cProapl)
k,b cex

the derivative with respect to C is in the sense of Whitney. Denote by Xp the vector field corresponding
the Hamiltonian P with respect to the symplectic structure dx /\ dy +idz /A dZ, namely,

Xp = (0yP,—0«P,V:P,—V,P).

Its weighted norm is defined by

HXPHD (s/,7r) EHP HD (s’,r) Z+ 2HP ”D (s’,r) Z+ Z HPZ,HD (s’,r) Zema_i_ Z HPZJHD (s’,7) Zehla)
)EZd jezd

Lemma 3.1. The perturbation P(x,y, z,z; {) is real analytic for real arqument (x,y,z,z)€ Dq(s’, 1) for some given
s’, v > 0, and Lipschitz in the parameters (, € L, and for each { € L its gradients with respect to z,z satisfy

0P, 0:P € A(1%,19),
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where A(1%,1¢) denotes the class of all maps from some neighborhood of the origin in 1% into 1¢, which is real
analytic in the real and imaginary parts of the complex coordinate z. In addition, for the perturbed term P we have
the following estimates
HXP”DQ(S/,r),; < Cg, HaCXPHDa(s’,r),; < Cg,

where s’ = 0y/2 and r = /2.

Proof. From (3.1) and [z« < T = €1/2, we get ||q|la < Ce!/? where q = q @z with g = (..., qj,...)jes.
And |P| = [eG| = O(€%) on D(s’, 2r). Using Cauchy estimates for 0P, 9P, 9;P and 9,P, we obtain [0, P| =
0(53),|69P\ = 0(e2),]0:P| = 0(£5/2),10,P| = O(£5/2) on D(s’,r). Hence, we have IXpllD,(s/m),2 < Ce.

=3

Using again Cauchy estimates with respect to ¢, we also have |[0:Xp|p_(s/+),z < Ce. O

1=

4. An infinite-dimensional KAM theorem

In order to prove our main result (Theorem 1.1), we need to state a KAM theorem which was proved
by Geng-You [17]. Here we recite the theorem from [17].
Let us consider the perturbations of a family of Hamiltonian

N = Z (T)j(a)yj + Z ﬁj(E)Z]’Z]'

j€eSs jezd

in n-dimensional angle-action coordinates (x,y) and infinite-dimensional coordinates (z, z) with symplec-
tic structure

> A Adyy+i ) dzy Adz

j€es jezs

The tangent frequencies & = (Wj)jcs and normal ones Q= (ﬁj )jer depend on n parameters
£eTlCRY,

with TT a closed bounded set of positive Lebesgue measure.

For each & there is an invariant n-torus 7' = T™ x {0, 0,0} with frequencies @W(¢). In its normal space
described by the zz-coordinates the origin is an elliptic fixed point. Hence Tj" is linear stable. The aim
is to prove the persistence of a large portion of this family of linearly stable rotational tori under small
perturbations H = N + P of N. To this end the following assumptions are made.

Assumption 4.1 (Non-degeneracy). The map & — W(&) isa C{,V diffeomorphism between IT and its image.

Assumption 4.2 (Asymptotics of normal frequencies).
Q; =liP+9,
where ﬁ] s are Cl, functions of & with Ci,-norm bounded by some small positive constant L.

Assumption 4.3 (Melnikov’s non-resonance conditions). There exist Y/, T > 0 such that

,y/ R ,Y/
<k o®>|>—, k#0, <k ®>+0Q: > ——,
| | P # | +0;] i
/ R Y ,Y/
<k @ >+Q5—OQf >

W, k| -+ I3 — [l # 0.

A B Y
|<k,w>+Qj+Q1|2W,

Assumption 4.4 (Regularity). P is real analytic in x,y, z, Z and Whitney smooth in &; in addition

IXP Dy (s3),mm < 00.
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Assumption 4.5 (Special form). P admits a special form of the following
D=pP:P= Z Proap (B)yPe <> 2%2F),
keZ™,beN"™,&,3

where k, &, p have the following relation

ZleJrZ

jezi
Assumption 4.6 (Toplitz-Lipschitz property). For any fixed j, 1 € 79, € Z4\ {0}, the limits
ZP ZP 2P
lim Q)+Ct, lim a—, lim a—_, lim #
t—oo t00 02j,¢i0Z1 ¢t To00 02Zj1¢i0Z1¢f  To0 0Zj410Z1 ¢

exist. Moreover, there exists K > 0, such that when [t| > K, N + P satisfies

= .= €
Qi ex— lim Qj 45 =,
t—oo |t
2 2
aZ‘ijé‘EaZlfct tooo aZ azl*é{ Da(s’,r),TT |t‘
%P %P
—— — lim —— —— < e*l) l\a
0Zj 1 c10Z14cf  E—o0 0Zj4ci0Z14 ¢k Do (/)T It|
2 2
L e
0Zj1ci0Z1 ¢t T—oo0 0Zj1¢i0Z1 ¢t Dal(s/,),IT [t]

We can now state the basic KAM theorem which is attributed to Geng-You [17].

Theorem 4.7 ([17, Theorem 2]). Assume that the Hamiltonian H = N + P satisfies Assumptions 4.1-4.6. Let
Y’ > 0 be small enough, there exists a positive constant ¢ =¢(n,d,K,1,y’,s',r,a), such that if | Xp|p (s, < &
then the following holds true: there exist a Cantor subset T1,,, C TT with meas(IT\TT,/) = O(y’) and two maps
(analytic in x and C3,, in &)

Y:T" x Ty, — Dq(s’,7), @:TTy, — R",

z-close to the trivial embedding Wo : T™ x TT — T™ x {0,0,0} and @ is e-close to the unperturbed

frequency @. Then for any & € TI,,» and x € T™, the curve t — W(x + ®©(&)t, &) is a quasi-periodic solution of
the Hamiltonian equations governed by H = N + P. Moreover, the obtained solutions are real analytic and linearly
stable.

where VY is
(v

In order to apply the above theorem to our problem, we need to introduce a new parameter @ below.
For fixed w_ € Q arbitrarily and for w € Q:={we Q] |w—w_| < ¢}, we can introduce new
parameter @ by the following
w=w_+emw, ®e0,1™

Hence, the Hamiltonian (3.2) becomes

H=<®(0),§>+<0Q(),2>+P (4.1)

)

where O()) =wd O, {=0DE, 2= (\zjlz)jezf,fc =3®60,0 =] & with

=n, i€s, 4.2)
n, jezd (4.3)

2 &
I

~

Denote ®(C) = (... i, Jies,  Q(C) = (...,uj,...)jezg.
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Lemma 4.8. Let TT = [0, 1]™ ™. Then we have Xp € A(1%,1%) and

HXPHD (s/,r)xTT X < Ce HaCXPHDa(s’,r)xﬂ < Ce.

The proof of the above lemma is the same as one of lemma 3.1 and we omit it. Now we give the
following lemma which will be applied in the sequel and will be proved in Appendix.

Lemma 4.9. Let v/ > 0,7 > m+n+ 1, then for the parameter set TT = [0, 1]™+™, there is a subset T1.,, C TT with
meas(TT\ TT/) = O(y’), (4.4)

such that, for any ¢ € T,
/

v
(k] + 8 ([k)=—

<k, ®(C) >+ > vkeZ™ M 1eZ, kKl + #0, (4.5)

where d(x) =1asx =0and 6(x) =0as x #0.

5. Proof of main theorem

In the following, we will verify Assumptions 4.1-4.6 for the above Hamiltonian (4.1).
Verifying Assumption 4.1: In view of (4.2), we have

0w el 0
T\ e

3 >, for CeTl,

dw In

where I, denotes the unit m x m-matrix. It is easy to check that det( a—“’ # 0. Thus assumption 4.1 is
verified.

Verifying Assumption 4.2: Take L = Cg, the proof is obvious.

Verifying Assumption 4.3: By Lemma 4.9, there exists a subset T,/ C TT with meas(TT\ TT,/) = O(y’)
such that for any ¢ € Tl ,

!/

v

_ Yk Zm+n,l Z,|k l 0,
(K + (k)T € €Z K+t #

<k @(C) > +1+0(e) >
where ¢ be small enough. Hence for any ¢ € T,
<k ®(@>]27 k#0,

<k 00 > +051 > sy

~ o~ o~ ’y/
| <k w(C) >+ +O > —,
(c) S )

/

Y

|<k,(T)C >+.6_'—ﬁ|2—,
(€) > 405 =l > s

k[ +[[jl — Ul # 0.

Assumption 4.3 is verified.
Verifying Assumption 4.4: Assumption 4.4 can be verified easily fulfilled by Lemma 4.8.
Verifying Assumption 4.5: From (2.53), we have

G= > Gup (D w)g*qP,
“rﬁ/|“|+|ﬁl>4/2jezd (“]_B))):O
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where

Gap =0 if > (o —Bj)j #0.

jezd

Denote by e the infinite dimensional vector with the s component being 1 and the other components

being Zero, and kz = (k21""’k2n)’k23 = Xig Bl ' <s<n, &= (---/&J‘/--')jGZ?IB = (--./Bj;-..)jEZ?;
& = o and Bj = Bj,j € Z{ then
G= > eGapq*qP
2 jeza(o—B;)j=0
~ i~ Bi ln—Bln _yn e = B— n e
- Z EGO‘ﬁqulqlll' qf; di, qoc ZS710‘565(]'3 Lo Bisess

Z?zl(“is—ﬁis)is+Zj€Zi1(0¢j—f5j)J':0
- 2 eGup /I, P T P g D (e B )04 0B
Zgzl(oﬁs_ﬁis)is"‘zjezii(aj_ﬁj)jzo
= Z szbzag(‘f}, ], C)Ibzel<k2 e>Z(xZB = P.
Z?:l kZSierZjeZii(é‘i*ﬁj)j:O
Thus

Piobyap (@ 1:0) = Gup,  Pryoyap®1:0) =0, 1ka251s + Z Bi)j #0,
jezg

ie, PeD.
Verlfymg Assumption 4.6: By Lemma 2.1 (ii), we have for any fixed j € Z¢ and ¢ € Z4\ {0}, the limits

lim;_, Q]Ht and lim;_, Z)CQ L ¢t exist and
~ ~ (14p) * e(1+p)
Qiei— lim Q. 5| =Pl — lim uf || < —
)j+¢ foo j+¢ - j+ct oo j+ct |t|

By P is just eG with the (9,7, di,s -, 9ins diys - 4 Gins 9, Gj)-variables expressed in terms of the (9,],0,1,

zj, Zj)-variables and (2.55), we have for any fixed j, 1 € Zf and ¢ € Z4\ {0}, the limits lim;_, . %
920.P
and lim;_, %752” exist and
o2p 02(eG) ~ ey o
02+ c1021_ct 003 +c1001_ct > Gjrctrchoe), e pd” O P
j+etvel1—ct j+ct 1—¢t )+ct/1 o ei>1, ZLEZd o —Pi)i=0

Thus,

’ %P 5 0%P

— lim -
02 ci0Z1 ¢ T—o0 025467021 ¢t

*

Similarly, we have




M. Zhang, J. Rui, J. Nonlinear Sci. Appl., 10 (2017), 3670-3693 3691

Thus H satisfies Assumption 4.6.
By applying Theorem 4.7 ([17, Theorem 2]), we get Theorem 1.1.

and

Appendix
Proof of Lemma 4.9. Let

2 m+n . -~ Y/
R = {C e [0,1] <k, @(0) >+l < K +6(|k|))T—1}’

and

m= U =

kezZm+n 1eZ,|k|+|1|#£0

When k # 0, by the Fubini theorem to estimate measzi | it is sufficient to estimate the one-dimensional
measure of the intersection of fRi/1 with every line parallel to some fixed direction. In particular, to the
direction given by the vector k|k|~!. The intersection of fRi/l with the line Ly = {fi +tklk| ! : t € R}, €

R™*™, is equal to the set
!

. Y
LRI < et} -

where
T(t) - (< k, (I)(C) > +l)|w:ﬁ+tk|k|7l'

Observe that (0/0t)w - k = |k|, so for t; > t, we have
T(t1) — T(t2) =<k, (t1 — ) kK" >= [kl(t; — t2).

wlk\*;)Fl by Appendix C in [18]. This estimate

Thus, the measure of the set (5.1) is no larger than TR (kT

jointly with the Fubini theorem implies that

vk
(k| + 8(k)=1

measﬂ%,zd <

Let k =0, then
<k ®Q)>+=1=>1>v"
When [l] > 2 + |[k|]|@|, we have
| <k, @(Q) >+l > U= 1+ Kwl) >1,
which implies the sets Ri/l are empty. Set
Kloo = max{lkil, [ka|, ..., [kmnl}

note that
> o1 2m+n)2p+ D)™, Ko < K< (M) Koo,
[Klw=P
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we obtain

2+[[Ikl[wl]]
measlT = meas U U R
0£keZ™ M 1=—2—[[|k||@]]]

S @r2iKa)

0£kezm+n

vk
(k] + 8 ([k)) =

N

/

Y
< Co Z k[T
0£keZm+n

< Co(m+n)y’ Y @p+1mip (T,
p=1

where [[e]] stands for the integer part of e, and Cy is a constant depending on || only. Because series
2 pa(2p+ 1)m*n=1p=(T=1) i5 convergent for T > m+mn + 1, we have measlT = O(y’). Let T,/ = IT\ TT
we have (4.4) and (4.5). This completes the proof. O]
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