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Abstract
In this paper, we investigate the following nonlinear and non-homogeneous elliptic system

−div(φ1(|∇u|)∇u) = Fu(x,u, v) in Ω,
−div(φ2(|∇v|)∇v) = Fv(x,u, v) in Ω,
u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN(N > 2) with smooth boundary ∂Ω, functions φi(t)t (i = 1, 2) are increasing homeomor-
phisms from R+ onto R+. When F satisfies some (φ1,φ2)-superlinear and subcritical growth conditions at infinity, by using the
mountain pass theorem we obtain that system has a nontrivial solution, and when F satisfies an additional symmetric condition,
by using the symmetric mountain pass theorem, we obtain that system has infinitely many solutions. Some of our results extend
and improve those corresponding results in Carvalho et al. [M. L. M. Carvalho, J. V. A. Goncalves, E. D. da Silva, J. Math. Anal.
Appl., 426 (2015), 466–483]. c©2017 All rights reserved.
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1. Introduction

In this paper, we investigate the existence and multiplicity of solutions for the following nonlinear and
non-homogeneous elliptic system in Orlicz-Sobolev spaces:

−div(φ1(|∇u|)∇u) = Fu(x,u, v) in Ω,
−div(φ2(|∇v|)∇v) = Fv(x,u, v) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN(N > 2) with smooth boundary ∂Ω, and φi (i = 1, 2) : (0,+∞) →
(0,+∞) are two functions which satisfy:

(φ1) φi ∈ C1(0,+∞), tφi(t)→ 0 as t→ 0, tφi(t)→ +∞ as t→ +∞;
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(φ2) t→ tφi(t) are strictly increasing;

(φ3) 1 < li := inft>0
t2φi(t)
Φi(t)

6 supt>0
t2φi(t)
Φi(t)

=: mi < N, where Φi(t) :=
∫|t|

0 sφi(s)ds, t ∈ R,

and F satisfies

(F0) F : Ω×R×R→ R is a C1 function such that F(x, 0, 0) = 0, x ∈ Ω.

Set φ2 = φ1 =: φ, v = u and F(x,u, v) = F(x, v,u). Then the system (1.1) reduces to the following
quasilinear elliptic equation: {

−div(φ(|∇u|)∇u) = f(x,u) in Ω,
u = 0 on ∂Ω. (1.2)

Under assumptions (φ1) and (φ2), equation (1.2) may be allowed to possess more complicated nonlinear
or non-homogeneous term φ, which can be used to model many phenomena (see [20]). When φ is not
homogeneous, an Orlicz-Sobolev space setting may be applied for this type of equations (see Section
2). In recent years, equations like (1.2) have caused great interests among scholars. We refer readers to
[4, 9, 11–15, 17–20, 24, 28, 33] and reference therein for more information. In those papers, the existence
and multiplicity of solutions were obtained by various methods. Among them, variational methods
have been used widely. In Clément et al. [14], the authors firstly obtained that (1.2) has a nontrivial
solution by variational method when the nonlinear term f satisfies Ambrosetti-Rabinowitz type growth
and subcritical Orlicz-Sobolev growth conditions. Motivated by this paper, many scholars studied the
existence and multiplicity of solutions when Ambrosetti-Rabinowitz type growth condition is replaced
by other superlinear Orlicz-Sobolev growth conditions (see [12, 13]). When nonlinear term f has a critical
Orlicz-Sobolev growth, the existence of a nontrivial solution was proved in [18, 19] and some other results
were obtained in [33]. In [28] and [17], the authors obtained that (1.2) has at least two nontrivial solutions
and infinitely many solutions, respectively, when the nonlinear term f has a sublinear Orlicz-Sobolev
growth. In [11], by using the three critical points theorem due to Ricceri, the authors obtained that (1.2)
has at least three solutions. Particularly, when φ(t) = |t|p−2(p > 1), equation (1.2) is the p-Laplacian
equation which has been studied extensively.

Set φ1(t) = |t|p−2, φ2(t) = |t|q−2 (p,q > 1). Then system (1.1) reduces to the following (p,q)-Laplacian
system: 

−∆pu = Fu(x,u, v) in Ω,
−∆qv = Fv(x,u, v) in Ω,
u = v = 0 on ∂Ω.

(1.3)

The existence and multiplicity of solutions for systems like (1.3) have also received a wide range of
interests. Some methods are important to investigate systems like (1.3), such as variational method (see
[7, 8, 16]), Nehari manifold and fibering method (see [2, 10, 35]), three critical points theorem (see [3, 27]),
etc.

To the best of our knowledge, there are few papers considering the existence and multiplicity of
solutions for systems like (1.1) except for [23, 34, 36]. In [23], Huentutripay-Manásevich studied an
eigenvalue problem to the following system:

−div(φ1(|∇u|)∇u) = λFu(x,u, v) in Ω,
−div(φ2(|∇v|)∇v) = λFv(x,u, v) in Ω,
u = v = 0 on ∂Ω,

where the function F has the form

F(x,u, v) = A1(x,u) + b(x)Γ1(u)Γ2(v) +A2(x, v).

For a certain λ, the authors translated the existence of solution into a suitable minimizing problem and
proved the existence of solution under some reasonable restriction. In [23], the Orlicz-Sobolev spaces are
not necessary to be reflexive.
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In [36], Xia and Wang considered a class of quasilinear elliptic system like (1.1). When Φi are pi-
uniformly convex and have a qi-asymptotical growth at infinity, i = 1, 2, respectively (see (4) and (6) in
[36]), and F satisfies the following Ambrosetti-Rabinowitz type condition (see (5) in [36]):

0 < θF(x,u, v) 6 uFu(x,u, v) + vFv(x,u, v), for all x ∈ Ω, |u|+ |v| > T ,

where θ > max{q1,q2} and T > 0, by using the mountain pass theorem, Xia and Wang proved the system
has a nontrivial solution.

In [34], we investigated the following system:
−div(φ1(|∇u|)∇u) = λ1Fu(x,u, v) − λ2Gu(x,u, v) − λ3Hu(x,u, v) in Ω,
−div(φ2(|∇v|)∇v) = λ1Fv(x,u, v) − λ2Gv(x,u, v) − λ3Hv(x,u, v) in Ω,
u = v = 0 on ∂Ω,

where λ1, λ2, λ3 are three parameters, functions F,G,H are of class C1(Ω × R2, R) and satisfy some
reasonable growth conditions. By using a three critical points theorem due to B. Ricceri [32], we proved
that system has at least three solutions. With some additional conditions, by using a four critical points
theorem due to Anello [5], we proved that system has at least four solutions.

In Carvalho et al. [12], by using the mountain pass theorem, authors obtained that equation (1.2) has
at least one or two nontrivial solutions. To be precise, they obtained the following result:

Theorem 1.1 ([12, Theorem 1.1]). Assume that φ and f satisfy

(φ1)
′ φ ∈ C1(0,+∞), tφ(t)→ 0 as t→ 0, tφ(t)→ +∞ as t→ +∞;

(φ2)
′ t→ tφ(t) is strictly increasing;

(φ3)
′

1 < l := inf
t>0

t2φ(t)

Φ(t)
6 sup
t>0

t2φ(t)

Φ(t)
=: m < N,

where

Φ(t) :=

∫ |t|
0
sφ(s)ds, t ∈ R;

(f0) f : Ω×R→ R is a continuous function such that f(x, 0) = 0, x ∈ Ω;

(f1)
′ a constant C > 0 and an N-function (see Section 2) exists

Ψ(t) :=

∫ |t|
0
ψ(s)ds, t ∈ R,

where ψ : [0,+∞)→ R is continuous and it satisfies

1 < l 6 m < lΨ := inf
t>0

tψ(t)

Ψ(t)
6 sup
t>0

tψ(t)

Ψ(t)
=: mΨ < l

∗ :=
lN

N− l
,

such that
|f(x, t)| 6 C(1 +ψ(|t|)), (x, t) ∈ Ω×R;

(f2)
′

lim sup
t→0

|f(x, t)|
|t|φ(t)

= λ < λ1, uniformly in x ∈ Ω,

where λ1 > 0 satisfies the Poincaré inequality in [1] given by

λ1

∫
Ω

Φ(u)dx 6
∫
Ω

Φ(|∇(u)|)dx, ∀u ∈W1,Φ
0 (Ω);
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(f3)
′

lim
t→∞ f(x, t)

|t|m−2t
= +∞, uniformly in x ∈ Ω;

(f4)
′ an N-function exists

Γ(t) :=

∫ |t|
0
γ(s)ds, t ∈ R,

where γ : [0,+∞)→ R is continuous and it satisfies

N

l
< lΓ := inf

t>0

tγ(t)

Γ(t)
6 sup
t>0

tγ(t)

Γ(t)
=: mΓ <∞,

such that

Γ

(
F(x, t)
|t|l

)
6 CF(x, t), x ∈ Ω, |t| > R,

where C, R are positive constants and

F(x, t) = tf(x, t) −mF(x, t), (x, t) ∈ Ω×R.

Then (1.2) admits

(i) one nonzero solution;

(ii) two nonzero solutions, say u, v ∈ C1,α(Ω) with 0 < α < 1 such that

u > 0 and v < 0 in Ω,

provided that (φ3)
′ is replaced by a stronger condition

(φ4)
′

0 < l− 1 := inf
t>0

(φ(t)t) ′

φ(t)
6 sup
t>0

(φ(t)t) ′

φ(t)
=: m− 1 < N− 1.

Motivated by [12], in this paper, by using the mountain pass theorem, we obtain that system (1.1)
has a nontrivial solution (see Theorem 3.1 in Section 3) and the result extends the result (i) of Theorem
1.1 to system case. It is remarkable that, when system (1.1) reduces to (1.2), our corresponding result
still improves the result (i) of Theorem 1.1 and one can see the details in Section 5 where we also offer
an example that satisfies our results but does not satisfy Theorem 1.1. Besides, by using the symmetric
mountain pass theorem, we obtain that system solutions. Since the system case is different from the
scalar case, we will come across some additional difficulties, for example, the direct sum decomposition
of working space. Of course more computing skills are needed in the process of our proofs.

This paper is organized as follows. In Section 2, we recall some preliminary knowledge on Orlicz and
Orlicz-Sobolev spaces. In Section 3, we present the existence result (Theorem 3.1 below) and complete
the proofs by using mountain pass theorem. In Section 4, we present the multiplicity result (Theorem 4.1
below) and complete the proofs by using symmetric mountain pass theorem. In Section 5, we present
the results for (1.2), which correspond to Theorem 3.1 and Theorem 4.1, and compare the results with
Theorem 1.1. In Section 6, we present some examples to illustrate our Theorem 3.1 and Theorem 4.1.

2. Preliminaries

In this paper, we study system (1.1) where φi may be nonlinear and non-homogeneous. To deal with
such problem, we need to introduce Orlicz and Orlicz-Sobolev spaces. In this section, we present some
fundamental notions and important properties about Orlicz and Orlicz-Sobolev spaces. We refer readers
for more details to the books [1, 31] and the references quoted in them.
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Definition 2.1 (see [1]). Let φ : [0,+∞) → [0,+∞) be a right continuous, monotone increasing function
with

(1) φ(0) = 0;

(2) limt→+∞φ(t) = +∞;

(3) φ(t) > 0 whenever t > 0.

Then the function defined on R by Φ(t) =
∫|t|

0 φ(s)ds is called an N-function.

By the definition of N-function Φ, it is obvious that Φ(0) = 0 and Φ is strictly convex. We recall that
an N-function Φ satisfies a ∆2-condition globally (or near infinity) if

sup
t>0

Φ(2t)
Φ(t)

< +∞ ( or lim sup
t→∞

Φ(2t)
Φ(t)

< +∞),

which implies that there exists a constant K > 0, such that Φ(2t) 6 KΦ(t) for all t > 0 (or t > t0 > 0). We
also state the equivalent form that Φ satisfies a ∆2-condition globally (or near infinity) if and only if for
any c > 1, there exists a constant Kc > 0 such that Φ(ct) 6 KcΦ(t) for all t > 0 (or t > t0 > 0).

Definition 2.2 (see [1]). For an N-function Φ, we define

Φ̃(t) =

∫ |t|
0
φ−1(s)ds, t ∈ R,

where φ−1 is the right inverse of the right derivative φ of Φ. Then Φ̃ is an N-function called the comple-
ment of Φ.

It holds that Young’s inequality (see [1, 31])

st 6 Φ(s) + Φ̃(t) s, t > 0, (2.1)

and inequality (see [18, Lemma A.2])

Φ̃(φ(t)) 6 Φ(2t), t > 0.

Now, we recall the Orlicz space LΦ(Ω) associated with Φ. When Φ satisfies ∆2-condition globally, the
Orlicz space LΦ(Ω) is the vectorial space of the measurable functions u : Ω→ R satisfying∫

Ω

Φ(|u|)dx < +∞,

where Ω ⊂ RN is an open set. LΦ(Ω) is a Banach space endowed with Luxemburg norm

‖u‖Φ := inf{λ > 0 :

∫
Ω

Φ
(u
λ

)
dx 6 1}, for u ∈ LΦ(Ω).

Particularly, when Φ(t) = |t|p(p > 1), the corresponding Orlicz space LΦ(Ω) is the classical Lebesgue
space Lp(Ω) and the corresponding Luxemburg norm ‖u‖Φ is equal to the classical Lp(Ω) norm, that is,

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx

) 1
p

, for u ∈ Lp(Ω).

The fact that Φ satisfies ∆2-condition globally implies that

un → u in LΦ(Ω)⇐⇒
∫
Ω

Φ(un − u)dx→ 0. (2.2)
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Moreover, a generalized type of Hölder’s inequality (see [1, 31])∣∣∣∣∫
Ω

uvdx

∣∣∣∣ 6 2‖u‖Φ‖v‖Φ̃, for all u ∈ LΦ(Ω), v ∈ LΦ̃(Ω),

can be gained by applying Young’s inequality (2.1).
The corresponding Orlicz-Sobolev space (see [1, 31]) is defined by

W1,Φ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, · · · ,N

}
,

with the norm
‖u‖1,Φ := ‖u‖Φ + ‖∇u‖Φ.

When Ω is bounded, W1,Φ
0 (Ω) as the closure of C∞0 (Ω) in W1,Φ(Ω) has an equivalent norm

‖u‖0,Φ := ‖∇u‖Φ,

which can be obtained by using the Poincaré inequality in [22] given as∫
Ω

Φ(u)dx 6
∫
Ω

Φ(2d|∇(u)|)dx, ∀u ∈W1,Φ
0 (Ω),

where d=diam(Ω).
Next, we give some inequalities which will be used in our proofs. For more details, we refer the reader

to the papers [1, 18].

Lemma 2.3 ([1, 18]). If Φ is an N-function, then the following conditions are equivalent:

(1)

1 6 l = inf
t>0

tφ(t)

Φ(t)
6 sup
t>0

tφ(t)

Φ(t)
= m < +∞; (2.3)

(2) let ζ0(t) = min{tl, tm}, ζ1(t) = max{tl, tm}, t > 0. Φ satisfies

ζ0(t)Φ(ρ) 6 Φ(ρt) 6 ζ1(t)Φ(ρ), ∀ρ, t > 0;

(3) Φ satisfies a ∆2-condition globally.

Lemma 2.4. If Φ is an N-function and (2.3) holds, then Φ satisfies

ζ0(‖u‖Φ) 6
∫
Ω

Φ(u)dx 6 ζ1(‖u‖Φ), ∀u ∈ LΦ(Ω).

Lemma 2.5. If Φ is an N-function and (2.3) holds with l > 1. Let Φ̃ be the complement of Φ and ζ2(t) =

min{tl̃, tm̃}, ζ3(t) = max{tl̃, tm̃}, for t > 0, where l̃ := l
l−1 and m̃ := m

m−1 . Then Φ̃ satisfies

(1)

m̃ = inf
t>0

tΦ̃
′
(t)

Φ̃(t)
6 sup
t>0

tΦ̃
′
(t)

Φ̃(t)
= l̃;

(2)
ζ2(t)Φ̃(ρ) 6 Φ̃(ρt) 6 ζ3(t)Φ̃(ρ), ∀ρ, t > 0;

(3)

ζ2(‖u‖Φ̃) 6
∫
Ω

Φ̃(u)dx 6 ζ3(‖u‖Φ̃), ∀u ∈ LΦ̃(Ω).
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Lemma 2.6. If Φ is an N-function and (2.3) holds with l,m ∈ (1,N). Let ζ4(t) = min{tl
∗
, tm

∗
},

ζ5(t) = max{tl
∗
, tm

∗
}, for t > 0, where l∗ := lN

N−l , m
∗ := mN

N−m . Then Φ∗ satisfies

(1)

l∗ = inf
t>0

tΦ ′∗(t)

Φ∗(t)
6 sup
t>0

tΦ ′∗(t)

Φ∗(t)
= m∗;

(2)
ζ4(t)Φ∗(ρ) 6 Φ∗(ρt) 6 ζ5(t)Φ∗(ρ), ∀ρ, t > 0;

(3)

ζ4(‖u‖Φ∗) 6
∫
Ω

Φ∗(u)dx 6 ζ5(‖u‖Φ∗), ∀u ∈ LΦ∗(Ω),

where Φ∗ is the Sobolev conjugate function of Φ, which is defined by

Φ−1
∗ (t) =

∫t
0

Φ−1(s)

s
N+1
N

ds, for t > 0 and Φ∗(t) = Φ∗(−t), for t 6 0.

Lemma 2.7. Under the assumptions of Lemma 2.6, the embedding from W1,Φ
0 (Ω) into LΦ∗(Ω) is continuous and

into LΥ(Ω) is compact for any N-function Υ increasing essentially more slowly than Φ∗ near infinity, that is,

lim
t→+∞ Υ(ct)Φ∗(t)

= 0

for any constant c > 0. Therefore, there exists CΓ > 0 such that

‖u‖Γ 6 CΓ‖∇u‖Φ, ∀u ∈W1,Φ
0 (Ω). (2.4)

Remark 2.8. By Lemma 2.3 and Lemma 2.5, assumptions (φ1)-(φ3) show that Φi (i = 1, 2) and Φ̃i (i =
1, 2) are N-functions satisfying ∆2-condition globally. Thus LΦi(Ω)(i = 1, 2) and W1,Φi

0 (Ω)(i = 1, 2) are
separable and reflexive Banach spaces (see [1, 31]).

Notation. Throughout this paper, C is used to denote a positive constant which may be different in
various places.

3. Existence

In this section, we present the following existence result by using mountain pass theorem.

Theorem 3.1. Assume that (φ1)-(φ3), (F0) and the following conditions hold:

(F1) there exist two continuous functions ψi (i = 1, 2) : [0,+∞) → R, which satisfy that Ψi(t) :=
∫|t|

0 ψi(s)ds,
t ∈ R (i = 1, 2) are two N-functions increasing essentially more slowly than Φi∗ (i = 1, 2) near infinity,
respectively, moreover,

mi < lΨi := inf
t>0

tψi(t)

Ψi(t)
6 sup
t>0

tψi(t)

Ψi(t)
=: mΨi < +∞, (3.1)

such that {
|Fu(x,u, v)| 6 c1(1 +ψ1(|u|) + Ψ̃

−1
1 (Ψ2(v))),

|Fv(x,u, v)| 6 c1(1 + Ψ̃−1
2 (Ψ1(u)) +ψ2(|v|))

(3.2)

for all (x,u, v) ∈ Ω×R×R, where constant c1 > 0, Ψ̃i denote the complements of Ψi (i = 1, 2), respectively;
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(F2)

lim sup
|(u,v)|→0

|F(x,u, v)|
λ1Φ1(u) + λ2Φ2(v)

= c2 uniformly in x ∈ Ω,

where constants c2 ∈ [0, 1) and λi (i = 1, 2) > 0 satisfy the Poincaré inequalities in [1] supplied by

λ1

∫
Ω

Φ1(u)dx 6
∫
Ω

Φ1(|∇u|)dx, ∀u ∈W1,Φ1
0 (Ω)

and
λ2

∫
Ω

Φ2(v)dx 6
∫
Ω

Φ2(|∇v|)dx, ∀v ∈W1,Φ2
0 (Ω);

(F3)

lim
|(u,v)|→+∞

F(x,u, v)
Φ1(u) +Φ2(v)

= +∞ uniformly in x ∈ Ω;

(F4) there exists a continuous function γ : [0,∞) → R and it satisfies that Γ(t) :=
∫|t|

0 γ(s)ds, t ∈ R is an
N-function with

1 < lΓ := inf
t>0

tγ(t)

Γ(t)
6 sup
t>0

tγ(t)

Γ(t)
=: mΓ < +∞,

and functions Hi(t) := |t|
lilΓ
lΓ−1 , t ∈ R (i = 1, 2) increase essentially more slowly than Φi∗ (i = 1, 2) near

infinity, respectively, such that

Γ

(
F(x,u, v)
|u|l1 + |v|l2

)
6 c3F(x,u, v), x ∈ Ω, |(u, v)| > r, (3.3)

where constants c3, r > 0 and

F(x,u, v) :=
1
m1
Fu(x,u, v)u+

1
m2
Fv(x,u, v)v− F(x,u, v), ∀(x,u, v) ∈ Ω×R×R.

Then system (1.1) possesses a nontrivial weak solution.

Remark 3.2. Under assumptions (φ1)-(φ3), (F1) and (F4), by Lemma 2.7, the following embeddings are
compact:

W1,Φi
0 (Ω) ↪→ LΨi(Ω),W1,Φi

0 (Ω) ↪→ Llil̃Γ (Ω) and W1,Φi
0 (Ω) ↪→ Llim̃Γ (Ω), i = 1, 2,

where l̃Γ = lΓ
lΓ−1 and m̃Γ = mΓ

mΓ−1 .

Remark 3.3. By (2) in Lemma 2.3, assumptions (F3) and (F4) show

lim
|(u,v)|→+∞ F(x,u, v)→ +∞, uniformly in x ∈ Ω.

Remark 3.4. Based on the Young’s inequality (2.1), F(x, 0, 0) = 0 and the fact

F(x,u, v) =
∫u

0
Fs(x, s, v)ds+

∫v
0
Ft(x, 0, t)dt+ F(x, 0, 0), ∀(x,u, v) ∈ Ω×R×R,

equation (3.2) shows that there exists a constant c4 > 0 such that

|F(x,u, v)| 6 c4(|u|+ |v|+Ψ1(u) +Ψ2(v)), ∀(x,u, v) ∈ Ω×R×R,

which, together with (3.1) and (2) in Lemma 2.3, shows that there exists a constant c5 > 0 such that

|F(x,u, v)| 6 c5(1 +Ψ1(u) +Ψ2(v)), ∀(x,u, v) ∈ Ω×R×R. (3.4)
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Define W :=W1,Φ1
0 (Ω)×W1,Φ2

0 (Ω) with the norm

‖(u, v)‖ := ‖u‖0,Φ1 + ‖v‖0,Φ2 = ‖∇u‖Φ1 + ‖∇v‖Φ2 .

Remark 2.8 shows W is a separable and reflexive Banach space. We observe that the energy functional I
on W corresponding to system (1.1) is

I(u, v) :=
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx−
∫
Ω

F(x,u, v)dx, (u, v) ∈W.

Denote by Ii (i = 1, 2) :W → R the functionals

I1(u, v) =
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx, and I2(u, v) =
∫
Ω

F(x,u, v)dx.

Then
I(u, v) = I1(u, v) − I2(u, v).

Under the assumptions (φ1)-(φ3), by similar arguments as [21], we can prove that I1 is well-defined and
of class C1(W, R) and

〈I ′1(u, v), (ũ, ṽ)〉 =
∫
Ω

φ1(|∇u|)∇u∇ũdx+
∫
Ω

φ2(|∇v|)∇v∇ṽdx

for all (ũ, ṽ) ∈ W. Furthermore, under the assumption (F1), standard arguments show that I2 is also
well-defined and of class C1(W, R) and

〈I ′2(u, v), (ũ, ṽ)〉 =
∫
Ω

Fu(x,u, v)ũdx+
∫
Ω

Fv(x,u, v)ṽdx

for all (ũ, ṽ) ∈W. Therefore, I is well-defined and of class C1(W, R) and

〈I ′(u, v), (ũ, ṽ)〉 =
∫
Ω

φ1(|∇u|)∇u∇ũdx+
∫
Ω

φ2(|∇v|)∇v∇ṽdx

−

∫
Ω

Fu(x,u, v)ũdx−
∫
Ω

Fv(x,u, v)ṽdx

for all (ũ, ṽ) ∈W. Then, the critical points of I on W are weak solutions of system (1.1).
We will use the mountain pass theorem (see [30, Theorem 2.2]) to prove Theorem 3.1, and use the

symmetric mountain pass theorem (see [30, Theorem 9.12]) to prove Theorem 4.1 in Section 4. By argu-
ments in [6], it turns out that the (PS)-condition due to Palais-Smale can be replaced by (C)c-condition
due to Cerami in the mountain pass theorem and in the symmetric mountain pass theorem.

We recall that I ∈ C1(E, R) satisfies (C)c-condition if any (C)c-sequence {un} ⊂ E has a convergent
subsequence, where (C)c-sequence {un} means that

I(un)→ c, (1 + ‖un‖)‖I ′(un)‖ → 0, as n→∞. (3.5)

Lemma 3.5 ([30, Theorem 2.2]). Let E be a real Banach space and I ∈ C1(E, R) satisfying (PS)-condition. Suppose
I(0) = 0 and

(I1) there are constants ρ,α> 0 such that I |∂Bρ> α, and

(I2) there is an e ∈ E\Bρ such that I(e) 6 0.

Then I possesses a critical value c > α.

Lemma 3.6. Suppose that (φ1)-(φ3), (F1) and (F2) hold. Then there are constants ρ,α> 0 such that I |∂Bρ> α.
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Proof. By (F2), (3.4) and the fact that F is continuous, we obtain that there exist constants ε > 0 and C > 0
such that

|F(x,u, v)| 6 (1 − ε)(λ1Φ1(u) + λ2Φ2(v)) +C(Ψ1(u) +Ψ2(v)), ∀(x,u, v) ∈ Ω×R×R. (3.6)

When ‖(u, v)‖ 6 1, by (3.6), Poincaré inequality in (F2), Lemma 2.4, Remark 3.2 and (2.4), we obtain

I(u, v) =
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx−
∫
Ω

F(x,u, v)dx

>
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx−
∫
Ω

|F(x,u, v)|dx

> ε
∫
Ω

Φ1(|∇u|)dx+ ε
∫
Ω

Φ2(|∇v|)dx−C
∫
Ω

Ψ1(u)dx−C

∫
Ω

Ψ2(v)dx

> εmin{‖∇u‖l1
Φ1

, ‖∇u‖m1
Φ1

}+ εmin{‖∇v‖l2
Φ2

, ‖∇v‖m2
Φ2

}

−Cmax{‖u‖lΨ1
Ψ1

, ‖u‖mΨ1
Ψ1

}−Cmax{‖v‖lΨ2
Ψ2

, ‖v‖mΨ2
Ψ2

}

> εmin{‖∇u‖l1
Φ1

, ‖∇u‖m1
Φ1

}+ εmin{‖∇v‖l2
Φ2

, ‖∇v‖m2
Φ2

}

−Cmax{‖∇u‖lΨ1
Φ1

, ‖∇u‖mΨ1
Φ1

}−Cmax{‖∇v‖lΨ2
Φ2

, ‖∇v‖mΨ2
Φ2

}

= ε‖∇u‖m1
Φ1

+ ε‖∇v‖m2
Φ2

−C‖∇u‖lΨ1
Φ1

−C‖∇v‖lΨ2
Φ2

= ‖∇u‖m1
Φ1

(ε−C‖∇u‖lΨ1−m1

Φ1
) + ‖∇v‖m2

Φ2
(ε−C‖∇v‖lΨ2−m2

Φ2
).

Since 1 < mi < lΨi , we can choose positive constants ρ and α small enough such that I(u, v) > α for all
(u, v) ∈W with ‖(u, v)‖ = ρ.

Lemma 3.7. Suppose that (φ1)-(φ3) and (F3) hold. Then there is a point (u, v) ∈W\Bρ such that I(u, v) 6 0.

Proof. By (F3) and the fact that F is continuous, then for any given constant M > 0, there exists a constant
CM > 0 such that

F(x,u, v) >M(Φ(u) +Φ(v)) −CM, ∀(x,u, v) ∈ Ω×R×R. (3.7)

Now, choose u0 ∈ C∞0 (Ω) \ {0} with 0 6 u0(x) 6 1. Then (u0, 0) ∈ W, and by (3.7) and (2) in Lemma 2.3,
when t > 0 we have

I(tu0, 0) =
∫
Ω

Φ1(t|∇u0|)dx−

∫
Ω

F(x, tu0, 0)dx

6
∫
Ω

Φ1(t|∇u0|)dx−M

∫
Ω

Φ1(tu0)dx+CM|Ω|

6 Φ1(t)

∫
Ω

max{|∇u0|
l1 , |∇u0|

m1}dx−MΦ1(t)

∫
Ω

min{|u0|
l1 , |u0|

m1}dx+CM|Ω|

6 Φ1(t)(‖|∇u0|‖l1
Ll1(Ω)

+ ‖|∇u0|‖m1
Lm1(Ω) −M‖u0‖m1

m1
) +CM|Ω|.

Since M > 0 is arbitrary and lim
t→+∞Φ1(t) = +∞, we can choose M >

‖|∇u0|‖
l1
Ll1 (Ω)

+‖|∇u0|‖
m1
Lm1 (Ω)

‖u0‖
m1
m1

and large

t such that I(tu0, 0) 6 0 and ‖(tu0, 0)‖ > ρ.

Lemma 3.8. Suppose that (φ1)-(φ3), (F1), (F3) and (F4) hold. Then (C)c-sequence in W is bounded.

Proof. This proof is partially motivated by [12, Lemma 4.1]. Let {(un, vn)} be a (C)c-sequence of I in W.
Then, for n large enough, by (3.5) and (φ3), we obtain

c+ 1 > I(un, vn) −
〈
I ′(un, vn),

(
1
m1
un,

1
m2
vn

)〉
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=

∫
Ω

Φ1(|∇un|)dx+
∫
Ω

Φ2(|∇vn|)dx−
∫
Ω

F(x,un, vn)dx

−
1
m1

∫
Ω

φ1(|∇un|)|∇un|2dx−
1
m2

∫
Ω

φ2(|∇vn|)|∇vn|2dx

+
1
m1

∫
Ω

Fu(x,un, vn)undx+
1
m2

∫
Ω

Fv(x,un, vn)vndx (3.8)

=

∫
Ω

(
Φ1(|∇un|) −

1
m1
φ1(|∇un|)|∇un|2

)
dx+

∫
Ω

(
Φ2(|∇un|) −

1
m2
φ2(|∇vn|)|∇vn|2

)
dx

+

∫
Ω

(
1
m1
Fu(x,un, vn)un +

1
m2
Fv(x,un, vn)vn − F(x,un, vn)

)
dx

>
∫
Ω

F(x,un, vn)dx.

To prove the boundedness of {(un, vn)}, arguing by contradiction, suppose that there exists a subsequence
of {(un, vn)}, still denoted by {(un, vn)}, such that ‖(un, vn)‖ = ‖∇un‖Φ1 + ‖∇vn‖Φ2 → +∞. Next, we
discuss the problem in two cases.
Case 1. Suppose that ‖∇un‖Φ1 → +∞ and also ‖∇vn‖Φ2 → +∞. Let ūn = un

‖∇un‖Φ1
and v̄n = vn

‖∇vn‖Φ2
.

Then {(ūn, v̄n)} is bounded in separable, reflexive Banach space W. Passing to a subsequence {(ūn, v̄n)},
by Remark 3.2, there exists a point (ū, v̄) ∈W such that
? ūn ⇀ ū in W1,Φ1

0 (Ω), ūn → ū in Ll1l̃Γ (Ω) and in Ll1m̃Γ (Ω) , ūn(x)→ ū(x) a.e. in Ω;
? v̄n ⇀ v̄ in W1,Φ2

0 (Ω), v̄n → v̄ in Ll2l̃Γ (Ω) and in Ll2m̃Γ (Ω), v̄n(x)→ v̄(x) a.e. in Ω.
Firstly, we assume that [ū 6= 0] := {x ∈ Ω : ū(x) 6= 0} or [v̄ 6= 0] := {x ∈ Ω : v̄(x) 6= 0} has nonzero Lebesgue
measure. It is clear that

|un| = |ūn|‖∇un‖Φ1 → +∞ in [ū 6= 0]

and
|vn| = |v̄n|‖∇vn‖Φ2 → +∞ in [v̄ 6= 0].

Then, by (3.8), Remark 3.3 and Fatou’s Lemma, we have

c+ 1 >
∫
Ω

F(x,un, vn)dx→ +∞,

which is a contradiction. Next, we assume that both [ū 6= 0] and [v̄ 6= 0] have zero Lebesgue measure, that
is, ū = 0 in W1,Φ1

0 (Ω) and v̄ = 0 in W1,Φ2
0 (Ω). By Lemma 2.4, we have

min{‖∇un‖l1
Φ1

, ‖∇un‖m1
Φ1

}+ min{‖∇vn‖l2
Φ2

, ‖∇vn‖m2
Φ2

} 6
∫
Ω

Φ1(|∇un|)dx+
∫
Ω

Φ2(|∇vn|)dx (3.9)

= I(un, vn) +
∫
Ω

F(x,un, vn)dx.

When n large enough, that is

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

6 I(un, vn) +
∫
Ω

F(x,un, vn)dx,

which is equivalent to

1 6
I(un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

+

(∫
|(un,vn)|6R

+

∫
|(un,vn)|>R

)
F(x,un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

dx

= on(1) +
∫
|(un,vn)|6R

F(x,un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

dx+

∫
|(un,vn)|>R

F(x,un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

dx,
(3.10)
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where R is a positive constant such that R > r (see (F4)) and

F(x,u, v) > 0, ∀x ∈ Ω, |(u, v)| > R (by (F3)).

By the fact that F is continuous, there exists a constant CR > 0 such that

|F(x,u, v)| < CR, ∀x ∈ Ω, |(u, v)| 6 R. (3.11)

Then ∫
|(un,vn)|6R

F(x,un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

dx 6
CR|Ω|

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

= on(1). (3.12)

Besides, it follows from Hölder’s inequality that∫
|(un,vn)|>R

F(x,un, vn)

‖∇un‖l1
Φ1

+ ‖∇vn‖l2
Φ2

dx

=

∫
|(un,vn)|>R

F(x,un, vn)
|un|

l1

|ūn|
l1
+

|vn|
l2

|v̄n|
l2

dx

6
∫
|(un,vn)|>R

F(x,un, vn)
|un|l1 + |vn|l2

(|ūn|
l1 + |v̄n|

l2)dx

6 2
∥∥∥∥ F(x,un, vn)
|un|l1 + |vn|l2

χ{|(un, vn)| > R}
∥∥∥∥
Γ

‖(|ūn|l1 + |v̄n|
l2)χ{|(un, vn)| > R}‖Γ̃ ,

(3.13)

where χ denotes the characteristic function which satisfies

χ{|(un(x), vn(x))| > R} =

{
1 for x ∈ {x ∈ Ω : |(un(x), vn(x))| > R},
0 for x ∈ {x ∈ Ω : |(un(x), vn(x))| 6 R}.

For n large enough, by (3.3), (3.8) and the fact that F is continuous, we obtain∫
Ω

Γ

(
F(x,un, vn)
|un|l1 + |vn|l2

χ{|(un, vn)| > R
)
dx 6 c3

∫
Ω

F(x,un, vn)dx+C 6 c3(c+ 1) +C.

Then, for n large enough, by Lemma 2.4, there exists a constant J > 0 such that∥∥∥∥ F(x,un, vn)
|un|l1 + |vn|l2

χ{|(un, vn)| > R}
∥∥∥∥
Γ

6 J. (3.14)

Moreover, it is easy to see that

‖(|ūn|l1 + |v̄n|
l2)χ{|(un, vn)| > R}‖Γ̃ 6 ‖(|ūn|l1 + |v̄n|

l2)‖
Γ̃
6 ‖|ūn|l1‖

Γ̃
+ ‖|v̄n|l2‖

Γ̃
.

By Lemma 2.3 and Lemma 2.5, (F4) implies that N-function Γ̃ satisfies a ∆2-condition globally. Then, by
(2.2), ‖u‖

Γ̃
→ 0 as

∫
Ω Γ̃(|u|)dx→ 0. It follows from Lemma 2.5 and ? that∫

Ω

Γ̃(|ūn|
l1)dx+

∫
Ω

Γ̃(|v̄n|
l2)dx

6 Γ̃(1)
∫
Ω

max{|ūn|l1l̃Γ , |ūn|l1m̃Γ }dx+ Γ̃(1)
∫
Ω

max{|v̄n|l2l̃Γ , |v̄n|l2m̃Γ }dx

6 Γ̃(1)
(∫
Ω

|ūn|
l1l̃Γdx+

∫
Ω

|ūn|
l1m̃Γdx+

∫
Ω

|v̄n|
l2l̃Γdx+

∫
Ω

|v̄n|
l2m̃Γdx

)
= on(1),
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which implies
‖(|ūn|l1 + |v̄n|

l2)χ{|(un, vn)| > R}‖Γ̃ 6 ‖|ūn|l1‖
Γ̃
+ ‖|v̄n|l2‖

Γ̃
= on(1). (3.15)

By combining (3.12), (3.13), (3.14), (3.15) with (3.10), we get a contradiction.

Case 2. Suppose that ‖∇un‖Φ1 6 C or ‖∇vn‖Φ2 6 C for some C > 0 and all n ∈ N. Without loss of
generality, we assume that ‖∇un‖Φ1 → +∞ and ‖∇vn‖Φ2 6 C, for some C > 0 and all n ∈ N. Let
ūn = un

‖∇un‖Φ1
and v̄n = vn

‖∇un‖Φ1
. Then ‖ūn‖0,Φ1 = 1 and ‖v̄n‖0,Φ2 → 0. Passing to a subsequences

{(ūn, v̄n)}, by Remark 3.2, there exist ū ∈W1,Φ1
0 (Ω) and v ∈W1,Φ2

0 (Ω) such that
? ūn ⇀ ū in W1,Φ1

0 (Ω), ūn → ū in Ll1l̃Γ (Ω) and in Ll1m̃Γ (Ω) , ūn(x)→ ū(x) a.e. in Ω;
? v̄n → 0 in W1,Φ2

0 (Ω), v̄n → 0 in Ll2l̃Γ (Ω) and in Ll2m̃Γ (Ω), v̄n(x)→ 0 a.e. in Ω;
? vn ⇀ v in W1,Φ2

0 (Ω), vn → v in Ll2l̃Γ (Ω) and in Ll2m̃Γ (Ω), vn(x)→ v(x) a.e. in Ω.
Similarly, we firstly assume that [ū 6= 0] has nonzero Lebesgue measure. We can see that

|un| = |ūn|‖∇un‖Φ1 → +∞ in [ū 6= 0].

Then, by (3.8), Remark 3.3 and Fatou’s Lemma, we get a contradiction by

c+ 1 >
∫
Ω

F(x,un, vn)dx→ +∞.

Next, we suppose that [ū 6= 0] has zero Lebesgue measure, that is, ū = 0 in W1,Φ1
0 (Ω). By Lemma 2.5 and

?, we have

min
{∥∥|vn|l2

∥∥l̃Γ
Γ̃

,
∥∥|vn|l2

∥∥m̃Γ

Γ̃

}
6
∫
Ω

Γ̃(|vn|
l2)dx

6 Γ̃(1)
∫
Ω

max{|vn|l2l̃Γ , |vn|l2m̃Γ }dx

6 Γ̃(1)
(∫
Ω

|vn|
l2l̃Γdx+

∫
Ω

|vn|
l2m̃Γdx

)
→ C,

which shows that there exists a constant L > 0 such that∥∥|vn|l2
∥∥
Γ̃
6 L, ∀n ∈N. (3.16)

When n large enough, (3.9) changed into

‖∇un‖l1
Φ1

+M 6 I(un, vn) +
∫
Ω

F(x,un, vn)dx+M,

where M is a positive constant with M > 4JL (see (3.14) and (3.16)). Then, by (3.11), (3.14), (3.15), (3.16)
and Hölder’s inequality, above estimate means

1 6
I(un, vn) +M

‖∇un‖l1
Φ1

+M
+

∫
Ω

F(x,un, vn)

‖∇un‖l1
Φ1

+M
dx

= on(1) +
∫
|(un,vn)|6R

F(x,un, vn)

‖∇un‖l1
Φ1

+M
dx+

∫
|(un,vn)|>R

F(x,un, vn)

‖∇un‖l1
Φ1

+M
dx

= on(1) +
∫
|(un,vn)|>R

F(x,un, vn)

‖∇un‖l1
Φ1

+M
dx

6 on(1) +
∫
|(un,vn)|>R

F(x,un, vn)
|un|l1 + |vn|l2

(
|ūn|

l1 +
1
M

|vn|
l2

)
dx
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6 on(1) + 2
∥∥∥∥ F(x,un, vn)
|un|l1 + |vn|l2

χ{|(un, vn)| > R}
∥∥∥∥
Γ

∥∥∥∥(|ūn|l1 +
1
M

|vn|
l2

)
χ{|(un, vn)| > R}

∥∥∥∥
Γ̃

6 on(1) + 2J
(∥∥|ūn|l1

∥∥
Γ̃
+

1
M

∥∥|vn|l2
∥∥
Γ̃

)
6 on(1) + 2J

(
on(1) +

L

M

)
= on(1) +

2JL
M

< on(1) +
1
2

,

which is a contradiction.

Lemma 3.9. Suppose that (φ1)-(φ3), (F1), (F3) and (F4) hold. Then I satisfies (C)c-condition.

Proof. Let {(un, vn)} be any (C)c-sequence of I in W. Lemma 3.8 shows {(un, vn)} is bounded. Passing to
a subsequence {(un, vn)}, by Remark 3.2, there exists a point (u, v) ∈W such that
? un ⇀ u in W1,Φ1

0 (Ω), un → u in LΨ1(Ω), un(x)→ u(x) a.e. in Ω;
? vn ⇀ v in W1,Φ2

0 (Ω), vn → v in LΨ2(Ω), vn(x)→ v(x) a.e. in Ω.
Now, we define operators

F :W1,Φ1
0 (Ω)→ (W1,Φ1

0 (Ω))∗ by 〈F(u), ũ〉 :=
∫
Ωφ1(|∇u|)∇u∇ũdx, u, ũ ∈W1,Φ1

0 (Ω),
and
G :W1,Φ2

0 (Ω)→ (W1,Φ2
0 (Ω))∗ by 〈G(v), ṽ〉 :=

∫
Ωφ2(|∇v|)∇v∇ṽdx, v, ṽ ∈W1,Φ2

0 (Ω).
Then, we have

〈F(un),un − u〉 =
∫
Ω

φ1(|∇un|)∇un∇(un − u)dx

= 〈I ′(un, vn), (un − u, 0)〉+
∫
Ω

Fu(x,un, vn)(un − u)dx.
(3.17)

Equation (3.5) shows that

|〈I ′(un, vn), (un − u, 0)〉| 6 ‖I ′(un, vn)‖‖un − u‖0,Φ1 → 0. (3.18)

By (F1) and Hölder’s inequality, we get∣∣∣∣∫
Ω

Fu(x,un, vn)(un − u)dx

∣∣∣∣ 6 c1

∫
Ω

(1 +ψ1(|un|) + Ψ̃
−1
1 (Ψ2(vn)))|un − u|dx

6 2c1‖1 +ψ1(|un|) + Ψ̃
−1
1 (Ψ2(vn))‖Ψ̃1

‖un − u‖Ψ1 .
(3.19)

Condition (F1) shows that functions Ψ1 and Ψ̃1 are N-functions satisfying ∆2-condition globally, which
together with the convexity of N-function, Lemma 2.4, Remark 3.2 and the boundedness of {(un, vn)},
implies that ∫

Ω

Ψ̃1(1 +ψ1(|un|) + Ψ̃
−1
1 (Ψ2(vn)))dx 6 C

∫
Ω

(1 +Ψ1(un) +Ψ2(vn))dx 6 C,

which, together with Lemma 2.4 again, shows that

‖1 +ψ1(|un|) + Ψ̃
−1
1 (Ψ2(vn))‖Ψ̃1

6 C (3.20)

for some C > 0. Moreover, ? shows that
‖un − u‖Ψ1 → 0. (3.21)

Then, combining (3.18), (3.19), (3.20), (3.21) with (3.17), we obtain

〈F(un),un − u〉 → 0, as n→∞.
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By [12, Proposition A.3], F is of the class (S+), that is, if a sequence {un} ⊂W1,Φ1
0 (Ω) satisfying

un ⇀ u and lim sup
n→∞ 〈F(un),un − u〉 6 0,

then un → u in W1,Φ1
0 (Ω). Thus un → u in W1,Φ1

0 (Ω). Similarly, we can obtain that vn → v in W1,Φ2
0 (Ω).

Therefore, {(un, vn)}→ (u, v) in W.

Proof of Theorem 3.1. By Lemmas 3.6, 3.7, 3.9 and the obvious fact I(0) = 0, all conditions of Lemma 3.5
hold. Then system (1.1) possesses a nontrivial weak solution which is a critical point of I.

4. Multiplicity

In this section, we present the following multiplicity result by using symmetric mountain pass theo-
rem.

Theorem 4.1. Assume that (φ1)-(φ3), (F0), (F1),

(F4) and the following conditions hold:

(F5)

lim
|(u,v)|→+∞

F(x,u, v)
|u|m1 + |v|m2

= +∞ uniformly in x ∈ Ω;

(F6) F(x,−u,−v) = F(x,u, v), for all (x,u, v) ∈ Ω×R×R.

Then system (1.1) possesses infinitely many weak solutions {(uk, vk)} such that

I(uk, vk) :=
∫
Ω

Φ1(|∇uk|)dx+
∫
Ω

Φ2(|∇vk|)dx−
∫
Ω

F(x,uk, vk)dx→ +∞, as k→∞.

Now, we display the symmetric mountain pass theorem as follows.

Lemma 4.2 ([30, Theorem 9.12]). Let E be an infinite-dimensional Banach space and let I ∈ C1(E, R) be even,
satisfy (PS)-condition, and I(0) = 0. If E = V ⊕X, where V is finite dimensional, and I satisfies

(I1) there are constants ρ, α> 0 such that I |∂Bρ∩X> α, and

(I2) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) such that I 6 0 on Ẽ\B
R(Ẽ)

, where
Br = {u ∈ E : ‖u‖ < r},

then I possesses an unbounded sequence of critical values.

Since W1,Φi
0 (Ω) (i = 1, 2) are reflexive and separable Banach spaces, then there exist sequences

{eij : j ∈N} ⊂W1,Φi
0 (Ω) (i = 1, 2) and {e∗ij : j ∈N} ⊂W1,Φi

0 (Ω)
∗
(i = 1, 2) such that

W1,Φi
0 (Ω) = span{eij : j = 1, 2, · · · }, W1,Φi

0 (Ω)
∗
= span{e∗ij : j = 1, 2, · · · }, i = 1, 2, (4.1)

and

e∗in(eim) =

{
1 if n = m,
0 if n 6= m,

i = 1, 2, (4.2)

(see [37, Section 17]). Define

Yi(k) := span{eij : j = 1, · · · ,k}, Zi(k) := span{eij : j = k+ 1, · · · }, i = 1, 2. (4.3)

Since the embeddings W1,Φi
0 (Ω) ↪→ LΨi(Ω) (i = 1, 2) are compact, then, with a similar discussion as [13,

Lemma 2.10 ], we can get

αi(k) := sup
{
‖z‖Ψi : ‖z‖0,Φi = 1, z ∈ Zi(k)

}
→ 0, i = 1, 2, as k→∞. (4.4)
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Lemma 4.3. Let Yi(k) and Zi(k) be the subsets of W1,Φi
0 (Ω) defined by (4.3). Then

W1,Φi
0 (Ω) = Yi(k) ⊕Zi(k), i = 1, 2, k ∈N.

Proof. Let us prove that W1,Φ1
0 (Ω) = Y1(k) ⊕ Z1(k), k ∈ N. Then, with the same arguments, we can

prove that W1,Φ2
0 (Ω) = Y2(k) ⊕ Z2(k), k ∈ N. It is clear that both Y1(k) and Z1(k) are closed subspaces of

W1,Φ1
0 (Ω) for k ∈N. For any x ∈W1,Φ1

0 (Ω), by (4.1), there exists a sequence {xn} ⊂ span{e1j : j = 1, 2, · · · }
which converges to x. Let

xn =

N(n)∑
l=1

al,ne1l, where al,n ∈ R,N(n) ∈N and N(n) > k.

Since {xn} is a Cauchy sequence, for any given δ > 0 there exists an N such that

‖xn − xm − 0‖0,Φ1 = ‖xn − xm‖0,Φ1 = ‖
N(n)∑
l=1

al,ne1l −

N(m)∑
l=1

al,me1l‖0,Φ1 < δ, (m,n > N). (4.5)

According to the continuity of e∗1j ∈ W
1,Φ1
0 (Ω)

∗
(j = 1, · · · ,k) and (4.2), for every ε > 0, by (4.5), we can

choose δ > 0 small enough such that

|e∗1j(xn − xm) − e∗1j(0)| = |e∗1j(

N(n)∑
l=1

al,ne1l −

N(m)∑
l=1

al,me1l)| = |aj,n − aj,m| < ε,

which means that sequences {aj,n : n = 1, 2, · · · } (j = 1, · · · ,k) are Cauchy sequences in R. Since R is
complete, then there exist aj ∈ R(j = 1, · · · ,k) such that sequences {aj,n} converge to aj, j = 1, · · · ,k, as
n→∞. Now we can choose a sequence {x̃n} ⊂ span{e1j : j = 1, 2, · · · } which satisfies

x̃n =

k∑
j=1

aje1j +

N(n)∑
l=k+1

al,ne1l.

We conclude that the sequence {x̃n} converges to x, because the sequence {xn} converges to x and

lim
n→∞ ‖xn − x̃n‖0,Φ1 = lim

n→∞ ‖
k∑
l=1

al,ne1l −

k∑
j=1

aje1j‖0,Φ1

= lim
n→∞ ‖

k∑
j=1

(aj,n − aj)e1j‖0,Φ1

6 lim
n→∞

k∑
j=1

|(aj,n − aj)|‖e1j‖0,Φ1 = 0.

Let

y =

k∑
j=1

aje1j and zn =

N(n)∑
l=k+1

al,ne1l.

Then the sequence {zn} ⊂ span{e1j : j = k+ 1, · · · } converges to x− y, which implies x− y ∈ Z1(k). Note
that y ∈ Y1(k) and x = y+ (x− y). We get W1,Φ1

0 (Ω) = Y1(k) + Z1(k). Now, we prove Y1(k) ∩ Z1(k) = {0}.
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Let x ∈ Y1(k) ∩ Z1(k). Then there exists a sequence {zn} ⊂ span{e1j : j = k+ 1, · · · } which converges to
x =
∑k
l=1 ale1l. Let

zn =

N(n)∑
l=k+1

al,ne1l.

By the continuity of e∗1j ∈W
1,Φ1
0 (Ω)

∗
(j = 1, · · · ,k) and (4.2), we have

lim
n→∞ e∗1j(zn) = lim

n→∞ e∗1j
 N(n)∑
l=k+1

al,ne1l

 = 0 = e∗1j(

k∑
l=1

ale1l) = aj, for j = 1, · · · ,k,

which implies x = 0. Therefore, W1,Φ1
0 (Ω) = Y1(k) ⊕Z1(k), k ∈N.

Lemma 4.4. For Banach space W =W1,Φ1
0 (Ω)×W1,Φ2

0 (Ω), there exits a sequence {η(j)} ⊂W defined by

η(j) =

{
(e1n, 0) if j = 2n− 1,
(0, e2n) if j = 2n, for n ∈N,

(4.6)

such that

(1)
W = span{η(j) : j = 1, 2, · · · },

(2)
W = Yk ⊕Zk,

where
Yk := span{η(j) : j = 1, · · · ,k} and Zk := span{η(j) : j = k+ 1, · · · }.

Proof.

(1) Since W is complete, then it is obvious that span{η(j) : j = 1, 2, · · · } ⊆ W. Now, we prove that W ⊆
span{η(j) : j = 1, 2, · · · }. For every (u, v) ∈W, by (4.1), there exist sequences
{un} ⊂ span{e1j : j = 1, 2, · · · } and {vn} ⊂ span{e2j : j = 1, 2, · · · } which converge to u in W1,Φ1

0 (Ω) and v in
W1,Φ2

0 (Ω), respectively. Let

un =

N1(n)∑
j=1

aj,ne1j and vn =

N2(n)∑
j=1

bj,ne2j, where aj,n,bj,n ∈ R and N1(n),N2(n) ∈N.

Then

(un, vn) =

N1(n)∑
j=1

aj,ne1j,
N2(n)∑
j=1

bj,ne2j

 =

N1(n)∑
j=1

aj,n(e1j, 0) +
N2(n)∑
j=1

bj,n(0, e2j).

By (4.6) and last equality, we get {(un, vn)} ⊂ span{η(j) : j = 1, 2, · · · } and

‖(un, vn) − (u, v)‖ = ‖(un − u, vn − v)‖ = ‖un − u‖0,Φ1 + ‖vn − v‖0,Φ2 → 0, as n→∞,

which implies that (u, v) ∈ span{η(j) : j = 1, 2, · · · }. So, W ⊆ span{η(j) : j = 1, 2, · · · }. Therefore, W =

span{η(j) : j = 1, 2, · · · }.
(2) Combining Lemma 4.3 with (4.6), we can see that

η(n) /∈ span{η(j) : j = 1, 2, · · · and j 6= n}, ∀n ∈N.

Then there exists (see [37, Section 17]) a sequence {η∗(j)} ⊂W
∗ such that
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η∗(n)(η(m)) =

{
1 if n = m,
0 if n 6= m.

With the same discussion as Lemma 4.3, we can obtain that W = Yk ⊕Zk.

Lemma 4.5. Suppose that (φ1)-(φ3) and (F1) hold. Then there are constants ρ,α > 0 and k ∈ N such that
I |∂Bρ∩Z2k> α.

Proof. For (u, v) ∈ Z2k, by (3.4), (4.4) and Lemma 2.4, we have

I(u, v) =
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx−
∫
Ω

F(x,u, v)dx

>
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx− c5

∫
Ω

Ψ1(u)dx− c5

∫
Ω

Ψ2(v)dx− c5|Ω|

> min{‖∇u‖l1
Φ1

, ‖∇u‖m1
Φ1

}+ min{‖∇v‖l2
Φ2

, ‖∇v‖m2
Φ2

}

− c5 max{‖u‖lΨ1
Ψ1

, ‖u‖mΨ1
Ψ1

}− c5 max{‖v‖lΨ2
Ψ2

, ‖v‖mΨ2
Ψ2

}− c5|Ω|

> min{‖∇u‖l1
Φ1

, ‖∇u‖m1
Φ1

}+ min{‖∇v‖l2
Φ2

, ‖∇v‖m2
Φ2

}

− c5 max{α
lΨ1
1(k)‖∇u‖

lΨ1
Φ1

,α
mΨ1
1(k)‖∇u‖

mΨ1
Φ1

}− c5 max{α
lΨ2
2(k)‖∇v‖

lΨ2
Φ2

,α
mΨ2
2(k)‖∇v‖

mΨ2
Φ2

}− c5|Ω|.

Since αi(k) → 0, i = 1, 2, as k → ∞, then above inequality implies that there exist constants ρ > 0, lager
k ∈N and α > 0 such that I |∂Bρ∩Z2k> α.

Lemma 4.6. Suppose that (φ1)-(φ3) and (F5) hold. Then for each finite dimensional subspace W̃ ⊂W, there exists
a positive constant R = R(W̃) such that I 6 0 on W̃\B

R(W̃)
.

Proof. For each finite dimensional subspace W̃ ⊂ W, one has W̃ ⊆ W1 ×W2, where W1 and W2 are
finite dimensional subspaces of W1,Φ1

0 (Ω) and W1,Φ2
0 (Ω), respectively. Since any two norms in finite

dimensional space is equivalent, then there exist positive constants d1,d2.d3,d4 such that

d1‖∇u‖Φ1 6 ‖u‖Lm1(Ω) 6 d2‖∇u‖Φ1 , ∀u ∈W1,

d3‖∇v‖Φ2 6 ‖v‖Lm2(Ω) 6 d4‖∇v‖Φ2 , ∀v ∈W2.
(4.7)

Moreover, (F5) and the continuity of function F imply that for any given constant M > max
{

2
d
m1
1

, 2
d
m2
3

}
,

there exists a constant CM > 0 such that

F(x,u, v) >M(|u|m1 + |v|m2 −CM, ∀(x,u, v) ∈ Ω×R×R. (4.8)

Then, by (4.7), (4.8) and Lemma 2.4, when (u, v) ∈ W̃ we have

I(u, v) =
∫
Ω

Φ1(|∇u|)dx+
∫
Ω

Φ2(|∇v|)dx−
∫
Ω

F(x,u, v)dx

6 max{‖∇u‖l1
Φ1

, ‖∇u‖m1
Φ1

}+ max{‖∇v‖l2
Φ2

, ‖∇v‖m2
Φ2

}−M

∫
Ω

(|u|m1 + |v|m2)dx+CM|Ω|

6 ‖∇u‖l1
Φ1

+ ‖∇u‖m1
Φ1

+ ‖∇v‖l2
Φ2

+ ‖∇v‖m2
Φ2

−M‖u‖m1
Lm1(Ω) −M‖v‖

m2
Lm2(Ω) +CM|Ω|

6 ‖∇u‖l1
Φ1

+ ‖∇u‖m1
Φ1

+ ‖∇v‖l2
Φ2

+ ‖∇v‖m2
Φ2

−Mdm1
1 ‖∇u‖

m1
Φ1

−Mdm2
3 ‖∇v‖

m2
Φ2

+CM|Ω|

= ‖∇u‖l1
Φ1

+ ‖∇v‖l2
Φ2

− ‖∇u‖m1
Φ1

(Mdm1
1 − 1) − ‖∇v‖m2

Φ2
(Mdm2

3 − 1) +CM|Ω|.

Note that li 6 mi (i = 1, 2). Then the above inequality implies that

lim
r→∞ sup

(u,v)∈∂Br∩W̃
I(u, v) = −∞.

Thus, there exists an R = R(W̃) such that I 6 0 on W̃\B
R(W̃)

.
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Proof of Theorem 4.1. Let E =W, V = Y2k, and X = Z2k. Obviously, I(0) = 0 and (F6) implies I is even. By
Lemmas 3.9, 4.5 and 4.6, all conditions of Lemma 4.2 hold. Then system (1.1) possesses infinitely many
weak solutions {(uk, vk)} which are critical points of I such that I(uk, vk)→ +∞, as k→∞.

5. Comparing with Theorem 1.1

In order to compare our results with Theorem 1.1, in this section, we present the results for equation
(1.2), which correspond to Theorem 3.1 and Theorem 4.1.

Theorem 5.1. Assume that conditions (φ1)
′-(φ3)

′, (f0) in Theorem 1.1 and the following conditions hold:

(f1) there exist a continuous function ψ : [0,+∞) → R, which satisfies that Ψ :=
∫|t|

0 ψ(s)ds, t ∈ R is an
N-function increasing essentially more slowly than Φ∗ near infinity, moreover,

m < lΨ := inf
t>0

tψ(t)

Ψ(t)
6 sup
t>0

tψ(t)

Ψ(t)
=: mΨ < +∞,

such that
|f(x, t)| 6 C(1 +ψ(|t|))

for all (x, t) ∈ Ω×R, where constant C > 0;

(f2)

lim sup
t→0

|F(x, t)|
Φ(t)

= λ < λ1, uniformly in x ∈ Ω,

where and in the sequel F(x, t) =
∫t

0 f(x, s)ds, t ∈ R and λ1 > 0 satisfies the Poincaré inequality given by

λ1

∫
Ω

Φ(u)dx 6
∫
Ω

Φ(|∇(u)|)dx, ∀u ∈W1,Φ
0 (Ω);

(f3)

lim
t→∞ F(x, t)

Φ(t)
= +∞ uniformly in x ∈ Ω;

(f4) there exists a continuous function γ : [0,∞) → R and it satisfies that Γ(t) :=
∫|t|

0 γ(s)ds, t ∈ R is an
N-function with

1 < lΓ := inf
t>0

tγ(t)

Γ(t)
6 sup
t>0

tγ(t)

Γ(t)
=: mΓ < +∞,

and function H(t) := |t|
llΓ
lΓ−1 , t ∈ R increases essentially more slowly than Φ∗ near infinity such that

Γ

(
F(x, t)
|t|l

)
6 CF(x, t), x ∈ Ω, |t| > R,

where constants C,R > 0 and

F(x, t) := tf(x, t) −mF(x, t), ∀(x, t) ∈ Ω×R.

Then (1.2) possesses a nontrivial weak solution.

Theorem 5.2. Assume that (φ1)
′-(φ3)

′, (f0), (f1), (f4) and the following conditions hold:

(f5)

lim
t→∞ F(x, t)

|t|m
= +∞ uniformly in x ∈ Ω;
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(f6) F(x,−t) = F(x, t), for all (x, t) ∈ Ω×R.

Then (1.2) possesses infinitely many weak solutions {uk} such that

J(uk) :=

∫
Ω

Φ(|∇uk|)dx−
∫
Ω

F(x,uk)dx→ +∞, as k→∞.

Remark 5.3. Theorem 5.1 improves the result (i) of Theorem 1.1 in Section 1. In fact, by (2) in Lemma 2.3
and (2) in Lemma 2.6, (f1)

′ shows that for any given constant c > 0, it holds that

lim
t→∞ Ψ(ct)Φ∗(t)

6
Ψ(c)max{tlΨ , tmΨ}

Φ∗(1)min{tl∗ , tm∗}
= 0,

which implies Ψ increases essentially more slowly than Φ∗. Moreover, comparing (f1)
′ with (f1), we can

see that condition m < l∗ is not necessary in (f1), see example below. It is obvious that (f2)
′ is equivalent

to (f2). Since (f3)
′ is equivalent to (f5), which, together with (2) in Lemma 2.3, implies (f3). In (f4)

′,

condition N
l < lΓ shows llΓ

lΓ−1 < l
∗, which implies that function H(t) := |t|

llΓ
lΓ−1 , t ∈ R increases essentially

more slowly than Φ∗.
Next, in order to offer an example that satisfies our conditions but do not satisfy the conditions in

Theorem 1.1, we firstly need the following lemma.

Lemma 5.4. Under the assumptions (φ1)
′-(φ3)

′, let m := lim inf
t→+∞ tφ(t)

Φ(t) . Then, function Υ(t) := |t|p, t ∈ R

increases essentially more slowly than Φ∗ near infinity, where 1 < p < m∗ := mN
N−m .

Proof. Choose a > 0 such that a∗ := aN
N−a = p. It follows from the fact p < m∗ that a < m and

p < (a+m2 )∗ :=
a+m

2 N

N−a+m
2

. Then, there exists a constant K > 0 such that

tφ(t)

Φ(t)
>

1
2
(a+m), ∀t > K,

which implies that
Φ(t) > C1|t|

1
2 (a+m), ∀t > K

for some C1 > 0. Then, by the definition of Φ∗, when t > Φ(K) we have

Φ−1
∗ (t) = Φ−1

∗ (Φ(K)) +

∫t
Φ(K)

Φ−1(s)

s
N+1
N

ds

6 Φ−1
∗ (Φ(K)) +

(
1
C1

) 2
a+m
∫t
Φ(K)

s(
2

a+m−N+1
N )ds

= Φ−1
∗ (Φ(K)) +

(
1
C1

) 2
a+m N(a+m)

2N− (a+m)

(
t

2N−(a+m)
N(a+m) −Φ(K)

2N−(a+m)
N(a+m)

)
6 C2t

2N−(a+m)
N(a+m)

for some C2 > 0, which implies that

Φ∗(t) >

(
1
C2

) N(a+m)
2N−(a+m)

t
N(a+m)

2N−(a+m) =

(
1
C2

)(a+m2 )∗

t(
a+m

2 )∗ , ∀t > Φ−1
∗ (Φ(K)).

Thus, for any constant c > 0, we have

lim
t→+∞ Υ(ct)Φ∗(t)

6 lim
t→+∞ cpC(a+m2 )∗

2 t[p−(a+m2 )∗] = 0,

which implies that Υ(t) = |t|p, t ∈ R increases essentially more slowly than Φ∗ near infinity.
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Example 5.5. In (1.2), let N = 6, φ(|t|)t = 2t+ 4t3, t > 0 and f(x, t) = 5|t|3t, t ∈ R. Then some simple
computations show that

Φ(t) = t2 + t4 and F(x, t) = F(x, t) = |t|5, t ∈ R,

and
l = 2, m = m = 4, l∗ = 3 and m∗ = m∗ = 12.

Clearly, assumptions (φ1)
′-(φ3)

′, (f0), (f2) and (f3) hold. In (f1), choose function ψ(t) = 10t9, t > 0
satisfying Ψ(t) = |t|10, t ∈ R and lΨ = mΨ = 10. Then, (f1) holds because Lemma 5.4 shows Ψ increases
essentially more slowly than Φ∗ near infinity. However, the fact l∗ < m implies that (f1)

′ does not hold.
In (f4), choose function γ(t) = 4

3t
1
3 , t > 0 satisfying Γ(t) = |t|

4
3 , t ∈ R and lΨ = mΨ = 4

3 . Then,

Γ

(
F(x, t)
|t|l

)
= |t|4 6 |t|5,∀|t| > 1,

and Lemma 5.4 shows H(t) = |t|
llΓ
lΓ−1 = t8, t ∈ R increases essentially more slowly than Φ∗ near infinity.

Remark 5.6. In [12], based on Lieberman’s interior regularity and boundary regularity results (see [25, 26]),
maximum principle (see [29]) and other tools, Carvalho et al. investigated some important properties of
solutions like (ii) in Theorem 1.1 under a stronger condition (φ4)

′. However, in the system case, those
methods for the scalar case may not be useful any more. To extend the result (ii) in Theorem 1.1 to system
(1.1), new methods maybe need to be established. We will try to do it in our future work.

6. Examples

In this section, we present some examples to illustrate our main results. For system (1.1), φi (i = 1, 2)
can be chosen from the following cases which satisfy all (φ1)-(φ3) type conditions:

1. Let φ(t) = tp−1, t > 0, 1 < p+ 1 < N. In this case, simple computations show that l = m = p+ 1.

2. Let φ(t) = tp−1 + tq−1, t > 0, 1 < p+1 < q+1 < N < (p+1)(q+1)
q−p . In this case, simple computations

show that l = p+ 1, m = q+ 1.

3. Let φ(t) = 2p(1+ t2)p−1, t > 0, 1 6 p < N
2 . In this case, simple computations show that l = 2, m =

2p.

4. Let φ(t) = tq−1

log(1+tp) , t > 0, 1 < p+ 1 < q+ 1 < N < (q−p+1)(q+1)
p . In this case, simple computations

show that l = q− p+ 1, m = q+ 1.

5. Let φ(t) = tq−1 log(1 + tp), t > 0, p,q > 0 and p+ q+ 1 < N <
(q+1)(p+q+1)

p . In this case, simple
computations show that l = q+ 1, m = p+ q+ 1.

Based on this fact, it is easy to choose φi (i = 1, 2) and N such that (φ1)-(φ3) hold with l∗i > mi > 4 (i =
1, 2), and max{Nl1

, Nl2
} < min{ m1

m1−l1
, m2
m2−l2

}. Then,

F(x,u, v) = |u|m1 log(1 + |u|) + |v|m2 log(1 + |v|) + |u|
m1+ε

2 |v|
m2+ε

2 ,

satisfies (F0)-(F6), where constant ε > 0 satisfying ε < 2l∗1l
∗
2−m1l

∗
2−m2l

∗
1

l∗1+l
∗
2

and

max{Nl1
, Nl2

} < min{ m1
m1−l1+ε

, m2
m2−l2+ε

}. In fact,

Fu(x,u, v) = m1|u|
m1−2u log(1 + |u|) +

|u|m1−1u

1 + |u|
+
m1 + ε

2
|u|

m1+ε−4
2 |v|

m2+ε
2 u,
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Fv(x,u, v) = m2|v|
m2−2v log(1 + |v|) +

|v|m2−1v

1 + |v|
+
m2 + ε

2
|u|

m2+ε
2 |v|

m2+ε−4
2 v,

then

F(x,u, v) =
|u|m1+1

m1(1 + |u|)
+

|v|m2+1

m2(1 + |v|)
+

(m1 +m2)ε

2m1m2
|u|

m1+ε
2 |v|

m2+ε
2 >

|u|m1+1

m1(1 + |u|)
+

|v|m2+1

m2(1 + |v|)
.

It is obvious that F satisfies (F0) and (F6). Since

lim
|(u,v)|→0

F(x,u, v)
|u|m1 + |v|m2

= 0 and lim
|(u,v)|→+∞

F(x,u, v)
|u|m1 + |v|m2

= +∞,

which, together with (2) in Lemma 2.3, shows that (F2), (F3) and (F5) hold. Since 0 < ε < 2l∗1l
∗
2−m1l

∗
2−m2l

∗
1

l∗1+l
∗
2

,

by the Young’s inequality, there exist ψi(t) = tai−1, t > 0, mi < ai < l∗i , (i = 1, 2) such that (F1) holds.
Next, we check (F4). Choose γ(t) = ktk−1, t > 0, where max{Nl1

, Nl2
} < k 6 min{ m1

m1−l1+ε
, m2
m2−l2+ε

}. Then
Γ(t) = |t|k, t ∈ R and lΓ = mΓ = k. Since max{Nl1

, Nl2
} < k, similar arguments as Remark 5.3 show

that Hi(t) := |t|
lilΓ
lΓ−1 , t ∈ R (i = 1, 2) increase essentially more slowly than Φi∗ (i = 1, 2) near infinity,

respectively. Moreover,

lim sup
|(u,v)|→∞

(
|F(x,u, v)|
|u|l1 + |v|l2

)k 1
F(x,u, v)

6 lim sup
|(u,v)|→∞

(
|u|m1 log(1 + |u|) + |v|m2 log(1 + |v|) + |u|

m1+ε
2 |v|

m2+ε
2

)k
(
|u|l1 + |v|l2

)k ( |u|m1+1

m1(1+|u|) +
|v|m2+1

m2(1+|v|)

)
6 Ck lim sup

|(u,v)|→∞
|u|km1(log(1 + |u|))k + |v|km2(log(1 + |v|))k + |u|k(m1+ε) + |v|k(m2+ε)

|u|kl1+m1+1

m1(1+|u|) +
|v|kl2+m2+1

m2(1+|v|)

< +∞,

which shows that there exist constants c3, r > 0 such that (3.3) holds.
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