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Abstract

In this paper, we define and study Li-Yorke chaos and distributional chaos along a sequence for finitely generated semigroup
actions. Let X be a compact space with metric d and G be a semigroup generated by f1, f2, · · · fm which are finitely many
continuous mappings from X to itself. Then we show if (X,G) is transitive and there exists a common fixed point for all the
above mappings, then (X,G) is chaotic in the sense of Li-Yorke. And we give a sufficient condition for (X,G) to be uniformly
distributionally chaotic along a sequence and chaotic in the strong sense of Li-Yorke. At the end of this paper, an example on
the one-sided symbolic dynamical system for (X,G) to be chaotic in the strong sense of Li-Yorke and uniformly distributionally
chaotic along a sequence is given. c©2017 All rights reserved.
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1. Introduction

In general, a dynamical system, is understood as a pair (X, f), where X is a space with a metric d and
f is a continuous mapping from X to itself. This term is used in the case where it is necessary to study the
dynamics of transformations of the space X caused by the multiple application of the function f. Note that
the functions formed by the repeated application of f are elements of the semigroup F = {fn|n ∈ Z,n > 0}
with the operation of composition fm ◦ fn = fm+n. This viewpoint suggests the following generalizations:

Consider an arbitrary semigroup G. We associate each g ∈ G with a continuous function fg : X → X.
Moreover, for any g,h ∈ G, the equality fg◦h = fg(fh) must be true. If G contains the identity element e,
then the condition fe(x) = x must also be satisfied. In this case, we can say that the semigroup G acts on
X.

Further, instead of fg(x), we write g(x). For any g1,g2 ∈ G, we can write g1,g2 instead of g1 ◦ g2.
Note that, for different elements g,h ∈ G, their actions (i.e., the corresponding functions fg and fh) may
coincide.
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More and more scholars study series of properties for semigroup actions. Kontoprova and Megrel-
ishvili [2] studied sensitivity of semigroup actions. Polo [3] studied sensitive dependence on initial con-
ditions and chaotic group actions. In order to study the topological transitivity and mixing for group
actions, Gairns et al. introduced the notions of asymptotic, proximal, transitive of group in [1] respec-
tively as follows:

Definition 1.1. For given ε, a pair (x,y) is called ε-asymptotic if there are at most finitely many elements
g ∈ G for which

d(g(x),g(y)) > ε.

The pair (x,y) is called asymptotic if it is ε-asymptotic for any ε > 0.

Definition 1.2. A pair (x,y) is called proximal, if for any δ > 0, there exists an element g ∈ G for which
d(g(x),g(y)) < δ.

Definition 1.3. A system (X,G) is called transitive, if for any open nonempty sets U,V ⊂ X, there exists
g ∈ G such that g(U)

⋂
V 6= ∅. We say that a point x is transitive if its orbit {g(x)|g ∈ G} is dense in X.

In addition, since Wang first gave the definition of sequentially distributional chaos in [6], the research
of it has had a great influence on topology (see [5, 7–16]). However, the notion about sequentially distri-
butional chaos for group actions has not been given so far. On this basis, we define Li-Yorke chaos and
distributional chaos along a sequence for the finitely generated semigroup actions, and show if (X,G) is
transitive and there exists a fixed point for all the above mappings, then (X,G) is chaotic in the sense of
Li-Yorke on the basis of [17]. And we give a sufficient condition for (X,G) to be uniformly distributionally
chaotic along a sequence and chaotic in the strong sense of Li-Yorke on the basis of [5]. At the end of
this paper, an example on the one-sided symbolic dynamical system for (X,G) to be chaotic in the strong
sense of Li-Yorke and uniformly distributionally chaotic along a sequence is given.

2. Preliminaries and basic concepts

In this paper, we always suppose that X is a compact space with metric d and F = {f1, f2, · · · , fm} is a
m-tuple of continuous maps from X to itself. For any n > 0, put

Fn = {fi1 ◦ fi2 ◦ · · · ◦ fin | i1, i2, · · · , in = 1 or 2 or · · · or m}.

Let G =
∞⋃
n=1

Fn, then it is easy to check G is a semigroup generated by f1, f2, · · · fm.

Then, we introduce some basic concepts.

Definition 2.1. The real-valued function g : X → [0,+∞] is called to be semicontinuous, if for any a ∈
[0,+∞], g−1([a,+∞]) is a closed set of X.

Definition 2.2. A system (X,G) is chaotic in the strong sense of Li-Yorke if there exists an uncountable
set S satisfying there exists ε > 0 such that for any distinct x,y ∈ S, (x,y) is a Li-Yorke ε-pair, i.e., it is
proximal but not ε-asymptotic.

Definition 2.3. A pair (x,y) is called a Li-Yorke pair if it is proximal but not asymptotic. A system (X,G)
is called to be chaotic in the sense of Li-Yorke, if there is an uncountable set S ⊂ X such that for any
distinct points x,y ∈ S, (x,y) is a Li-Yorke pair.

For any i > 0 put

T (i) = {τ(i) = t1t2 · · · ti| tj = 1 or 2 or · · ·or m, j = 1, 2, · · · , i},

gτ(i) = ft1 ◦ ft2 ◦ · · · ◦ fti .
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Definition 2.4. A system (X,G) is called to be distributionally chaotic if there exists an uncountable set
S ⊂ X satisfying for any distinct points x,y ∈ S, (x,y) is a distributionally chaotic pair, i.e.,

(1) lim inf
n→∞

∑n
i=1

∑
τ(i)∈T(i)

χ[0,δ)(d(gτ(i)(x),g
τ(i)

(y)))∑n
i=1m

i = 0 for some δ > 0;

(2) lim sup
n→∞

∑n
i=1

∑
τ(i)∈T(i)

χ[0,ε)(d(gτ(i)(x),g
τ(i)

(y)))∑n
i=1m

i = 1 for any ε > 0.

Definition 2.5. A system (X,G) is called to be distributionally chaotic along a sequence {pi} of positive
integers if there exists an uncountable set S ⊂ X satisfying for any distinct points x,y ∈ S, (x,y) is a
distributionally chaotic pair along a sequence, i.e.

(1) lim inf
n→∞

∑n
i=1

∑
τ(pi)∈T(pi)

χ[0,δ)(d(gτ(pi)
(x),g

τ(pi)
(y)))∑n

i=1m
pi

= 0 for some δ > 0;

(2) lim sup
n→∞

∑n
i=1

∑
τ(pi)∈T(pi)

χ[0,ε)(d(gτ(pi)
(x),g

τ(pi)
(y)))∑n

i=1m
pi

= 1 for any ε > 0.

Definition 2.6. Let system (X,G) be distributionally chaotic along a sequence {pi}. The distributionally
Chaos along a sequence is called to be uniform if there exists δ > 0 such that for any distinct points
x,y ∈ S,

lim inf
n→∞

∑n
i=1

∑
τ(pi)∈T (pi)

χ[0,δ)(d(gτ(pi)(x),gτ(pi)(y)))∑n
i=1m

pi
= 0.

Definition 2.7. There exists an increasing sequence of positive integers {pi}. Let

AR(F, {pi}) = {(x,y) ∈ X×X| for any ε > 0, there are at most finitely many elements

g ∈
∞⋃
m=0

Fpi such that d(g(x),g(y)) > ε},

and call it the asymptotic relation with respect to {pi}. Let

PR(F, {pi}) = {(x,y) ∈ X×X| for any δ > 0, there exists g ∈
∞⋃
m=0

Fpi such that d(g(x),g(y)) < δ},

and call it the proximal relation with respect to {pi}. Let

DR(F, {pi}) = X×X− PR(F, {pi}),

and call it the distal relation with respect to {pi}. Let

DCR(F, {pi}) = {(x,y) ∈ X×X| (x,y) is a distributionally chaotic pair along a sequence {pi}},

and call it the distributionally chaotic relation with respect to {pi}.

Remark 2.8. One can see when the semigroup G is generated only by one continuous map f, then Defini-
tions 2.2-2.7 are the same with the classical corresponding definitions.

By Definitions 2.2-2.3 and 2.5-2.6, it is easy to know:

Proposition 2.9. If (X,G) is distributionally chaotic along a sequence, then it is chaotic in the sense of Li-Yorke.

Proposition 2.10. If (X,G) is uniformly distributionally chaotic along a sequence, then it is chaotic in the strong
sense of Li-Yorke.
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3. Main results and proofs

Before presenting the first main result, we list several lemmas and propositions which play roles in
the proof of the result.

Lemma 3.1 ([4]). If X is a compact space and (X,G) is a transitive system, then the set of its transitive points is
dense in X.

Lemma 3.2 ([17]). Let H be a family of real-valued functions from X to [0,+∞]. Denote g : X→ [0,+∞] for any
x ∈ X,

g(x) = inf{h(x)| h ∈ H}.

If each h ∈ H is semicontinuous, then g is semicontinuous.

Lemma 3.3 ([17]). Suppose that for each integer i > 1, hi : X→ [0,+∞] is semicontinuous. Let a ∈ [0,+∞],

g(x) = lim inf
i→∞ hi(x), x ∈ X.

If the set g−1([0,a]) is dense in X, then it must be a dense Gδ set of X.

Lemma 3.4. If there exists a transitive point of (X,G) and
m⋂
i=1

Fix(fi) 6= ∅, in which Fix(f) denotes the set of fixed

points of f, then there exists a dense Gδ set B in X×X satisfying for any (x,y) ∈ B and any δ > 0,

∃g ∈ G, d(g(x),g(y)) < δ.

Proof. Let ω be the transitive point of (X,G), then orb(ω) = X. For any z = (z1, z2) ∈ orb(ω)× orb(ω),

there exist ϕ1,ϕ2 ∈ G such that z1 = ϕ1(ω), z2 = ϕ2(ω). Let v ∈
m⋂
i=1

Fix(fi) 6= ∅. By orb(ω) = X, there

exists {gnj}
∞
i=1 in which gnj ∈ Fnj such that as nj →∞, gnj(ω)→ v. Thus,

lim
j→∞gnj(zi) = lim

j→∞gnjϕi(ω) = ϕi( lim
j→∞gnj(ω)) = ϕi(v) = v, i = 1, 2.

Choose {gn}
∞
n=1 such that for any n > 1, gn ∈ Fn and {gnj}

∞
j=1 ⊂ {gn}

∞
n=1. So,

lim inf
n→∞ d(gn(z1),gn(z2)).

Let F̃(z1, z2) = lim inf
n→∞ d(gn(z1),gn(z2)). Note that orb(ω)× orb(ω) is dense in X×X. Then by Lemma 3.3

we can easily know F̃−1(0) is a dense Gδ set in X×X.

Set Re(G) = {x ∈ X| ∃{gni}∞i=1, gni ∈ Fni , i > 1, such that lim
i→∞gni(x) = x}.

Lemma 3.5. If Re(G) = X, then Re(G) is a dense Gδ-set.

Proof. For any x ∈ Re(G), we have

∃{gn}∞n=1, gn ∈ Fn, n > 1 and ni such that lim
i→∞gni(x) = x.

Let F̃ : X→ [0,+∞) and for any x ∈ X,

F̃(x) = lim inf
n→∞ inf

g∈Fn
d(g(x), x).

It is easy to know x ∈ Re(G) if and only if F̃(x) = 0. Hence, F̃−1(0) is dense in X.
For each n > 1 and any g ∈ Fn, d(g(x), x) is semicontinuous. Therefore, by Lemma 3.2 for each n > 1,

hn(x) = inf
g∈Fn

d(g(x), x) = inf{d(g(x), x)| g ∈ Fn} is semicontinuous. Thus, by Lemma 3.3, Re(G) = F̃−1(0)

is a dense Gδ- set in X.
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Lemma 3.6. If (X,G) is transitive, then Re(G×G) is a dense Gδ of X×X.

Proof. Let ω be a transitive point of (X,G), then orb(ω)× orb(ω) is dense in X× X. For any (x,y) ∈
orb(ω) × orb(ω), we have (x,y) ∈ Re(G × G). Hence, Re(G × G) is dense in X × X. By Lemma 3.5,
Re(G×G) is a dense Gδ set in X×X.

Theorem 3.7. If (X,G) is transitive and
m⋂
i=1

Fix(fi) 6= ∅, in which Fix(f) denotes the set of fixed points of f, then

there exists a c dense Li-Yorke set of X. Specifically, (X,G) is chaotic in the sense of Li-Yorke.

Proof. Set D = Re(G×G)
⋂
B, in which B is the same with the B in Lemma 3.4. Therefore, by Lemma 3.4

and Lemma 3.6, D is a residual set in X× X. X is compact, then it is complete and separable. Then by
[2] there exists a dense Mycielski set K such that for any distinct x1, x2 ∈ K, (x1, x2) ∈ D. Thus, (x1, x2) ∈
Re(G×G), (x1, x2) ∈ B. By (x1, x2) ∈ B, for any δ > 0 there exists g ∈ G, such that d(g(x1),g(x2)) < δ. By
(x1, x2) ∈ Re(G×G), there exist {gni}

∞
i=1, gni ∈ Fni , i > 1 such that

lim
i→∞(gni × gni)(x1, x2) = (x1, x2).

Hence there exists ε0 =
d(x1,x2)

2 > 0, such that there are infinitely many g ∈ G satisfying d(g(x),g(y)) > ε0.
So for any distinct x1, x2 ∈ K, (x1, x2) is a Li-Yorke pair. Then, K satisfies the condition of the present
theorem.

Corollary 3.8. If (X,G) is transitive and P(f1)
⋂
P(f2) 6= ∅, then there exists a c dense Li-Yorke set of X. Specifi-

cally, (X,G) is chaotic in the sense of Li-Yorke.

Proof. Set v = fn1
1 (v) = fn1

2 (v), in which n1,n2 are positive integers, then fn1n2
1 (v) = fn1n2

2 (v) = v. Let
hi = fn1n2

i , i = 1, 2, then v ∈ Fix(f1)
⋂
Fix(f2). Denote the Abelian group generated by h1,h2 by H, then

H ⊂ G.
Let ω be a transitive point of (X,G). Set X0 = orb(ω,H) = {h(ω)|h ∈ H}, then ω is a transitive point

of (X0,H). And it is easy to see (X0,H) is transitive. Hence by Theorem 3.7 (X0,H) is chaotic in the sense
of Li-Yorke. Then (X,G) is chaotic in the sense of Li-Yorke.

Next, we present the second main result. Firstly, we list a lemma and several propositions.

Lemma 3.9. If both {pi} and {qi} are the infinite increasing subsequences of positive integers sequence {mi}, there
exists an infinite increasing subsequence {tj} of {mi} such that

AR(F, {pi})∩DR(F, {qi}) ⊂ DCR(F, {tj}).

Proof. If {pi}
⋂
{qi} = {rj} is an infinite sequence,

AR(F, {pi})∩DR(F, {qi}) ⊂ AR(F, {rj})∩DR(F, {rj}) = ∅.

Then, the conclusion is obviously true.
If {pi}

⋂
{qi} is a finite set, without loss of generality, let {pi}

⋂
{qi} = ∅. Let (x,y) ∈ AR(F, {pi}) ∩

DR(F, {qi}). Then, select an infinite increasing subsequence {tj} of mi such that for any i ∈ N,

{tj|nki−1 < j 6 nki} ⊂ {pi}, {tj|nki < j 6 nki+1} ⊂ {qi}.

Hence, for any ε > 0, for large enough i, as nki−1 < j 6 nki , there are at most finitely many elements
g ∈

⋃
nki−1<j6nki

Ftj such that d(g(x),g(y)) > ε. Let it be M. Thus,

1 >

∑nki
j=1

∑
τ
(tj)∈T (tj)

χ[0,ε)(d(gτ(tj)(x),gτ(tj)(y)))∑nki
j=1m

tj
>

∑nki
j=nki−1+1m

tj −M∑nki
j=1m

tj
= 1 −

∑nki−1

j=1 mtj +M∑nki
j=1m

tj
.
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Furthermore, as i→∞,∑nki−1

j=1 mtj +M∑nki
j=1m

tj
6
nki−1m

tnki−1+M

m
tnki

6
2nki−1m

tnki−1

m
tnki−1mnki−nki−1

=
2nki−1

m(2i2−3)nki−1
→ 0.

Thus, for any ε > 0, lim sup
n→∞

∑n
i=1

∑
τ(pi)∈T(pi)

χ[0,ε)(d(gτ(pi)
(x),g

τ(pi)
(y)))∑n

i=1m
pi

= 1.

On the other hand, as nki < k 6 nki+1, there exists δ > 0 such that for any g ∈
nki+1⋃
j=nki+1

Ftj ,

d(g(x),g(y)) > δ, therefore as i→∞,∑nki+1

j=1
∑

τ
(tj)∈T (tj)

χ[0,δ)(d(gτ(tj)(x),gτ(tj)(y)))∑nki+1

j=1 mtj

6

∑nki
j=1m

tj∑nki+1

j=1 mtj
6
nkim

tnki

m
tnki+1

6
nkim

tnki

m
tnkim2kinki−nki

=
nki

m(2i2−1)nki
→ 0.

Thus, there exists δ > 0 such that

lim inf
n→∞

∑n
i=1

∑
τ(pi)∈T (pi)

χ[0,δ)(d(gτ(pi)(x),gτ(pi)(y)))∑n
i=1m

pi
= 0.

Consequently, AR(F, {pi})∩DR(F, {qi}) ⊂ DCR(F, {tj}).

Theorem 3.10. Let {nk}∞k=1 be a sequence of positive integers. Let both {Ai}
∞
i=0 and {Bi}

∞
i=0 be decreasing sequences

of compact sets satisfying ∞⋂
i=0

Ai = {a},
∞⋂
i=0

Bi = {b}.

Put C = {c = C0C1 · · · | Ck ∈ {Ak,Bk},k = 0, 1, · · · }. If for any sequence c = C0C1 · · · , there exists xc ∈ C0 such
that Fnk(xc) ⊂ Ck for each k > 0, then (X,G) is uniformly distributionally chaotic along a sequence. Furthermore,
it is chaotic in the strong sense of Li-Yorke.

Proof. Let E ⊂ Σ2 be an uncountable set such that for any distinct points s = s0s1 · · · , t = t0t1 · · · ∈ E, sn =
tn for infinitely many n and sm 6= tm for infinitely many m. For each s = s0s1 · · · ∈ E, by hypothesis, we
can choose xs ∈ X such that for i = 0, 1,

Fpi(xs) ⊂

{
Ai si = 0,
Bi si = 1,

and for any n > 1,n! < k 6 (n+ 1)!,

Fpk(xs) ⊂

{
Ak sn = 0,
Bk sn = 1.

Put D = {xs|s ∈ E}. Clearly, if s 6= t, then xs 6= xt. Because E is uncountable, D is uncountable. Let
xs, xt ∈ D be any different points, where s = s0s1 · · · , t = t0t1 · · · ∈ E. By the property of E, there exist
sequences of positive integers ni →∞ and mi →∞ such that sni = tni and smi

6= tmi
for all i.
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Firstly, for any given δ > 0, we have so large nI1 that as ni > nI1 , for any g ∈ Flni !+1 , d(g(x),g(y)) < δ.
Put pi = lni!+1, i = 0, 1, · · · , then D ⊂ AR(F, {pi}).

Secondly, let ε =
d(a,b)

2 > 0. For mI2 large enough, as mi > mI2 , for any g ∈ Flmi !+1 , we have
d(g(x),g(y)) > ε. Put qi = lmi+I2 !+1, i = 0, 1, · · · , then D ⊂ DR(F, {qi}).

Consequently, D ⊂ AR(F, {pi})
⋂
DR(F, {qi}). By Lemma 3.9 and the above proof, (X,G) is uniformly

distributionally chaotic along a sequence. Furthermore, By Proposition 2.10 it is in the strong sense of
Li-Yorke chaotic.

Example 3.11. Suppose that (Σ2,σ) is the one-sided symbolic dynamical system. Let the multiple map-

pings F = {σ,σ2} on Σ2 and G =
∞⋃
n=1

Fn, then

(1) (Σ2,G) is sequentially distributionally chaotic and it is uniform.

(2) (Σ2,G) is chaotic in the strong sense of Li-Yorke.

Proof. Let Ai = {x = x0x1 · · · | xj = 0, 0 6 j 6 i}, Bi = {x = x0x1 · · · | xj = 1, 0 6 j 6 i}, then both {Ai}
∞
i=0 and

{Bi}
∞
i=0 are decreasing sequences of compact sets satisfying

∞⋂
i=0

Ai = {000 · · · },
∞⋂
i=0

Bi = {111 · · · }.

Let {pk}∞k=0 satisfy p0 = 1 and pk+1 = 2pk + k+ 1 for each k > 0. Then, for any c = C0C1 · · · , there exits

xc = t
p0
0 t
p0
0 t

0+1
0 t

p1
1 t

1+1
1 t

p2
2 t

2+1
2 · · · tpkk t

k+1
k t

pk+1
k+1 t

k+1+1
k+1 · · · ,

where for k > 0

tk =

{
0 Ck = Ak,
1 Ck = Bk,

and tn denotes a finite sequence containing only symbol t with the length of n, satisfying xc ∈ C0 and
Fpk(xc) ⊂ Ck for each k > 0.

Thus, by Theorem 3.10, we have (Σ2,G) is uniformly distributionally chaotic along a sequence and
chaotic in the strong sense of Li-Yorke.
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