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Abstract

In this paper, the controllability problem for a class of fractional impulsive neutral stochastic functional differential equations
is considered in infinite dimensional space. By using Kuratowski measure of noncompactness and Mönch fixed point theorem,
the sufficient conditions of controllability of the equations are obtained under the assumption that the semigroup generated by
the linear part of the equations is not compact. At the end, an example is provided to illustrate the proposed result. c©2017 All
rights reserved.
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1. Introduction

In recent years, various models of fractional differential equations in the fields of physics, chemistry,
engineering, biology and economics have been proposed and examined. As a consequence, the theory
of fractional differential equations has been studied by many authors, see [13, 18, 21] and the references
therein. A survey on existence results for boundary value problems of nonlinear fractional differential
equations and inclusions was covered in Agarwal et al. [1]. The existence of mild solutions of a class of
fractional neutral evolution equations was treated in Zhou and Jiao [32], and the controllability of a class
of fractional-order neutral evolution control systems could be found in Sakthivel et al. [24].

On the other hand, many real models often fluctuate due to external stochastic perturbations [17]. The
existence and uniqueness of solutions of neutral stochastic functional differential equations with infinite
delay was discussed in Bao and Cao [4]. The p-th moment exponential stability and almost exponen-
tial stability of stochastic functional differential equations by using stochastic Razumikhin theorems were
obtained in Mao [16]. The stability of neural stochastic functional differential equations was further ex-
tended in Huang and Deng [11]. The controllability conditions of semilinear stochastic delay evolution
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equations in Hilbert spaces were established in Balasubramaniam and Dauer [2], and the approximate
controllability of neutral stochastic functional differential systems with infinite delay was proved by Bala-
subramaniam et al. [3]. To state dependent delay, the existence of solution and approximate controllability
of a second-order neutral stochastic differential equation were investigated by Das et al. [5]. Recently,
the controllability of fractional stochastic differential systems have received a lot of attention. The con-
trollability conditions of fractional neutral stochastic functional differential systems were derived in Li
and Peng [15]. Approximate controllability of fractional neutral stochastic system with infinite delay and
fractional stochastic evolution equations were found in [23, 25].

Besides stochastic perturbations, the impulsive effects may happen in the evolution systems which
change abruptly at certain moments of time [14, 29]. The impulsive stabilization of impulsive delay
differential system via the Lyapunov-Razumikhin method was studied in Wang and Liu [28]. The expo-
nential stability and instability of impulsive stochastic functional differential equations with Markovian
switching were given in Kao et al. [12]. The existence and controllability of fractional-order impulsive
stochastic system with infinite delay were considered in [8]. The approximate controllability of fractional
impulsive neutral stochastic differential equations with nonlocal conditions was explored in [31].

However, to the best of the authors’ knowledge, the assumption of compactness of the semigroup
generated by the linear part and the invertibility of the controllability operator of fractional impulsive
stochastic evolution systems was imposed [8, 31]. It turns out that in practice it is rather difficult to
verify these conditions directly, and it fails in infinite dimensional space when the semigroup is compact,
see [26, 27]. Therefore, the exact controllability of nonlinear stochastic impulsive evolution differential
inclustions with infinite delay in Hilbert spaces by using Kuratowski measure of noncompactness was
investigated in Duan et al. [7]. Inspired by the previous work [7], in this paper, the controllability problem
for a class of fractional impulsive neutral stochastic functional differential equations is considered in
infinite dimensional space. The rest of the paper is organized as follows. In Section 2, some preliminaries
such as some basic definitions, notation and lemmas are given. In Section 3, the sufficient conditions of
controllability of the equations by using Kuratowski measure of noncompactness and Mönch fixed point
theorem are obtained. Finally, in Section 4, an example is provided to illustrate the proposed result.

2. Preliminaries

In this section, we introduce definitions, notation, preliminary results needed to establish our main
results. Let (U, 〈·, ·〉) and (H, 〈·, ·〉) denote two real separable Hilbert spaces, and L(U,H) be the set of all
linear bounded operators for U to H. For convenience, we will use the same notation ‖ · ‖ to denote the
norms in U, H and L(U,H). We assume that (LHS(H), ‖ · ‖HS) is the space of all Hilbert-Schmidt operators
from H to H. Let (Ω,F, {Ft}t>0, P) be a complete probability space with a filtration {Ft}t>0 satisfying the
usual conditions (i.e., it is increasing and right continuous, while F0 contains all P-null sets). Suppose
that W(t)t>0 is a cylindrical H-valued Wiener process with finite trace nuclear covariance operator Q > 0
defined on (Ω,F, {Ft}t>0, P). We consider the space D([−τ, 0];H) = {ζ : [−τ, 0] → H : ζ(t) is continuous
except finite time t = ti, ζ(t+i ) and ζ(t−i ) exist, and ζ(ti) = ζ(t−i )} with the norm ‖ζ‖ = sup−τ6θ60 ‖ζ(θ)‖.

In this paper, we are concerned with the controllability of the following fractional impulsive neutral
stochastic functional differential equation

cDαt [x(t) − λ(t, xt)] = Ax(t) +Bu(t) + f(t, xt) + g(t, xt)
dW(t)

dt
, t ∈ J := [0,b],

∆x|t=ti = Ii(x(t
−
i )), i = 1, 2, · · · , s,

x0 = ξ(t) ∈ D([−τ, 0],H),

(2.1)

where cDαt is the Caputo fractional derivative of order 1
2 < α < 1. A : D(A) ⊂ H→ H is the infinitesimal

generator of a strongly continuous semigroup of a bounded linear operator {T(t), t > 0} in the Hilbert
space H. The control function u(·) takes values in L2(J,U) of admissible control functions for a separable
Hilbert space U, B is a bounded linear operator from U into H. f, λ : J ×D([−τ, 0];H) → H and g :
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J×D([−τ, 0];H) → LHS(H) are Borel measurable functions. 0 < t1 < t2 < · · · < ts < ts+1 = b are
impulsive times, ∆x|t=ti = x(t+i ) − x(t

−
i ), x(t

+
i ) and x(t−i ) represent the right and left limits of x(t) at

t = ti, respectively. PC([−τ,b];H) = {x : [−τ,b] → H : x(t) is continuous except finite time t = ti,
x(t+i ) and x(t−i ) exist, and x(ti) = x(t−i ), i = 1, 2, · · · , s}, with the norm ‖x‖ = sup−τ6θ6b ‖x(θ)‖. In the
following, PC := PC([−τ,b];H), and J0 := [0, t1], Ji := (ti, ti+1], · · · , Js := (ts,b].

Definition 2.1. The fractional integral of order α of a function h with the lower limit 0 is defined by

Iαh(t) =
1
Γ(α)

∫t
0

h(s)

(t− s)1−αds, t > 0, α > 0,

where Γ(·) is the gamma function.

Definition 2.2. The Caputo derivative of order α of a function h with the lower limit 0 is defined by

cDαt h(t) =
1

Γ(n−α)

∫t
0

hn(s)

(t− s)α+1−nds = In−αhn(t), t > 0, n− 1 < α < n.

Definition 2.3. An Ft-adapted stochastic process {x(t) : t ∈ J} is said to be a mild solution of system (2.1),
if for all t ∈ [0,b], P{w :

∫t
0 ‖x(s)‖

2ds <∞} = 1, and

x(t) = η(t)ξ(0) + λ(t, xt) +
∫t

0
(t− s)α−1β(t− s)Bu(s)ds

+

∫t
0
(t− s)α−1β(t− s)f(s, xs)ds

+

∫t
0
(t− s)α−1β(t− s)g(s, xs)dW(s)

+
∑

0<ti<t

η(t− ti)Ii(x(t
−
i )), a.s. t ∈ J,

where

η(t) =

∫∞
0
ρ(θ)T(tαθ)dθ, β(t) = α

∫∞
0
θρ(θ)T(tαθ)dθ,

ρ(θ) =
1
α
θ−1− 1

α$(θ−
1
α ) > 0, $(θ) =

1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)
n!

sin(nπα),

and ρ is a probability density function defined on (0,∞).

Definition 2.4. The system (2.1) is said to be controllable on J, if for every initial value ξ(t), there exists
a stochastic control u ∈ L2(J,U) such that the solution x(·) of (2.1) satisfies x(b) = x, where x ∈ H is
preassigned terminal state.

Lemma 2.5 ([32]). The operators η,β have the following properties:

(i) For any t > 0, the operators η(t), β(t) are linear and bounded, that is, there exists L > 0, for any
x ∈ H,

‖η(t)x‖ 6 L‖x‖, ‖β(t)x‖ 6 αL

Γ(1 +α)
‖x‖.

(ii) The operators η(t), β(t) are strongly continuous, that is, for any x ∈ H, 0 6 t′ 6 t′′, and t′ → t′′

‖η(t′′)x− η(t′)x‖ → 0, ‖β(t′′)x−β(t′)x‖ → 0.
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Remark 2.6. In Zang and Li [31], if T(t) is compact for every t > 0, η(t), β(t) are also compact operators.
However, in this paper, the compactness of the operators η and β are not considered for controllability of
system (2.1).

Definition 2.7. Let (A, ρ) be a partially ordered set. D is a bounded subset of H. A function µ : H→ A is
called a Kuratowski measure of noncompactness in H, if

µ(D) = inf
{
ε > 0 : D ⊂

m⋃
i=1

Di, diam(Di) 6 ε
}

.

Lemma 2.8 ([10]). Let V = {fn} ⊂ L1(J,H). If there exists h ∈ L1(J, R+), such that for t ∈ J, ‖fn(t)‖ 6 h(t),
then

µ(V(t)) ∈ L1(J, R+), µ
({ ∫t

0
fn(s)ds : n ∈N

})
6 2
∫t

0
µ(V(s))ds, t ∈ J,

where V(t) = {x(t) : x ∈ V} ⊆ H.

Lemma 2.9 ([30]). If V ⊂ PC is bounded and piecewise equicontinuous, then µ(V(t)) is also piecewise
equicontinuous on J, and

µ(V) = sup{µ(V(t)) : t ∈ J},
where V(t) = {x(t) : x ∈ V} ⊆ H.

Lemma 2.10 ([9]). If V ⊂ PC is bounded, and equicontinuous on Ji, 0 = 1, 2, · · · , s, then

µ(V) = max
06i6s

(V(Ji)) = max
06i6s

sup{µ(V(t)) : t ∈ Ji}.

Lemma 2.11 ([19]). Let D be a bounded closed and convex subset of H, 0 ∈ D. F : D → H is continuous,
such that for any countable set M ⊆ D, M ⊆ conv({0} ∪ F(M)), M is relatively compact. Then F has a
fixed point in D.

3. Main results

To get the controllability, we need the following assumptions.
(H1) The function f satisfies that

(1) for any x ∈ D([−τ, 0];H), the function t 7→ f(t, x) is strong measurable, for any t ∈ Ji, the
function x 7→ f(t, x) is continuous;

(2) there exist a bounded function p(t) : J → R+, and a continuous nondecreasing function ϕ :
[0,∞)→ [0,∞) such that

‖f(t, x)‖2 6 p(t)ϕ(‖x‖2), lim inf
n→∞ ϕ(n)

n
= 0;

(3) there exists Kf ∈ L1(J; R+), for any bounded set D ⊂ PC,

µ(f(t,Dt)) 6 Kf(t)µ(Dt),

where Dt := {xt : x ∈ D} ⊆ D([−τ, 0];H).
(H2) The function g satisfies that

(1) for any x ∈ D([−τ, 0];H), the function t 7→ g(t, x) is strong measurable, for any t ∈ Ji, the
function x 7→ g(t, x) is continuous;

(2) there exists ψn ∈ L1(J; R+), such that

sup
‖x‖6n

‖g(t, x)‖2 6 ψn(t), a.e.,

and

lim inf
n→∞

∫b
0
(b− s)2α−2ψn(s)ds

n
= 0;
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(3) there exists Kg ∈ L1(J; R+), for any bounded set D ⊂ PC,

µ(g(t,Dt)) 6 Kg(t)µ(Dt),

where Dt := {xt : x ∈ D} ⊆ D([−τ, 0];H).
(H3) The neutral function λ satisfies that

(1) for any x ∈ D([−τ, 0];H), the function t 7→ λ(t, x) is piecewise continuous, for any t ∈ Ji, the
function x 7→ λ(t, x) is continuous;

(2) there exist a bounded function q(t) : J → R+, and a continuous nondecreasing φ : [0,∞) →
[0,∞) such that

‖λ(t, x)‖2 6 q(t)φ(‖x‖2), lim inf
n→∞ φ(n)

n
= 0;

(3) there exists Kλ ∈ L1(J; R+), for any bounded D ⊂ PC,

µ(λ(t,Dt)) 6 Kλ(t)µ(Dt),

where Dt := {xt : x ∈ D} ⊆ D([−τ, 0];H).
(H4) The impulsive function Ii : H→ H, i = 1, 2, · · · , s is continuous such that

(1) there exist nondecreasing functions Li : R+ → R+,

‖Ii(x)‖2 6 Li(‖x‖2), x ∈ H, lim inf
n→∞ Li(n)

n
= 0, i = 1, 2, · · · , s;

(2) there exist Ki > 0, for any bounded set D ⊂ PC,

µ(Ii(D)) 6 Kiµ(D), i = 1, 2, · · · , s.

(H5) B : U→ H is a bounded linear operator, Θ : L2(J,U)→ H is linear operator defined by

Θu =

∫b
0
(b− s)α−1β(b− s)Bu(s)ds,

and

(1) the operator Θ has an invertible operator Θ−1 which takes values in L2(J,U) \ Ker Θ (see [22,
26]), and there exist positive constants LB and LΘ, such that

‖B‖ 6 LB, ‖Θ−1‖ 6 LΘ;

(2) there exist KΘ(t) ∈ L1(J, R+), KB > 0, for any bounded sets D1 ⊂ H, D2 ⊂ U,

µ((Θ−1D1)(t)) 6 KΘ(t)µ(D1(t)), µ(B(D2)) 6 KBµU(D2).

(H6) Assume the following inequality holds:

l =
(

1 +
LKB‖KΘ‖L1bα

Γ(1 +α)

)
×
( 2Lbα

Γ(1 +α)
‖Kf‖L1 +

s∑
i=1

LKi + ‖Kλ‖L1

+
αLbα−1/2√

(2α− 1)Γ(1 +α)
‖Kg‖L1

)
< 1.

Theorem 3.1. Assume that the conditions (H1)-(H6) are satisfied, then the system (2.1) is controllable on
J.
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Proof. By assumption (H2) (1), for any x ∈ PC, we define the control

ux(t) = Θ
−1
[
x− η(b)ξ(0) − λ(b, xb) −

∫b
0
(b− s)α−1β(b− s)f(s, xs)ds

−

∫b
0
(b− s)α−1β(b− s)g(s, xs)dW(s) −

s∑
i=1

η(b− ti)Ii(x(t
−
i ))
]
(t).

And using the control function ux(t), define the operator F1:

(F1x)(t) =



ξ(t), t ∈ [−τ, 0],

η(t)ξ(0) + λ(t, xt) +
∫t

0
(t− s)α−1β(t− s)Bux(s)ds

+

∫t
0
(t− s)α−1β(t− s)f(s, xs)ds

+

∫t
0
(t− s)α−1β(t− s)g(s, xs)dW(s)

+
∑

0<ti<b

η(t− ti)Ii(x(t
−
i )), a.s. t ∈ J.

We shall show that F1 has a fixed point, which is a mild solution of system (2.1). Clearly, x(b) = (F1x)(b) =
x, that is, the system (2.1) is controllable on J.

For any ξ ∈ D([−τ, 0],H), define

ξ̂(t) =

{
ξ(t), t ∈ [−τ, 0],
η(t)ξ(0), a.s. t ∈ J.

Set x(t) = y(t) + ξ̂(t). Let PC0 = {y ∈ PC : y0 = 0}. Consider G1 : PC0 → PC0 defined by

(G1y)(t) =



0, t ∈ [−τ, 0],

λ(t,yt + ξ̂t) +
∫t

0
(t− s)α−1β(t− s)Buy(s)ds

+

∫t
0
(t− s)α−1β(t− s)f(s,ys + ξ̂s)ds

+

∫t
0
(t− s)α−1β(t− s)g(s,ys + ξ̂s)dW(s)

+
∑

0<ti<t

η(t− ti)Ii(y(t
−
i ) + ξ̂(t

−
i )), a.s. t ∈ J,

where

uy(t) = Θ
−1
[
x− η(b)ξ(0) − λ(b,yb + ξ̂b) −

∫b
0
(b− s)α−1β(b− s)f(s,ys + ξ̂s)ds

−

∫b
0
(b− s)α−1β(b− s)g(s,ys + ξ̂s)dW(s) −

s∑
i=1

η(b− ti)Ii(y(t
−
i ) + ξ̂(t

−
i ))
]
(t).

Then, it is clear that F1 has a fixed point if and only if G1 has a fixed point. Therefore, we divide the proof
into four steps.

Step 1. By contradiction, we will show that there exists n0 > 1, such that G1(Bn0) ⊆ Bn0 , where Bn0 =
{y ∈ PC0, ‖y‖ 6 n0}.

If it is not true, for any n > 1, there exists y∗(·) ∈ Bn, such that G1y
∗ /∈ Bn.
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In fact, we have from (H1)-(H4) that

n2 6 E‖G1y
∗(t)‖2 6 (s+ 4)E‖λ(t,y∗t + ξ̂t)‖2

+ (s+ 4)E
∥∥∥ ∫b

0
(b− s)α−1β(b− s)Buy∗(s)ds

∥∥∥2

+ (s+ 4)E
∥∥∥ ∫b

0
(b− s)α−1β(b− s)f(s,y∗s + ξ̂s)ds

∥∥∥2

+ (s+ 4)E
∥∥∥ ∫b

0
(b− s)α−1β(b− s)g(s,y∗s + ξ̂s)dW(s)

∥∥∥2

+ (s+ 4)
s∑
i=1

‖η(b− ti)Ii(y∗(t−i ) + ξ̂(t
−
i ))‖

2.

(3.1)

By Hölder’s inequality, and Lemma 2.5, we have

E‖uy∗‖2 = (s+ 5)L2
Θ

[
‖x‖2 + L2‖ξ‖2 + sup

t∈J
q(t)φ(n ′2)

+ sup
t∈J

p(t)
b2α+1

α2

( αL

Γ(1 +α)

)2
ϕ(n ′2)

+
( αL

Γ(1 +α)

)2
∫b

0
(b− s)2α−2ψn ′(s)ds

+

s∑
i=1

‖η(b− ti)Ii(n ′)‖2
]
,

(3.2)

where n ′ = n+ (L+ 1)‖ξ‖.
Substituting (3.2) into (3.1) yields that

n2 6 (s+ 4)(s+ 5)L2
ΘL

2
B

b2α+1

α2

( αL

Γ(1 +α)

)2[
‖x‖2 + L2‖ξ‖2

]
+
[
(s+ 4) + (s+ 4)(s+ 5)L2

ΘL
2
B

b2α+1

α2

( αL

Γ(1 +α)

)2][
sup
t∈J

q(t)φ(n ′2) +

s∑
i=1

L2Li(n
′2)
]

+
[
(s+ 4)(s+ 5)L2

ΘL
2
B

b4α+2

α4

( αL

Γ(1 +α)

)4
+ (s+ 4)

b2α+1

α2

( αL

Γ(1 +α)

)2]
sup
t∈J

p(t)ϕ(n ′2)

+
[
(s+ 4)(s+ 5)L2

ΘL
2
B

b2α+1

α2

( αL

Γ(1 +α)

)4
+ (s+ 4)

( αL

Γ(1 +α)

)2] ∫b
0
(b− s)2α−2ψn ′(s)ds.

(3.3)

Dividing both sides by n2, we obtain from (3.3) that

1 6 (s+ 4)(s+ 5)L2
ΘL

2
B

b2α+1

n2α2

( αL

Γ(1 +α)

)2[
‖x‖2 + L2‖ξ‖2

]
+
[
(s+ 4) + (s+ 4)(s+ 5)L2

ΘL
2
B

b2α+1

α2

( αL

Γ(1 +α)

)2][
sup
t∈J

q(t)
φ(n ′2)

n2 +

s∑
i=1

L2Li(n
′2)

n2

]
+
[
(s+ 4)(s+ 5)L2

ΘL
2
B

b4α+2

α4

( αL

Γ(1 +α)

)4
+ (s+ 4)

b2α+1

α2

( αL

Γ(1 +α)

)2]
sup
t∈J

p(t)
ϕ(n ′2)

n2

+
[
(s+ 4)(s+ 5)L2

ΘL
2
B

b2α+1

α2

( αL

Γ(1 +α)

)4
+ (s+ 4)

( αL

Γ(1 +α)

)2] 1
n2

∫b
0
(b− s)2α−2ψn ′(s)ds.
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Taking the limit as n → ∞, this contradicts with our assumptions. Thus, there exists n0 > 1, such that
G1(Bn0) ⊆ Bn0 .

Step 2. we show that the operator G1 : Bn0 → Bn0 is continuous. Let {y(m)(t)}∞m=1 ⊆ Bn0 , and y(m) →
y ∈ Bn0 . By Hölder’s inequality, we have

E‖(G1y
(m)(t) − (G1y)(t)‖2

6 (s+ 4)E‖λ(t,y(m)
t + ξ̂t) − λ(t,yt + ξ̂t)‖2

+ (s+ 4)
∫t

0

∣∣∣(t− s)α−1β(t− s)
∣∣∣2dsE

∫t
0
‖Buy(m)(s) −Buy(s)‖2ds

+ (s+ 4)
∫t

0

∣∣∣(t− s)α−1β(t− s)
∣∣∣2dsE

∫t
0
‖f(s,y(m)

s + ξ̂s) − f(s,ys + ξ̂s)‖2ds

+ (s+ 4)E
∫t

0

∥∥∥(t− s)α−1β(t− s)(g(s,y(m)
s + ξ̂s) − g(s,ys + ξ̂s))

∥∥∥2
ds

+ (s+ 4)
s∑
i=1

‖η(t− ti)(Ii(y(m)(t−i ) + ξ̂(t
−
i )) − Ii(y(t

−
i ) + ξ̂(t

−
i )))‖

2

6 (s+ 4)E‖λ(t,y(m)
t + ξ̂t) − λ(t,yt + ξ̂t)‖2

+
(s+ 4)L2

Bb
αL2

(Γ(1 +α))2 E

∫t
0
‖uy(m)(s) − uy(s)‖2ds

+
(s+ 4)bαL2

(Γ(1 +α))2 E

∫t
0
‖f(s,y(m)

s + ξ̂s) − f(s,ys + ξ̂s)‖2ds

+ (s+ 4)E
∫t

0

∥∥∥(t− s)α−1β(t− s)(g(s,y(m)
s + ξ̂s) − g(s,ys + ξ̂s, r(s)))

∥∥∥2
ds

+ (s+ 4)L2
s∑
i=1

‖(Ii(y(m)(t−i ) + ξ̂(t
−
i )) − Ii(y(t

−
i ) + ξ̂(t

−
i )))‖

2.

(3.4)

For the control function, by (H5), one can derive that

E‖uy(m) − uy‖2 6 (s+ 3)L2
ΘE‖λ(b,y(m)

b + ξ̂b) − λ(b,yb + ξ̂b)‖2

+
(s+ 3)L2

Θb
αL2

(Γ(1 +α))2 E

∫b
0
‖f(s,y(m)

s + ξ̂s) − f(s,ys + ξ̂s)‖2ds

+ (s+ 3)L2
ΘE

∫b
0

∥∥∥(b− s)α−1β(b− s)(g(s,y(m)
s + ξ̂s) − g(s,ys + ξ̂s))

∥∥∥2
ds

+ (s+ 3)L2L2
Θ

s∑
i=1

‖(Ii(y(m)(t−i ) + ξ̂(t
−
i )) − Ii(y(t

−
i ) + ξ̂(t

−
i )))‖

2.

Substituting this into (3.4), by Lebesgue’s dominated convergence theorem and (H1)-(H4), we see that
E‖G1y

(m) −G1y‖2 → 0 as y(m) → y.

Step 3. The operator G1 is equicontinuous on Ji, i = 1, 2, · · · , s. For any t1, t2 ∈ Ji, and t1 < t2, y ∈ Bn0

E‖(G1y)(t2) − (G1y)(t1)‖2

6 11E‖λ(t2,yt2 + ξ̂t2) − λ(t1,yt1 + ξ̂t1)‖
2

+ 11E

∥∥∥ ∫t1

0
(t1 − s)

α−1
[
β(t2 − s) −β(t1 − s)

]
Buy(s)ds

∥∥∥2
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+ 11E

∥∥∥ ∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1

]
β(t2 − s)Buy(s)ds

∥∥∥2

+ 11E

∥∥∥ ∫t2

t1

(t2 − s)
α−1β(t2 − s)Buy(s)ds

∥∥∥2

+ 11E

∥∥∥ ∫t1

0
(t1 − s)

α−1
[
β(t2 − s) −β(t1 − s)

]
f(s,ys + ξ̂s)ds

∥∥∥2

+ 11E

∥∥∥ ∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1

]
β(t2 − s)f(s,ys + ξ̂s)ds

∥∥∥2

+ 11E

∥∥∥ ∫t2

t1

(t2 − s)
α−1β(t2 − s)f(s,ys + ξ̂s)ds

∥∥∥2

+ 11E

∥∥∥ ∫t1

0
(t1 − s)

α−1
[
β(t2 − s) −β(t1 − s)

]
g(s,ys + ξ̂s)dW(s)

∥∥∥2

+ 11E

∥∥∥ ∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1

]
β(t2 − s)g(s,ys + ξ̂s)dW(s)

∥∥∥2

+ 11E

∥∥∥ ∫t2

t1

(t2 − s)
α−1β(t2 − s)g(s,ys + ξ̂s)dW(s)

∥∥∥2

+ 11E

∥∥∥ s∑
i=1

(η(t2 − ti) − η(t1 − ti))Ii(y(t
−
i ) + ξ̂(t

−
i ))
∥∥∥2

.

By Hölder’s inequality, we derive that

E‖(G1y)(t2) − (G1y)(t1)‖2

6 22E‖λ(t2,yt2 + ξ̂t2) − λ(t1,yt2 + ξ̂t2)‖
2

+ 22E‖λ(t1,yt2 + ξ̂t2) − λ(t1,yt1 + ξ̂t1)‖
2

+ 11
∫t1

0

∣∣∣(t1 − s)
α−1

[
β(t2 − s) −β(t1 − s)

]∣∣∣2dsE
∫b

0
‖Buy(s)‖2ds

+ 11
∫t1

0

∣∣∣[(t2 − s)
α−1 − (t1 − s)

α−1
]
β(t2 − s)

∣∣∣2dsE
∫b

0
‖Buy(s)‖2ds

+ 11
∫t2

t1

∣∣∣(t2 − s)
α−1β(t2 − s)

∣∣∣2dsE
∫t2

t1

‖Buy(s)‖2ds

+ 11
∫t1

0

∣∣∣(t1 − s)
α−1

[
β(t2 − s) −β(t1 − s)

]∣∣∣2dsE
∫b

0
‖f(s,ys + ξ̂s)‖2ds

+ 11
∫t1

0

∣∣∣[(t2 − s)
α−1 − (t1 − s)

α−1
]
β(t2 − s)

∣∣∣2dsE
∫b

0
‖f(s,ys + ξ̂s)‖2ds

+ 11
∫t2

t1

∣∣∣(t2 − s)
α−1β(t2 − s)

∣∣∣2dsE
∫t2

t1

‖f(s,ys + ξ̂s)‖2ds

+ 11E

∫t1

0

∥∥∥(t1 − s)
α−1

[
β(t2 − s) −β(t1 − s)

]
g(s,ys + ξ̂s)

∥∥∥2
ds

+ 11E

∫t1

0

∥∥∥[(t2 − s)
α−1 − (t1 − s)

α−1
]
β(t2 − s)g(s,ys + ξ̂s)

∥∥∥2
ds

+ 11E

∫t2

t1

∥∥∥(t2 − s)
α−1β(t2 − s)g(s,ys + ξ̂s)

∥∥∥2
ds

+ 11s
s∑
i=1

∥∥∥η(t2 − ti) − η(t1 − ti)
∥∥∥2

E

∥∥∥Ii(y(t−i ) + ξ̂(t−i ))∥∥∥2
.
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The right hand of the inequality above tends to 0 as t2 → t1 by using Lebesgue dominated convergence
theorem and (H1)-(H4) when ‖y‖ 6 n0. If t2 → t1, then the right hand of the inequality above also tends
to 0. Therefore, the operator G1 is equicontinuous on Ji.

Step 4. The conditions of Mönch hold. Assume that for any countable set M ⊆ Bn0 , M ⊆ conv({0} ∪
G1(M)), we show that the set M is relatively compact. In fact, we only need to show that the Kuratowski
measure of noncompactness of the set M is 0, that is, µ(M) = 0.

Suppose that M = {y(m)}∞m=1, G1(M) is equicontinuous on Ji(i = 1, 2, · · · , s) because G(Bn0) is
equicontinuous on Ji(i = 1, 2, · · · , s).

By (H5), we have

µU({uy(m)(t)}
∞
m=1)

= µ
({
Θ−1

[
x− η(b)ξ(0) − λ(b,y(m)

b + ξ̂b) −

∫b
0
(b− s)α−1β(b− s)f(s,y(m)

s + ξ̂s)ds

−

∫b
0
(b− s)α−1β(b− s)g(s,y(m)

s + ξ̂s)dW(s)

−

s∑
i=1

η(b− ti)Ii(y
(m)(t−i ) + ξ̂(t

−
i ))
]
(t)
}∞
m=1

)
6 KΘ(t)Kλ(t)µ

({
y(m)

}∞
m=1

)
+KΘ(t)µ

({ ∫b
0
(b− s)α−1β(b− s)f(s,y(m)

s + ξ̂s)ds
}∞
m=1

)
+KΘ(t)µ

({ ∫b
0
(b− s)α−1β(b− s)g(s,y(m)

s + ξ̂s)dW(s)
}∞
m=1

)
+

s∑
i=1

KΘ(t)Lµ
({
Ii(y

(m)(t−i ) + ξ̂(t
−
i ))
}∞
m=1

)
.

(3.5)

By Lemma 2.5 , Lemma 2.8 and (H1) (3), we obtain that

µ
({ ∫b

0
(b− s)α−1β(b− s)f(s,y(m)

s + ξ̂s)ds
}∞
m=1

)
6 2
∫b

0
(b− s)α−1β(b− s)µ

({
f(s,y(m)

s + ξ̂s)
}∞
m=1

)
ds

6 2
∫b

0
(b− s)α−1β(b− s)Kf(s) sup

−τ6θ60
µ
({
y(m)(s+ θ) + ξ̂(s+ θ)

}∞
m=1

)
ds

6 2
∫b

0
(b− s)α−1β(b− s)Kf(s) sup

06θ6s
µ
({
y(m)(s) + ξ̂(s)

}∞
m=1

)
ds

6 2
∫b

0
(b− s)α−1β(b− s)Kf(s) sup

06θ6s
µ
({
y(m)(s)

}∞
m=1

)
ds

6
2Lbα

Γ(1 +α)
‖Kf‖L1µ

({
y(m)

}∞
m=1

)
.

(3.6)

For any y
′
,y
′′ ∈ Bn0 , we have

E

∥∥∥ ∫b
0
(b− s)α−1β(b− s)[g(s,y

′
s + ξ̂s) − g(s,y

′′
s + ξ̂s)]dW(s)

∥∥∥2

6 E

∫b
0
(b− s)2α−2β2(b− s)‖g(s,y ′s + ξ̂s) − g(s,y

′′
s + ξ̂s)‖2ds

6
α2L2b2α−1

(2α− 1)Γ(1 +α)2 sup
06s6b

E‖g(s,y ′s + ξ̂s) − g(s,y
′′
s + ξ̂s)‖2.
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By the properties of the Kuratowski measure of noncompactness of stochastic differential equations [6]
and (H2) (3), we have

µ
({ ∫b

0
(b− s)α−1β(b− s)g(s,y(m)

s + ξ̂s)dW(s)
}∞
m=1

)
6

αLbα−1/2√
(2α− 1)Γ(1 +α)

‖Kg‖L1µ
({
y(m)

}∞
m=1

)
.

(3.7)

And by (H4) (2), we have

µ
({
Ii(y

(m)(t−i ) + ξ̂(t
−
i ))
}∞
m=1

)
= µ

({
Ii(y

(m)(t−i ))
}∞
m=1

)
6 Kiµ

({
y(m)

}∞
m=1

)
. (3.8)

Substituting (3.6), (3.7), (3.8) into (3.5), we have by Lemma 2.9 and Lemma 2.10 that

µU({uy(m) }
∞
m=1) = max

16i6s
sup
t∈Ji

µU({uy(m)(t)}
∞
m=1)

6 ‖KΘ‖L1

( 2Lbα

Γ(1 +α)
‖Kf‖L1 +

αLbα−1/2√
(2α− 1)Γ(1 +α)

‖Kg‖L1

+

s∑
i=1

LKi + ‖Kλ‖L1

)
µ
({
y(m)

}∞
m=1

)
.

(3.9)

Again by using the properties of the Kuratowski measure of noncompactness of stochastic differential
equations [6], we have

µ({G1y
(m)(t)}∞m=1) 6 µ

({
λ(t,y(m)

t + ξ̂t)
}∞
m=1

)
+ µ
({ ∫t

0
(t− s)α−1β(t− s)Buy(m)(s)ds

}∞
m=1

)
+ µ
({ ∫t

0
(t− s)α−1β(t− s)f(s,y(m)

s + ξ̂s)ds
}∞
m=1

)
+ µ
({ ∫t

0
(t− s)α−1β(t− s)g(s,y(m)

s + ξ̂s)dW(s)
}∞
m=1

)
+ µ
({ s∑

i=1

η(b− ti)Ii(y
(m)(t−i ) + ξ̂(t

−
i ))
}∞
m=1

)
.

By Lemma 2.9, Lemma 2.10 and (3.9), we obtain that

µ({G1y
(m)}∞m=1) = max

16i6s
sup
t∈Ji

µ({G1y
(m)(t)}∞m=1)

6 ‖Kλ‖L1µ
({
y(m)

}∞
m=1

)
+

∫b
0
(b− s)α−1β(b− s)KBµU({uy(m)(s)}

∞
m=1)ds

+

∫b
0
(b− s)α−1β(b− s)Kf(s)µ({f(s,y

(m)
s + ξ̂s)}

∞
m=1)ds

+ µ
({ ∫b

0
(b− s)α−1β(b− s)g(s,y(m)

s + ξ̂s)dW(s)
}∞
m=1

)
+

s∑
i=1

LKiµ
({
y(m)

}∞
m=1

)

6
(

1 +
LKB‖KΘ‖L1bα

Γ(1 +α)

)
×
( 2Lbα

Γ(1 +α)
‖Kf‖L1 +

s∑
i=1

LKi + ‖Kλ‖L1

+
αLbα−1/2√

(2α− 1)Γ(1 +α)
‖Kg‖L1

)
µ
({
y(m)

}∞
m=1

)
.
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Thus,
µ(M) 6 µ(conv({0}∪G1(M))) = µ(G1(M)) 6 lµ(M).

By (H6), we see that µ(M) = 0. So the operator G1 has a fixed point y in Bn0 . Then x=y+ ξ̂ is the fixed
point of the operator F1. That is, the system (2.1) is controllable on J. �

4. Example

As an application, we consider the following fractional impulsive neutral stochastic functional
differential equation

cDαt (x(t, z) − λ(t, x(t− τ, z))) =
∂

∂z
x(t, z) +m(z)u(t, z) + f(t, x(t− τ, z))

+g(t, x(t− τ, z))
dW(t)

dt
, t ∈ J := [0,b],

∆x|t=ti = Ii(x(t
−
i )), i = 1, 2, · · · , s,

x0 = ξ(t) ∈ D([−τ, 0],H).

(4.1)

Let U = H = L2([0,π]), A : H→ H be defined by Ax = x ′, whose domain

D(A) = {x ∈ H : x is absolutely continuous, and x ′ ∈ H, x(0) = 0}.

A generates the semigroup T(t). For any x ∈ H, T(t)x(s) = x(t+ s), T(t) is not a compact semigroup on
H (see [20]). For any bounded set D ⊂ H, µ(T(t)D) 6 µ(D).

We consider the functions f, λ : J×D([−τ, 0];H)→ H and g : J×D([−τ, 0];H)→ LHS(H) defined by

f(t, x(t− τ)) = sin(x(t− τ)),
λ(t, x(t− τ)) = cos(x(t− τ)),

g(t, x(t− τ)) =
x(t− τ)

1 + x(t− τ)
,

and the impulsive function Ii : H→ H and the control function B : H→ H defined by

Ii(x) = cos(x),
(Bu)(z) = m(z)u(t, z), z ∈ [0,π].

By these above functions, the assumptions (H1)-(H5) are satisfied. Moreover, we choose the appropriate
parameters to make (H6) hold. Therefore, all the conditions in Theorem 3.1 have been satisfied. Thus, the
system (4.1) is controllable on J.
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