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Abstract

In this paper, we present some new fixed point and common fixed point (common coupled fixed point, common tripled
fixed point, and common quadruple fixed point) theorems of probabilistic contractions with a gauge function ¢ in generalized
probabilistic metric spaces proposed by Zhou et al. [C.-L. Zhou, S.-H. Wang, L. Ciri¢, S. M. Alsulami, Fixed Point Theory Appl.,
2014 (2014), 15 pages]. Our results extend some existing results. Moreover, an example is given to illustrate our main results.
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1. Introduction

The notion of a coupled fixed point was introduced by Opoicev [17], and then Guo and Lakshmikan-
tham [6] in 1987 proved some fixed point theorems for coupled fixed point under certain conditions in
Banach space. Later, Bhaskar and Lakshmikantham [5] proved the existence and uniqueness of a coupled
fixed point result under a weak contractivity condition in the context of partially ordered metric spaces.
In 2009, Lakshmikantham and Ciri¢ [13] extended the result by introducing the notion of the g-monotone
property. Based on Lakshmikantham and Ciri¢’s work, many researchers have obtained more coupled
fixed point theorems in metric space; see [4, 10, 11, 14, 18]. Recently, the investigation of coupled fixed
point theorem has been extended from metric spaces to Menger probabilistic metric spaces. For example,
using the properties of the pseudo-metric and the triangular norm, Xiao et al. [22] gave some common
coupled fixed point theorems in Menger probabilistic metric spaces. Ciri¢ et al. [3] established some cou-
pled fixed point theorems for mixed monotone mappings in the partially ordered Menger probabilistic
metric spaces. In 2014, Wu [21] presented some coupled fixed point theorems for nonlinear contractive
operators in partially ordered Menger probabilistic metric spaces, which improved and generalized some
main results of Ciri¢ et al. [3].
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The concept of tripled fixed point was introduced by Berinde and Borcut [2]. In their manuscript,
some new tripled point theorems are obtained. In 2012, Karapmar and Luong [12] presented the notion
of quadruple fixed point and proved the related fixed point theorems.

Inspired by the works of [2], [12], and [22], in this paper, we try to give some new fixed point and com-
mon fixed point (common coupled fixed point, common tripled fixed point, and common quadruple fixed
point) theorems under probabilistic @-contractive in generalized probabilistic metric spaces proposed by
Zhou et al. [23]. The obtained results generalize the corresponding ones from [22].

2. Preliminaries

Suppose that R = (—o0, +00), R = [0, +00), R = RU{—00, 400}, and let Z" be the set of all positive
integers. A function G : R — [0,1] is called a distribution function if it is nondecreasing and left-
continuous with F(—oo) = 0,F(+o00) = 1. The set of all probability distribution functions is denoted by
Doo. Suppose that D = {F € Dy, : infier F(t) = 0,sup g F(t) = 1}, DI ={F € Dy : F(0) = 0}, and
Dt =DNDL.

Definition 2.1 ([19]). A mapping A : [0,1] x [0,1] — [0, 1] is a continuous t-norm if A satisfies the following

conditions:

(1) A is commutative and associative, i.e., A(a,b) = A(b,a) and A(a,A(b,c)) = A(A(a,b),c) for all
a,b,cecl0,1];

(2) A is continuous;

(B) A(a,1) =aforall a € [0,1];

(4) A(a,b) < Alc,d) whenever a < cand b < d forall a,b,c,d € [0,1].

From the definition of A, it follows that A(a,b) < min{a, b} for all a,b € [0, 1].
Two typical examples of continuous t-norm are Apq(a,b) = min{a, b} and A,(a,b) = ab for all
a,bel0,1].

Definition 2.2 ([7]). A t-norm A is said to be of H-type (Hadzi¢ type) if a family of functions {A™(t)}'>
is equicontinuous at t = 1, that is, for any € € (0, 1), there exists 6 € (0,1) such that

t>1-6=A"(t)>1—¢
for allm > 1, where A™ : [0,1] — [0, 1] is defined as follows:
Al(t) = At 1), A%(t) = A(t, AN (1), -+, A™(t) = A(t, A™ (1), - -
Obviously, A™(t) < tforanyn € Nand t € [0,1].
Am is a trivial example of t-norm of Hadzi¢-type [8].

Definition 2.3. If ¢ : R — R™ is a function such that ¢(0) = 0, then ¢ is called a gauge function. If
t € RT, then ¢™(t) denotes the nth iteration of ¢(t) and @1 ({0}) ={t € RT : ¢(t) =0}.

Definition 2.4 ([15]). A Menger probabilistic metric space (shortly, Menger PM-space) is a triple (X, F, A),
where X is a nonempty set, A is a continuous t-norm, and ¥ is a mapping from X x X — D (Fy, denotes
the value of J at the pair (x,y)) satisfying the following conditions:

(PM-1) Fyy(t) =1forall x,y € X and t > 0 if and only if x =y;
(PM-2) Fyy(t) = Fyx(t) forall x,y € X and t > 0;
(PM-3) Fyz(t+s) > A(Fxy(t), Fy2(s)) forall x,y,z € X and every s > 0, t > 0.

Definition 2.5 ([16]). Let X be a nonempty set and G : X x X x X :— R* be a function satisfying the
following properties:
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(G1) G(x,y,z)=0ifx=y =z,

(G2) 0 < G(x,x,y) for all x,y € X with x # y,

(G3) G(x,x,y) < G(x,y,z) for all x,y,z € X withy # z,

(G4) G(x,v,z) =G(x,z,y) =G(y,z,x) =--- for all x,y,z € X (symmetry in all three variables),
(G5) G(x,y,z) < G(x,a,a)+ G(a,y,z) for all x,y,z, a € X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair
(X, G) is called a G-metric space.

In 2014, Zhou et al. [23] introduced the following probabilistic version of G-metric space, which is a
generalization of Menger PM-space.

Definition 2.6 ([23]). A Menger probabilistic G-metric space (briefly, PGM-space) is a triple (X, G*, A),
where X is a nonempty set, A is a continuous t-norm, and G* is a mapping from X x X x X into D, (G5, .
denotes the value of G* at the point (x,y, z)) satisfying the following conditions:

(PGM-1) G;, ,(t)=1forallx,y,ze Xandt >0ifand onlyif x =y =z;

X,z

(PGM-2) G, ,(t) > GE, ,(t) forall x,y € Xwithz#yand t > 0;

X, %Y XY,z
(PGM-3) G;k(,ylz(t) =G 2y (t) = G;,X,Z(t) = ... (symmetry in all three variables);

(PGM-4) G, (t+5) > A(G] o a(s), Gy 2(t)) forall x,y,z,a € Xand every s >0, t > 0.

a,y,z

Definition 2.7 ([23]). Let (X, G*,A) be a PGM-space and x( be any point in X. For any € > 0 and 6 with
0 < 6 <1, an (e, d)-neighborhood of xj is the set of all points y in X for which G} (¢) >1—20% and

% . x0,Y,Y
Gy xox (€) > 1—0. We write

Ny, (€,8) ={y € X: G (e) >1-5,G] (¢) >1-—20}

x0.Y,Y Y,X0,X0
Definition 2.8 ([23]).

(1) A sequence {xn} in a PGM-space (X, G*,A) is said to be convergent to a point x € X (write x,, — )
if, for any € > 0 and 0 < & < 1, there exists a positive integer M 5 such that x,, € N« (e, ) whenever
n > M€,5.

(2) A sequence {x,} in a PGM-space (X, G*, A) is called a Cauchy sequence if, forany e >0and 0 < 6 < 1,
there exists a positive integer M¢ 5 such that G, (€) >1—38 whenever m,n,1 > M s.

(3) A PGM-space (X, G*,A) is said to be complete if every Cauchy sequence in X converges to a point in
X.

Theorem 2.9 ([23]). Let (X, G*,A) be a PGM-space. Let {xn}, {yn}, and {zn} be sequences in X and x,y,z € X.
If xn = X, Yyn = Y, and zn, — z as n — oo, then, for any t > 0, G (t) - G, (t)asm — oo.

Xn,Yn,Zn XY,z

Lemma 2.10 ([9]). Suppose that F € D*. For each n € Z*, let Fr, : R — [0,1] be nondecreasing, and gn :
(0,400) = (0, +00) satisfy limn_, gn (t) =0 for any t > 0. If

Fnl(gn(t)) = F(t)
forany t > 0, then limy,_, Fr(t) =1 for any t > 0.

Definition 2.11. A point (xg,...,xn) € X" (n=1,2,3,4) is

(1) a coupled fixed point [5] if n =2, T(x1,%2) = x1 and T(x2,x1) = x2;

(2) a tripled fixed point [2] if n =3, T(x1,%2,x3) = x1, T(x2,%1,%3) = X2, and T(x3,x1,x2) = X3;

(3) a quadruple fixed point [12] if n = 4, T(x1,%x2,x3,%4) = X1, T(X2,X1,%3,X4) = X2, T(X3,%1,%X2,X4) = X3,
and T(x4,X1,X2,X3) = X4.
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Definition 2.12 ([20]). Let X be a non-empty set, T : X x X — X and A : X — X be two mappings. A is
said to be commutative with T, if AT(x,y) = T(Ax, Ay) for all x,y € X. A point u € X is called a common
fixed point of T and A, if u = Au = T(u, u).

Definition 2.13. Let X be a non-empty set, T : X x X x X x X = X and A : X — X be two mappings. A is
said to be commutative with T, if AT(x,y,p,q) = T(Ax, Ay, Ap,Aq) for all x,y,p,q € X. A point u € X is
called a common fixed point of T and A, if u = Au = T(u,u,u, u).

3. Common fixed point results for probabilistic @-contractions in generalized probabilistic metric
spaces

Theorem 3.1. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT — R™ be
a gauge function such that @~ 1({0}) = {0}, @(t) < t and limy_,o @™(t) =0 forany t > 0. Let T : X — X and
g : X — X be two mappings such that

Gﬂ;—X,Ty,TZ((p(t)) 2 G*AX,Ay,AZ(t)G;\y,Az,Az(t)G*Az,Ay,Ay (t) (31)

forall x,y,z € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique u € X
such that Au = Tu = u.

Proof. Let xg € X. By assumption T(X) C A(X), there exists x; € X such that Txy = Ax;. By the same
arguments, there exists x, € X such that Tx; = Ax,. Continuing this process we can construct a sequence
{xn}in X such that

Axni1=Txn, meN.

Due to (3.1), we have
G*Axn/AXn+1rAXn+l ((p (t)) = Giern.flzTXn/TXn ((p (t)) 2 G*AxnfleXn/AXn (t) G*Axn/AXn/AXn (t) G*Axn/AXn/AXn (t)
= GRxn_l,Axn,Axn (t)f
by taking x = x,,—1 and y = z = x,. Thus, for each natural number n, we have
—1
G*AxnrAXn-H’AXn-H ((pn(t)) = Gj\Xn-LAXn,AXn((Pn )=z Gj\xw/\Xz,AXz((p(t)) Z *AXO,AXLAM ().
From Lemma 2.10, we have

r}g}l’;o GRXH,AXn+1,AXn+1 (t) - ]. (3.2)

forallt > 0. For any k € Z* and t > 0, we shall show the following inequality by mathematical induction:
GAx, Axns o Axn (B 2 AN ( Axn Axn i1, Axns (@) (3.3)
Let k = 1. Since
Axr Axni1,Axnir (B = Gax Axn,g Axns, (E— @ (1)
= A(Gj\xn,Aan,Aan (t—o(t), 1)
= A<Gj\xn,Axn+1,Aan (t—0t), Gax, Axny i Axn. (E— (P(t)))
= A (G Ay A [t 9(1)).

Thus (3.3) holds for k = 1.
Suppose now that (3.3) holds for some fixed k > 1. Then, by the monotony of G* and (3.1) we get

G;\Xn+1,AXn+k+1,AXn+k+1 (t) 2 G*AXH+1,AXn+k+1,AXn+k+1 ((p (t))
= Gak'xn,Txn+k,Txn+k ( (p(t)) (34)

k
Z G*Axn,AXn+k,Axn+k (t) > A (Gj\xn,Aanrl,Aanrl (t - (p(t)))
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Therefore, from (PGM-4) and (3.4), we have

*AXTL/AXTH—k-HrAxn+k+1 (t) = *AXTL/AXTH—k-HrAxn+k+1 (t - (p(t) + (p(t))
A(G (t—¢

AXn,AXn+1,AXn+1 ’ G*Axn+1,Axn+k+1,Axn+kH ((P (t) ) )

=
* k *
2 A(G A Ax i Axn (8 @), AT (GAx, Axy 1, Ax (E— (1))

= Ak+1 (G*Axn,Axn+1,Axn+1 (t —Q (t) ) ) .

Thus we prove that if (3.3) holds for some fixed k > 1, then (3.3) holds for k + 1. Then by the
mathematical induction we conclude that (3.3) holds for all k > 1.
Next, we shall prove that {Axy} is a Cauchy sequence, that is,

lim G t)=1
mm, -0 Axn,Axm,Ax[()

for any t > 0. For this aim, firstly, we can show that limy, n,—0 Gf\xm Axpn, Axm(t) =1 for any t > 0.
Suppose that € € (0,1] is given. Since A is a t-norm of H-type, there exists 6 > 0, such that

A™(s)>1—¢ (3.5)

foralln >1and when1—06 <s < 1.
On the other hand, from (3.2) we have

lim GRX“IAXH+1/AXTL+1 (t - (p(t)) = 1’

n—oo
which implies that there exists ng € IN such that G}, A1, AXns1 (t—@(t)) >1—25for all n > ng. Hence,
using (3.3) and (3.5), we obtain that G*Axn/AXn+k/AXn+k(t) >1—¢eforke Z" and n > ny. Thus

. * _
m,l'rllrgoo GAxn,Axm,Axm (t) =1

for any t > 0. Moreover, from (PGM-4), we get that

t t
G’T\X“'AXWAXI (t) >4 <Gj§\Xn,AXn,Axm (E)’ G*Axn,Axn,Axl <2>)/
t

\ t . B .
GAxn,Axn,Axm (E) 2 A (GAXn,AXm,AXm <Z)f GAxn,Axm,Axm (1) > ’

and
t t

* * * t
AxXn,AXn,AXL (E) = A <GAxn,Ax1,Ax1 (Z)I GAxn,Axl,Axl (4)) .

Therefore, by the continuity of A, we have

lim G7 t)=1
mm, -0 Axn,Axm,Axl()

for any t > 0. This means that {Ax,} is a Cauchy sequence. Since X is complete, then there exists u € X
such that lim_,oo{AXxn} = u. Since A is continuous, we have lim,_,..{AAXx} = Au. On the other hand,
we have AAx, 1 = ATx, = TAx,, since A and T commute. Thus, from (3.1) we have

Gax, ., TuTu(@t)) = GTax, 11, mu (@) = GAAx, AwAu(t)- (3.6)

The sequence {Ax, 11} is convergent to u since {Axn 1} is a subsequence of {Axy}. Letting n — oo on
both sides of inequality (3.6), we get that

G;u,Tu,Tu((p(t)) > GRu,Au,Au(t)'
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Hence Au = Tu.
Next, we shall prove that u = Au = Tu. By (3.1) we obtain that

G*Axn,Au,Au((p(t)) = *Axn,Tu,Tu((p(t)) = Giern,l,Tu,Tu((p(t)) > >'/ikxn,l,Au,Au(t)' (37)

Denote B, (t) = Gj\xn,Au,Au(t)- By (3.7), it is easy to find that

Br(@™(t) = Bn_1(@™ () > - > Bi(e(t)) = Bo(t).
Since By(t) € DT and limn_00 ™ (t) = 0, by Lemma 2.10 we get

Jim Balt) = lim Gi auaa() =1,

which implies that u = Au. Then u = Au = Tu.
Now we show that u is the unique common fixed point of T and A. Suppose that, contrary to our
claim, there exists another common fixed point w € X with w # u. From (3.1) we have

G:v,u,u((p(t)) = Gi‘liw,Tu,Tu((p(t)) 2 Gj\w,Au,Au(t) = Gtv,u,u(t)/
which is a contradiction since @(t) < t. Hence, the common fixed point of T and A is unique. O

Corollary 3.2. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ be
a gauge function such that @ *({0}) = {0}, @(t) < t and lim,, o @™(t) =0 forany t > 0. Let T : X — X and
g : X = X be two mappings such that

Ginx,Ty,Tz((p(t)) = GRX,Ay,AZ(t)

forall x,y,z € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique u € X
such that Au = Tu = u.

Proof. Due to

G%’x,Ty,Tz((p(t)) = GZX,Ay,Az(t) > G;x,Ay,Az(t)GRy,AZ,Az(t)G;\Z,Ay,Ay (t)/
we conclude from Theorem 3.1 that the mappings T and A have a unique common fixed point in X. O

Remark 3.3. Corollary 3.2 is the probabilistic version of Theorem 3.1 in [1].
Taking y = z in Corollary 3.2, we get the following corollary.
Corollary 3.4. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ be

a gauge function such that @ 1({0}) = {0}, @(t) < t and limy o @™(t) =0 forany t > 0. Let T : X — X and
A : X — X be two mappings such that

Gy my(0(1) > Giyayay(t)

forall x,y € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique w € X such
that Au=Tu = .
Remark 3.5. Corollary 3.4 is the probabilistic version of Theorem 3.2 in [1].

In Theorem 3.1, if we take A = I (I is the identity mapping), then we have the following result.
Corollary 3.6. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT™ — R* be

a gauge function such that @ 1({0}) = {0}, @(t) < t and limp 0o @™(t) =0 forany t > 0. Let T: X — X bea
mapping such that

Gikl—X,Ty,Tz((p(t)) 2 Gi,y,z(t)G;,z,z(t)G;,y,y (t)

forall x,y,z € Xand t > 0. Then T has a unique fixed point in X.
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In Theorem 3.1, if we take @(t) = At (0 < A < 1), then we have the following corollary.

Corollary 3.7. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let T : X — X and
A : X — X be two mappings such that

G?x,Tg,Tz (}\t) 2 >'/ikx,Ay,Az (t) G*Ay,Az,Az (t) Gj\z,Ay,Ay (t)

forall x,y € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique u € X such
that Au=Tu =u.

Following similar argument in the proof of Theorem 3.1, we can deduce the next theorem. We omit
the details of the proof.

Theorem 3.8. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let : RT™ — R™ bea
gauge function such that @ 1({0}) = {0}, @(t) > t, and limy, o @™(t) = +oo forany t > 0. Let T : X — X and
A : X — X be two mappings such that

Gj;'x,Ty,Tz(t) 2 G*AX,AIJ,AZ((p(t))G*Ay,AZ,AZ((p(t))G*AZ,AU,AQ((p(t))

for all x,y,z € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique u € X
such that Au = Tu = .

Taking y = z in Theorem 3.8, we get the following corollary.

Corollary 3.9. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: R™ — R bea
gauge function such that @ 1({0}) ={0}, @(t) > t and limp_ 00 @™(t) = 00 forany t > 0. Let T : X — X and
A : X — X be two mappings such that

Gi‘lix,Ty,Ty (t) Z G*Ax,Ay,Ay ((P(t))

forall x,y € X, where T(X) C A(X), A is continuous and commutative with T. Then there is a unique w € X such
that Au=Tu =u.

In Theorem 3.8, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.10. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™ be
a gauge function such that =1 ({0}) = {0}, @(t) > t and lim, o, @™(t) = +oo forany t > 0. Let T : X — X be
a mapping such that

Gilk'x,Ty,Tz(t) > G;,y,z((p(t))G;,Z,z((p(t))G;,y,y((p(t))

forall x,y,z € Xand t > 0. Then T has a unique fixed point in X.

Next, we present some new common coupled fixed point results under probabilistic ¢-contractive
conditions in PGM-space.

Theorem 3.11. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: Rt — R™ be
a gauge function such that @1 ({0}) = {0}, @(t) < t and limn 0 @™(t) = 0 forany t > 0. Let T: X x X — X
and A : X — X be two mappings such that

Gilk'(x,y),T(p,q),T(r,s) ((p(t)) > [GRX,Ap,AT(t)G;y,Aq,As (t) j\x,Ap,Ap (t)GRy,Aq,Aq (t) (3 8)

S

X Gap,arAr(t)Gagasas(t)Gaxarar(t)Gay asas(t)]

forall x,y,p,q,1,s € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there exists a
unique w € X such that u = Au = T(u,u).
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Proof. Let xg,yo be two arbitrary points of X. Since T(X x X) C A(X), we can choose x1,y; € X such that
Ax1 = T(x0,Y0) and Ay; = T(yo, x0). Again from T(X x X) C A(X), we can choose x2,y> € X such that
Axz = T(x1,y1) and Ay = T(y1,x1). Continuing this process we can construct sequences {x,} and {yn } in
X such that

Axni+1=T(Xn,yn) and Ayni1=T(yYn,xn)
for all n € IN. From (3.8), we get

G*Axn/AXn+1/AXn+l ((p(t)) = G#(Xn—lfynfl)/T(anyn)rT(anUn) ((P(t))

(3.9)
* * 1/2
2 [Gax, 1 AxnAxn (UGAY, 1 Ay Ay. (D] /
and

Gj\ynrAynJrerynJrl ((p(t)) = Gi';—(ynfllxn—l)rT(Un/Xn)/T(Un/Xn) ((p(t)) (3 10)

* 1/2 :
> [ j;‘ynfllAyn/Ayn(t)GAanl,AXn,AXn (t)] /

for any t > 0.

To simplify the writing, denote P, (t) = [G*Axn,l,Axn,Axn(t)Gj\yn,l,Ayn,Ayn(t)]l/z' Using (3.9) and

(3.10) we obtain that P,,  1(¢@(t)) > Pn(t). Hence, for n > 1 it follows that

G*Axn,Aan,Aan((pn(t)) > Pn((pn_l (t)) =2 Pl (t)
and
GAynAynasAyns (@) = Pl (1) > - > Pi(t).

Since Py(t) = [GRXO,AXl,AXl(t)G* (£)]/2 € Dt and limn 0 ©™(t) = 0 for any t > 0, by Lemma

AyO/AyllAyl
2.10 we get
nlgr;o G;\xn,Aan,Aan (t) =1 (3.11)
and
nhl}go G*Ayn/Ayn+1/Ayn+l (t) =1 (312)

Thus, by (3.11) and (3.12), we obtain that

lim P, (t) =1
n—oo
forall t > 0.
Now we prove by induction that
G Axn Axn o Axnse (V) = AX(Pr(t— (1)) (3.13)
and
Gy Ay Ayn () = A% (Pr(t— (1)) (3.14)

forany k € Z*.
Indeed, if we take k = 1, then from the monotonicity of G* and (3.8), we obtain that

G*AXnIAXn+1/AXn+1 (t) > G*AXnIAXn+1/AXn+1 ((p (t))

- Gi';-(xnflzynflJ/T(Xn,yn),T(Xn,yn) ((p (t))

NI

> [ *AXTL—]IAX"H.IAXTL (t) G*Ayn—llAyn/Ayn (t)]

N—=

> [ *Axn,l,Axn,Axn (t - (p(t))G;\yn,I,Ayn,Ayn(t - (p(t))]
= Palt— (1)

= A(Prlt—o(1),1)

> A(Palt— (1), Palt—ol(t)

= Al (Palt—o(1)).
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Similarly, we have
Ay Ayn Ay (8 = A (Pt —0(1).

Thus (3.13) and (3.14) hold for k = 1.
If we assume that (3.13) is true for some fixed k, then since @(t) < t, by (3.9) we have

GAxn Axnit Axns () 2 Gax, AxninAxns (@(1) = Pr(t) (3.15)

for all t > 0. Moreover, from (3.8) and (3.13), we get

* * 1/2
[GAXn/AXn+k/AXn+k (t) GAU LAY AYntk (t)]

G*AXn+1,AXn+k+1,AXn+k+l ((p(t)) 2
> A¥(Pr(t— (1)

(3.16)

Hence, by (PGM-4), (3.15), (3.16), and the monotonicity of A, we obtain that

G*Axn/Axn+k+erXn+k+l (t) = G*Axn/Axn+k+erXn+k+l (t - (t) + ¢ (t))

AlGAx Axnis Axn (E= @), GAx 1 Axn s Axnorn (@)
A(Pr(t— (1), A%(Pn(t— (1)) = A (Pu(t— o(t))).

VoWV

Similarly, we have Gj\ym AUnirit, Ayn+k+1(t) > A*FL(P,(t— @(t))). Therefore, by induction, (3.13) and
(3.14) hold for all k € Z™.
Next, we shall prove that {Axy} and {Ayn} are all Cauchy sequences, that is,

. . - . . _
m’TlLl,rlIlm GAxnAxmAx () =1 and m,TlllrflTlm GAyn AymAy (t) =1

for any t > 0.
To this end, firstly, we can show that

. . B . . B
m,lrllfgoo G Axn, AxmAxy () =1 and m}ggoo GAynAymAyn (t) =1

for any t > 0.
Suppose that ¢ € (0,1] is given. Since A is a t-norm of H-type, there exists > 0, such that

AT(s) >1—¢ (3.17)

forallm >1and when1—06 <s < 1.
On the other hand, by (3.11) and (3.12), we have

lim G*AXnIAXn+1/AXn+1 (t - (p(t)) =1 and T}E)I;O G*Ayn/Ayn+1/Ayn+l (t o (P(t)) =1
That is
lim Pp(t—o(t)) =1,

n—oo

which implies that there exists ng € IN such that P, (t — ¢(t)) > 1 —5 for all n > ny. Hence, from (3.13),
(3.14), and (3.17), we get

G*Axn/AXn+k/Axn+k (t) >1—e and G*Ayn/Ayn+k/Ayn+k(t) >1—e

for k € Z™ and n > ng. These show that

. * o . * -
m,lrltrgoo GAXn,AXm,AXm (t) =1 and m,lglrgoo GAyn,Ay m,Aym(t) =1
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for any t > 0. From (PGM-4), it follows that

GRXn,AXm/AXl (t)=>A <G*Axn,Axn,Axm (;) GAXn Axn,AXy (é))

t t
G*Axn,AXn,AXm (g) > A <GRXH,Axm,Axm <6> Axn AXm,AXm ))

t

6
2t § t t

GAxn Axn,AXL ( 3 ) Z A <GAXH,AX[,AX[ (3) GAXn Ax,Axy g >

Therefore, by the continuity of A, we have

lim G=* =1 and lim G% t)=1
o0 AXr,AXm, Axl( ) T 00 Ayn/Aym/Ayl( )

for any t > 0. These imply that {Ax,,} and {Ayn} are all Cauchy sequences. Since X is complete, there
exist u,v € X such that lim,_,,c Axn, =u and lim,_,,, Ayn = v. By the continuity of A, we get

lim AAx, =Au and lim AAy, = Av.

n—oo n—oo

Since A and T are commutative mappings, we obtain
AAXn11 = AT(Xn,Yn) = T(Axn, Ayn).
Then, from (3.8) and ¢(t) < t, we have

G;\AXHH,T(u,V],T(u,\)) (t) > G*AAxn+1,T(u,v),T(u,v) ((p(t))
= GTF(Axn,Ayn),T(u,v),T(u,v) ((p(t)) (318)

= [Gj\Axn,Au,Au (t) G*AAyn,Av,Av (t)]l/z'

Taking the limit as n tends to infinity in (3.18), we obtain limn_,,c AAx, = T(u,v). Hence, T(u,v) = Aw.
In a similar way, we can prove that T(v,u) = Av.
Next, we shall show that Au =v and Av = u. Indeed, from (3.8) we obtain that

G*Au’Ayn’Ayn((p(t)) - GTF(UIV),T(Unfernfl)/T(Un—lzxnfl)((P(t))

. . (3.19)
> [GAuIAynferynfl (t) GAV,Aaneranl (t)]l/z'

Similarly, we have

Gav, Axnaxn (@(1)) = [GAy Ax, 1 Axn s (VGAWAY, LAY 4 (1112, (3.20)

Denote Qn(t) = Gj\u,AymAyn(t)Gj\v,AxmAxn(t). From (3.19) and (3.20), we get

Qn(e™t) = Qu_1(e™ (1) = -+ = Qo(t),

GAwAy Ay, (@ (1) = [Qo(t)]'/?,

and
G;\V,AXH,AXn ((pn(t)) 2 [QO(t)]l/2~

Since [Qg(t)]'/? € D* and limy 0 @™ (t) =0, by Lemma 2.10 we obtain that

lim Ay, =Au and lim Ax, = Av.

n—oo n—oo
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These show that v = Au and u = Av. Hence, v = T(u,v) and u = T(v,u). Finally, we prove that u = v. By
(3.8), we have

Git,v,u((p(t)) = Gjli(v,u),T(u,v),T(v,u)((p(t)) > [GT‘\V,ALL,AV(t)Gj‘\u,Av,Au(t)]l/z

(3.21)
= 16y u ()G 4y (]2
and
G:,u,v((p(t)) = Gjli(u,v),T(v,u),T(u,v)((p(t)) > [G*Au,Av,Au(t)Gj\V,Au,Av(t)]l/z (3 22)

= [G:,u,v (t) Gi,v,u(t)]l/z'

Suppose that R(t) = G}y, (t)Gly. (t)]V/2. From (3.21) and (3.22), we have R(¢™(t)) > R(t). Using

Lemma 2.10, we have R(t) =1, i.e,, u = v. The uniqueness of u follows from (3.8). This completes the
proof. O

Remark 3.12. Theorem 3.11 generalizes and extends the corresponding result in Xiao et al. [22].

In Theorem 3.11, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.13. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™ be
a gauge function such that @ '({0}) = {0}, @(t) < tand limp e @™(t) =0 for any t > 0. Let T: X x X — X be

a mapping satisfying
G#(x,y),T(P,q),T(T,s)((p(t)) 2 (G pr ()G q,s (16 p 5 ()G 4,4 (1)
X Gy rr(1)GG 5,5 (V)G p e (1) G g s ()]

Q\=

forall x,y,p,q,7v,s € Xand t > 0. Then T has a unique fixed point in X.
In Theorem 3.11, if we take @(t) = At (0 < A < 1), then we have the following corollary.

Corollary 3.14. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X — X
and A : X — X be two mappings such that

G?(x,y),T(p,q),T(r,s)()\t) > | t\x,Ap,AT(t)GRy,Aq,As(t)GRx,Ap,Ap(t)GRy,Aq,Aq(t)

=

X G*Ap,Ar,Ar (t) G*Aq,As,As (t) G*AX,AT,AY (t) GRy,As,As (t)]

forallx,y,p,q,r,s € X, where A € (0,1), T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique w € X such that u = Au = T(u, u).

From the proof of Theorem 3.11, we can similarly prove the following result.

Theorem 3.15. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: Rt — R™ be
a gauge function such that @ ~1({0}) = {0}, @(t) > t and lim, o, @™(t) = +oo forany t > 0. Let T: X x X — X
and A : X — X be two mappings such that
Gikl'(x,y),T(p,q),T(r,s)(t) 2 | *AX,Ap,Ar((p(t))Gj\y,Aq,As((p(t))
X Gt\x,Ap,Ap ((p(t))G*Ag,Aq,Aq ((p(t))G*Ap,Ar,Ar((P(t))
X GRq,AS,AS((‘p(t))G*AX,AT,AT((p(t))G;\y,AS,AS((p(t))]

=

forall x,y,p,q,1,s € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there exists a
unique w € X such that u = Au = T(u,u).

Letting A = I (I is the identity mapping) in Theorem 3.15, we can obtain the following corollary.



J. Tian, X. Hu, J. Nonlinear Sci. Appl., 10 (2017), 3939-3962 3950

Corollary 3.16. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™ be
a gauge function such that @ ~1({0}) = {0}, @(t) > t and lim, o, @™(t) = +o00 for any t > 0. Let T: X x X — X
be a mapping satisfying

Gak'(x,y),T(p,q),T(T,s)(t) Z [G;k(,p,‘r((p(t))G;,q,s((p(t))G;p,p((p(t))G;,q,q((p(t))
% G (0(1)Gh ¢ o (@(1)GE 1 (@(1)GE ¢ o (@())]5

forall x,y,p,q,7v,s € Xand t > 0. Then T has a unique fixed point in X.

Theorem 3.17. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢ : RT™ — R™ be
a gauge function such that @~ 1({0}) = {0}, @(t) > t and limy 0 @™(t) = +oco forany t > 0. Let T : X x X — X
and A : X — X be two mappings such that

Gikl'(x/y)/T(p/q ),T(r,s) (t) 2 mln{G*AX,Ap,Ar((p(t))/ G:;\y,Aq,AS ((p(t))l
GaxAp,Ap(@(1), Gay aqaq(@t)), Gap arar(@(t)), (3.23)
AgAsAs (@), Gaxarar(@(t)), Gay asas(@(t))}

forall x,y,p,q,7,s € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there exists a
unique w € X such that u = Au = T(u,u).

Proof. Following the lines of the proof of Theorem 3.11, we can construct two sequences {x,}°_; and
{ynlX_; in X such that Axn 1 = T(xn,Yn) and Ayn41 = T(yn, xn). By (3.23) we get (for t > 0)

G*AanAXn+1/AXn+1 (t) = Gi’;—(xnflfynfl)rT(anyn)/T(Xn/yn) (t)

L ) (3.24)
2 mln{GAanl,AXn,AXn ((p (t) )I GAynieryn,Ayn ((P(t))}

and
AYn,AYn+1,AYnt1 (t) = GT(ynfernfl)rT(yann)/T(yn/xn) (t)
> min{G;\ynillAyn,Ayn((p(t))/ G*Axnillen,Axn((p(t))}‘

Denote Dn(t) = min{Gj, | ax. ax.(t) Gay, | Aynay, (B} By (3.24) and (3.25), it is easy to find that
Dnt1(t) = Dn(e(t)). This implies that

(3.25)

Dpi1(t) = Dnl@(t) = Dno1(@*(t)) > -+ = Di(@™(t)). (3.26)

Since limy_, 1 oo D1(t) = lim¢_ 4 oo min{Gj\XO,AXLAXl (1), G*AUO/Ayeryl (t)} =1 and lim, o @™ (t) = +00
for each t > 0, we have lim,_,,, D1(@™(t)) = 1.
On the other hand, by using (3.24)-(3.26), we get

GaAxnAxninAxns (B = D1l (1) and  Ghy, ay,.1Ay.., (t) = Dile™(t).

Hence, we have

T}E}I;o G*Axn,Aan,Aan (t) =1 and T}gl’;o G*AymAynH/AHnH (t) =1
These imply that
lim D, (t)=1 forallt>0.
n—oo
In the next step we show that, for any k € Z,
G;xn,Axn+k,Axn+k((p(t)) Z Ak(Dn((P(t) - t)) (327)

and
Ay Ay Ay (@) = A (D (@(t) —1)). (3.28)
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Ask=1,

G*AxnrAXn-H/Axn-H ((p(t)) > G*AXnIAXn+erxn+] (t)
= GT (1 yn) T g ), T () (D)
2 min{G*Aanl,AXn,AXn ((p(t))/ G*Ayn—lfA‘Jn/Ayn ((P(t))}
> min{GRxn_l,Axn,Axn ((P(t) - t)/ *Ayn_eryn,Ayn ((P(t) - t)}
=Dn(e@(t)—1)
= A(Dnle) - 1),1)
> A(Dnl@(t) =), Dnlp(t) — 1))
= A (Dnlo(t) — 1)),

Similarly, we have
Gy Aymsr Aynss (9(1) > Al (D (o) —1).

Thus (3.27) and (3.28) hold for k = 1.
Assume that (3.27) and (3.28) hold for some fixed k(k > 1). Since ¢(t) > t, by (3.24) we have

Gf\xn,Aan,Aan (t) > Dn((p(t)) P Dn(t) (329)
for all t > 0. By (3.23) and (3.27) we have

(t) = G},

*
AxXni1,Ax Xn,Yn ), T (XnoYni ), T (Xng ko Yntk) (t)

Ax

n+k+1 n+k+1

Z min{G*AXn,AXn+k,AXn+k ((p(t))l G*Ayn,Ayn+k,Ayn+k ((p(t))} (330)
> A¥(Dn(p(t) — ).

Thus, by (PGM-4), (3.29), (3.30), and the monotonicity of A, we have

AxrAxm s A (P8 = Gax Axn i Axnan (@) —t+1)
2 A(Gax,, Axni1, Axn (@) = 1), GAx, 1 Axn st Axn s (B)
> A(Dn(@(t) — 1), A¥(Dn(e@(t) — 1))
= A" (D (e(t) — ).

Similarly, we have Gﬁ\ymAyMkH,AyMkH((p(t)) > AM(D, (@(t) —t)). Hence, by induction, (3.27) and

(3.28) hold for all k € Z*.

By the same method as in Theorem 3.11, we can obtain that {Ax,, } and {Ayy } are all Cauchy sequences.
Since X is complete, there exist u,v € X such that lim,,_,,c Axn, = u and limp ;0o Ayn = v. From the
continuity of A it follows that

lim AAx, =Au and liir1 AAyn = Av.
mn o0

n—oo

From (3.23) and the commutativity of A with T it follows that

*AAxn+1,T(u,v),T(u,v) (t) = *AT(xn,yn),T(u,v),T(u,v) (t)
= Gikl'(Axn,Ayn),T(u,v),T(u,v) (t) (331)

2 mln{G*AAxn,Au,Au((p(t))/ G*AAyn,Av,Av((P(t))}'

Now on making n — oo in (3.31), we have limp oo AAxn = T(u,v). Hence, Au = T(u,v). In the same
manner we can prove that Av = T(v,u).
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Next, we shall show that Au =v and Av = u. In fact, by (3.23) we have

G*Au/Ayn/Ayn (t) = G_T—(U/V)/T(Unflfxnfl)/T(ynfllxnfl) (t)

) . . (3.32)
> mln{GAu,Ay e AYn_1 (@), G AV, AXn_1,AXn_1 (o(t))}

and

GAwAxnAxn (1) = GT(w0) Tixn1yn 1), T(xn1yn1) (V)

o ; (3.33)
2 min{Gay Ax, 1 Axn 1 (P(1), GAy Ay, 1Ay, (@)}

Denote E, (t) = min{G/’E\u,AymAyn (t), Gj\v,Axn,Axn(t)}‘ From (3.32) and (3.33), it is easy to find that
En(t) = En—l((P(t)) Z 2 EO((Pn(t))-

Since limp o0 @n(t) = 400, we have

Eo(@™ (1)) = min{Ga,, ayeay, (@ (1)), GAv,axgax, (@ (1)} — 1
as n — oo. This shows that E;;(t) =+ 1 as n — oo, and so

lim Ay, =Au and lim Ax, = Av.

n—oo n—oo

Hence, Au=vand Av=u
Finally, we shall prove that u = v. From (3.23) we get

Gfxvv( ) *Av,Au,Au(t) = Gikr ), T(w,v),T(uw,v (t)
> min{G, awau(@(1), Ghuav,av (@)} (3.34)
=min{G, ,,, (¢ (1)), GJ (@ (1))}

and
Gvuu( ) = GAu,Av,Av(t) = GT(u,\)),T(V,u),T(V/u)(t)

_mln{Gvuu( (1)), Gflvv( )

Suppose that F(t) = min{G},, ,(t), G} , ,(t)}. From (3.34) and (3.35), we obtain that F(t) > F(e@™(t)).
Letting n — oo, we have F(t) =1, i.e.,, u = v. Since the uniqueness of u follows from (3.23), the proof of
Theorem 3.17 is completed. O

Remark 3.18. Theorem 3.17 generalizes and extends the corresponding result in Xiao et al. [22].

Letting A = I (I is the identity mapping) in Theorem 3.17, we can obtain the following corollary.

Corollary 3.19. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢ : RT™ — R™ be
a gauge function such that e {0} = {0}, @(t) > tand limn_,00 @™(t) = +oo foranyt > 0. Let T: X x X = X
be a mapping such that

GT(xy),T(p,q),T(rs) () = min{GL , (@(1)), G} g s(@ (1), Gy, (@(1), G q,q(@()),
Gprrl(@(t), Gy s s(@(t), Gy rr(@(t), Gy s s (@(1))}
forall x,y,p,q,7v,s € Xand t > 0. Then T has a unique fixed point in X.

By the same method as in Theorem 3.17, we can obtain the following theorem.
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Theorem 3.20. Let (X, G*,A) be a complete PGM-space such that A is tZ t-norm of H-type. Let @: Rt — R™ be
a gauge function such that @ *({0}) = {0}, @(t) < t and limy 0 @™(t) =0 forany t > 0. Let T: X x X — X
and A : X — X be two mappings such that

Giﬁf[x,y),T(p,q),T(r,s) ((P(t)) > min{G*Ax,Ap,Ar(t)/ ng\y,Aq,As (t)/ G*Ax,Ap,Ap (t)/ Gj\y,Aq,Aq (t)/
*A]J,AT,AT‘(T')' GRq,As,As (t)/ G*AX,AT‘,AT(t)’ GRy,As,As (t)}

forall x,y,p,q,7,s € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there exists a
unique w € X such that u = Au = T(u, u).

In Theorem 3.20, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.21. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ be

a gauge function such that e {0} =1{0}, (1) < t and limn 00 @™ (t) = =0foranyt>0. Let T: X x X — X be
a mapping satisfying
GT (pq) ( )((p(t))>m1n{prr( ) G;qs( ) G;kcpp( ) G;;qq( )

Gp (1), G ss(t), GXrr (1), G g s (1)}
forall x,y,p,q,7,s € Xand t > 0. Then T has a unique fixed point in X.
In Theorem 3.20, if we take @(t) = At (0 < A < 1), then we have the following corollary.

Corollary 3.22. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X — X
and A : X — X be two mappings such that

Gikl'(x,y ), T(p,q), T (At) mln{GAx,Ap,Ar(t)' GRy,Aq,As (t)/ G;x,Ap,Ap (t)' j'/i\y,Aq,Aq (t)/

Gaparar(t), Gagasas(t), Gaxarar(t) Gayasas(t)}

forallx,y,p,q,r,s € X, where A € (0,1), T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique w € X such that u = Au = T(u, u).

Now, we give the common tripled fixed point results under probabilistic @-contractive conditions in
PGM-space.

Theorem 3.23. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R bea
gauge function such that @ ~1({0}) = {0}, @(t) < tand limy o @™(t) =0 forany t > 0. Let T: X x X x X = X
and A : X — X be two mappings such that

G#’(x,y,(,),T(p,q,n),T(r,s,B) ((p(t)) Z [G;\X,Ap,Ar(t)G*Ay,Aq,As (t)GAZ, An,A0 (t)

X Gax,ap,ap(t)Gay,aqaq(t)GAcAnAn(t)
. N (3.36)
X GaparAr(t)Gagasas(t)Gana0a0(t)

)

Ol

)
X G*AX,AT‘,AT (t) G;y,As,As (t) GRC,AB,AB (t ]

forall x,y,p,q,7,5,(,1,0 € X, where T(X x X x X) C A(X), A is continuous and commutative with T. Then
there exists a unique w € X such that u = Au = T(u,u,u).

Proof. Let xo,Yo, (o be any given points of X. Since T(X x X x X) C A(X), we can choose x1,y1, (1 €
X such that Ax; = T(xo,Yo, o), Ayr = T(yo,x0, (o), and Al; = T(lo,x0,Yo). Again from T(X x X x
X) € A(X), we can choose xp,yz, (» € X such that Axy = T(x1,y1, 1), Aya = T(y1,x1,¢1), and Al =
T(C1,%x1,1). Continuing this process, we can construct sequences {xn}, {yn}, and {Cn} in X such that
AXn4l = T(anynr Cn)r AYni1 = T(ynz Xn, CTL)/ and ACnJrl = T(Cn: Xn/yn) for all n € IN.
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By the same methods as in Theorem 3.11, we can prove that {Axn}, {Ayn}, and {A(y} are all Cauchy
sequences. Since X is complete, there exist u,v,w € X such that lim,_,,, Axn, =u, limpn_,c Ayn =V, and
limp 00 A = w. From the continuity of A it follows that

lim AAx, =Au, lim AAy, =Av, and li_r>n AA(L = Aw.
n o0

n—oo n—oo

From (3.36) and the commutativity of A with T, we obtain that

*

AAxn+1, T(w,vw),T(uw,v,w) ((p(t)) = >/RT(xn,yn,Cn),T(u,v,w),T(u,v,w) ((p(t))

= Gj;'(Axn,Ayn,ACn),T(u,v,w),T(u,v,w) ((p(t)) (337)

@I=

2 [GAax,awaut)GAay, Av,Av(HGAAC AwAw(t)]3:

Now on making n — oo in (3.37), we get limp oo AAXn = T(u, v, w). Hence, Au = T(u, v, w). In the same
manner we can prove that Av = T(v,u,w) and Aw =T(w,u,v).
Next, we shall show that Au =v, Av =u, and Aw = w. In fact, by (3.36) we have

G*Au/Ayn/Ayn ((p (t)) = Gi';—(U/V/W)/T(ynflrxnfllcnfl)/T(yn71/Xn71/Cnfl) ((p (t))

. i} . 1 (3.38)
> [Cavw Ay, 1Ay (VGAVAx A (VGAW A A (D]
G*AV/AXn/Axn ( ¢ (t) ) = Gj(r(vru/W)IT(Xn—lryn—l/Cn—l )/T (xn—lryn—lr(:n—l ) ((p (t)) (3 39)
1 .
> [Gj\v,Axn,l,Axn,l (t) G*Au,Ayn,l,Ay n_1 (t) G*AW,A Cn-1,ACn_1 (t)] 3,
and
G*AW/ACn/A Cn ((p (t) ) = Gi';—(wru/v)/T ( Cnflrxnflfynfl )/T(Cnfllxnflxynfl ) ((p (t) )
1 (3.40)

2 [G*AW/ACnfer Cn-1 (t) G*AurAxnferxnfl (t) GRVrAynferynfl (t)] 3

Denote Hn(t) = Gy Ay, Ay, (VGAy AxAxe (WGAW AC, AC, (1) From (3.38), (3.39), and (3.40), we find
that
Hn (@™ (1) > Haa (@™ (1)) > -+ > Ho(b).

Since limp o0 @n(t) =0, from Lemma 2.10, we have

Hn(t) = G;\u,Agn,Ayn(t)Gt‘\v,Axn,Axn (t)Gj\W,ACn,ACn (t) — 1
as n — oo. This shows that

lim Ay, = Au, lim Ax, = Av, lim A, = Aw.

n—oo n—oo n—oo

Hence, Au=v, Av=u, Aw = w.
Finally, we shall prove that u =v and u = w. From (3.36) we get

G‘tL,V,\)((p(t)) = G;‘v,Au,Au((p(t)) = Gz‘l(—(V,’LL,W),T(U,V,W),T(U,V,W)((p(t))

(3.41)
* L * *
> [Gj\v,Au,Au (t) G*Au,Av,Av (t) GAw,Aw,Aw (t)] S = [Gu,v,v (t) Gv,u,u (t)] ’

W=

and

G:,u,u((p(t)) = *Au,Av,Av((p(t)) = Gili(u,v,w),T(v,u,w),T(v,u,w)((p(t))

1 * *
2 [G*Au,Av,Av (t)G*AV,Au,Au(t)G*AW,AW,AW (t)] S = [Gv,u,u(t)Gu,v,v(t)] .

Suppose that I(t) = G7, ,,,,(t)G}, ,, ,(t). From (3.41) and (3.42), we obtain that I(¢(t)) > [I(t)]%. Hence, we
have I(@™(t)) > [I(t)](%)n. From Lemma 2.10, we get I(t) =1 for all t > 0, i.e., u = v. Similarly, we can
prove that u = w. Hence, there exists u € X, such that u = Au = T(u,u, u). Since the uniqueness of u
follows from (3.36), the proof of Theorem 3.23 is completed. O

(3.42)

W=
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In Theorem 3.23, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.24. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT — R™ bea

gauge function such that @ ~1({0}) = {0}, @(t) < tand lim,, o @™(t) =0 forany t > 0. Let T: X x X x X = X
be a mapping satisfying

GT (x,y,0),T(p,qm), T(r,5,0) (@) =[G+ (V)G q s () GT 1 0 (1) G 1 (1) Gy g (1)
X GCT]T]( )G;rr( )Gt]ss( ) n,e,e( )G;ch‘r( )G;Ss( )Gz,e,e(t)]

forall x,y,p,q,7,5,(,1,0 € Xand t > 0. Then T has a unique fixed point in X.

Nl

In Theorem 3.23, if we take @(t) = At (0 < A < 1), then we have the following corollary.

Corollary 3.25. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X x X — X
and A : X — X be two mappings such that

Gikf(x,y,C),T(p,q,n) (r,s,0) ()\t) [GAX JAP, Ar(t)GAy Aq,As (t) *AC,An,AG (t)
X Gax,ap,Ap(t)GAy,AqAq(t)GAL AR AR(L)

X Gj\p,AT,AT( )Gj\q,As,As (t) G*AT],AG,AG (t

Ol—

)
X Gaxarar(t)Gay asas(t)Gac ap,a0(t)]

forall x,y,p,q,71,s,(,m,0 € X, where A € (0,1), T(X x X x X) C A(X), A is continuous and commutative with
T. Then there exists a unique w € X such that u = Au = T(u,u, u).

In a similar way, we can prove the following result.

Theorem 3.26. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™

be a gauge function such that @ '({0}) = {0}, @(t) > t and lim, o @™(t) = +oco for any t > 0. Let T:
XxXxX—= Xand A : X = X be two mappings such that

GT (xy,0),T(p,qm),T(1,5,0) (1) Z [Gax apar(@(t))Gay Aqas(@(t)GArAnA0(@(T))
X GAx LAD, Ap((p( ))GAy Aq, Aq((P(t))G;kz\c,An,An((P(t))
t))Gan a0,40(@(1))

X GAp,Ar,Ar( ( ))GAq,As,As( ( )
X Gax arAr(@(1))Gay asAs(@())GAa0,40(@(t))]

Nl

forall x,y,p,q,7,5,(,n,0 € X, where T(X x X x X) C A(X), A is continuous and commutative with T. Then
there exists a unique w € X such that u = Au = T(u,u, u).

Letting A =1 (I is the identity mapping) in Theorem 3.26, we can obtain the following corollary.

Corollary 3.27. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R*

be a gauge function such that @ '({0}) = {0}, @(t) > t and limn_ o @™(t) = +oco for any t > 0. Let T:
X x X x X = X be a mapping satisfying

GT (x,0,0),T(p,am),T(r,s,0) (1) =[G p +(@(1)GY g s (@(t))GE 0 (@(t))
X G pp (©(1)Gy q.q(@(t)GE 4 (@(t))
X G 1 (@(1)) GG s,s(@(t))Gy 0,0(@(t))
X G (@(1)Gy 5 s (@(t)

)
(
(
(t))GZ,0(® (t))]é

forall x,y,p,q,7,5,(,m,0 € Xand t > 0. Then T has a unique fixed point in X.
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From the proof of Theorem 3.23, we can similarly prove the following result.

Theorem 3.28. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @ : RT — R™ bea

gauge function such that @ ~1({0}) = {0}, @(t) > tand limy, o @™(t) = +oo forany t > 0. Let T: X x X x X —
Xand A : X — X be two mappings such that

G?(X,H,C),T(p,q,ﬂ),T(T‘,S,e)(t) > min{GRx,Ap,Ar(q}(t))/ GRy,Aq,As((p t)) GRC,AT},AG(@ t))'

( (
Ax,Ap,Ap (@(1)), Gay Aqaq(@(t)), GAr anan(@(t)),
*Ap,Ar,Ar((p(t))/ G*Aq,As,As ((P

4

t)), Gan,a0,40(@(t
),

( )
;\X,AT,Ar((p(t))l G*Ay,As,As((p(t ))}

forallx,y,p,q,7,s,(,m,0 € X, where T(X x X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique w € X such that u = Au = T(u, u, u).

GAC Ao,A0l@(t

Letting A = I (I is the identity mapping) in Theorem 3.28, we can obtain the following corollary.

Corollary 3.29. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢ : RT — R bea

gauge function such that @ ~1({0}) = {0}, @(t) > tand limy_o @™(t) = +oo forany t > 0. Let T: X x X x X —
X be a mapping such that

GT(xy,0),T(p,qmn),T(rs,0) (1) =min{GX , ((t)), G} ¢ s(@(t)), G ; o (@ (1)), GX , , (@(1)),
GY,q,q(@(1), GLyn(@(t), Gy 1 (0(1)), qss( (1)),
neel@(t), Gim(@(t)) Gy s,s(@(1), GLo0(@(t))}
forall x,y,p,q,7,5,(,1,0 € Xand t > 0. Then T has a unique fixed point in X.
In a similar way, we can prove the following result.

Theorem 3.30. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let : RT — R" bea

gauge function such that =1 ({0}) = {0}, @(t) < tand limp o @™(t) =0 forany t > 0. Let T: X x X x X = X
and A : X — X be two mappings such that

Gak'(x,y,C),T(p,q,n),T(r,s,e) ((p(t)) = min{Gj\x,Ap,A‘r(t)/ GRy,Aq,As (t)/ G*AC,AT],AG (t)f Gj\x,Ap,Ap (t)/

Gay,AaqAq(t) Gacanan(t), Gap arar(t), Gagasas(t)

Ganaeae(t), Gaxarar(t) Gayasas(t), Gacaoao(t)

forallx,y,p,q,7,s,(,m,0 € X, where T(X x X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique w € X such that u = Au = T(u, u, u).

In Theorem 3.30, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.31. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ bea

gauge function such that @ ~1({0}) = {0}, @(t) < tand lim,, o @™(t) =0 forany t > 0. Let T: X x X x X = X
be a mapping satisfying

Gikr(x,y,c),T(p,q,n),T(r,s,e)((p(t)) > mln{prr( ) G; q, s( ) E,n e( ) Gipp( ) G; q, q( ) zﬂ]ﬂ](t)’
G;rr( ) GZSS( ) :],6,6( ) Girr( ) Gljss( ) C,B,G(t)}

forall x,y,p,q,7,s,(,1,0 € Xand t > 0. Then T has a unique fixed point in X.

In Theorem 3.30, if we take @(t) = At (0 < A < 1), then we have the following corollary.
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Corollary 3.32. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X x X — X
and A : X — X be two mappings such that

Gikf(x,y,CJ,T(p,q,n) (r,s,0) O\t) mln{GAx JAD, Ar(t)/ *Ay,Aq,As (t), GRC,An,AG (t), G*Ax,Ap,Ap (t)/
Gayaqaq(t) Gacanan(t), Gap arar(t), Gagasas(t)
Ganaeae(t), Gaxarar(t) Gayasas(t), Gacaeae(t))

forall x,y,p,q,7,5,(,m,0 € X, where A € (0,1), T(X x X x X) C A(X), A is continuous and commutative with

T. Then there exists a unique w € X such that u = Au = T(u,u, u).

Finally, by the same methods as in Theorems 3.23, 3.26, 3.28, and 3.30, we can obtain the following
common quadruple fixed point results under probabilistic ¢-contractive conditions in PGM-space.

Theorem 3.33. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT — R™ bea
gauge function such that @ ' ({0}) = {0}, @(t) < tand lim, 0 @™(t) =0foranyt >0. Let T: X x X x X x X —
Xand A : X — X be two mappings such that

GT (x,0,0),T(p,qm,0),T (15,0 (@1) = [Gax apar(t)GAy AqAs(V)GArAnA0(V)GAG AL AL(L)
X Gax,apap(t)Gay aqaq(t)GacanAn(t)GAcAcAs(t)

X Gap,arar(t)Gagasas(t)Gana0,40(t)Gacarax(t)

=

X G*AX,AT‘,AT‘(t) G*Ay,As,As (t) G*AC,AG,AG (t) G*AG,AT,AT( )]

forall x,y,p,q,7,5,(,1,0,0,0,T € X, where T(X x X x X x X) C A(X), A is continuous and commutative with
T. Then there exists a unique w € X such that u = Au = T(u,u,u, u).

In Theorem 3.33, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.34. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ bea
gauge function such that @ ' ({0}) = {0}, @(t) < tand lim, 0 @™(t) =0foranyt >0. Let T: X x X x X x X —
X be a mapping satisfying

G (x0T (a0 T (9(8) 2 655111654 (DG 0 (G0 ()G 1 p (116 (1)
X GCnn( )GT)‘O'O‘( ) pT‘T‘( )GZSS( ) T]/e/e( )GZ'T/T(t)
X Gl ()G s ()G 0,0(1) G o < (£)]5

forall x,y,p,q,7,5,(,n,0,0,0,T € Xand t > 0. Then T has a unique fixed point in X.
In Theorem 3.33, if we take @(t) = At (A € (0,1)), then we have the following corollary.

Corollary 3.35. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X x X x
X —= Xand A : X — X be two mappings such that

Gikr(x,y,c,()"),T(’p,q,T],O"),T(T‘,S,e,’t)()\t) > [G*Ax,Ap,Ar(t >.iAy,Aq,As (t)GAC An, Ae(t)GAG Ao, AT(t)

)
X Gax,ap.ap(t)Gay Aqaq(t)GaAcAnAn(H)GAGAGAG(T)

X Gaparar(t)Gagasas(t)Ganaoae(t)GaAgArA-(t

c\"—‘

) )
X Gaxarar(t)Gay as,as(t)Gaca0,a0(t)GAcArA(t)]]

for all x,y,p,q,7,5,(,1n,0,0,0,T € X, where A € (0,1), T(X x X x X x X) C A(X), A is continuous and
commutative with T. Then there exists a unique w € X such that u = Au = T(u,u, u, u).
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Theorem 3.36. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™

be a gauge function such that @ '({0}) = {0}, @(t) > t and lim,_,o @™(t) = +oco for any t > 0. Let T:
XxXxXxX—=Xand A : X — X be two mappings such that

G#‘(x,y,&,c),T(p,q,n,cr),T(T,s,e,r)(t) > [G;x JAD, Ar( (t))G;y,Aq,As((p(t))G;C,An,AG((p(t))GRG Ao, AT( (t))
X Gax JAD, Ap( (t ))G*Ay,Aq,Aq((p(t))G;‘C,An,An((p(t))GAc Ao, Aclo(t))
X GAp,Ar,Ar( ( ))GRq,As,AS((p t )
)

(t))Gan,a0,40(@(t))GAGAra(@(t))
X G;\X,AT,AT((p(t)) *Ay,As,As((p(t) )

* * 1
Gacae,a0(@t))Gagarac(@(t))]s

forall x,y,p,q,7,5,(,1,0,0,0,T € X, where T(X x X x X x X) C A(X), A is continuous and commutative with
T. Then there exists a unique w € X such that u = Au = T(u,u,u, u).

Letting A = I (I is the identity mapping) in Theorem 3.36, we can obtain the following corollary.

Corollary 3.37. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢: RT — R™*

be a gauge function such that @ '({0}) = {0}, @(t) > t and lim,_ o @™(t) = +oco for any t > 0. Let T:
X x X x X x X = X be a mapping satisfying

G*Txylcr) (pqnd)T(rseT](t)
> (G 5+ (@(1)G s (@(1))GE 1 0(0(1)G ¢ (@(1))GE o (@(1)G o o (@(1))
X GEn(@(1)GE 66 (@(1)GS . (@(1)Gh ¢ (@(1))GE g 0(0(1)Gh o (@(t)
X GL oy (O(1)GE ¢ (0(1))GEg0(@(1) Gl ((1))]1s

forall x,y,p,q,7,5,(,1,0,0,0,7T€ Xand t > 0. Then T has a unique fixed point in X.

Theorem 3.38. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢ : R™ — R™

be a gauge function such that @ 1({0}) = {0}, @(t) > t and limn_00 @™(t) = +oo forany t > 0. Let T :
XX XxXxX—=Xand A : X — X be two mappings such that

G T (x,y,6,0),T(p,qm,0),T(r,5,6,7) (t)
> min{Gax ap,Ar ¢(t)), Gagacac(@(t)),

(),
GaoarAc(@(t)),
)

}

forall x,y,p,q,7,5,(,1,0,0,0,T € X, where T(X x X x X x X) C A(X), A is continuous and commutative with
T. Then there exists a unique w € X such that u = Au = T(u,u, u, u).

(1)), Gay,aqas(@t)), Gac an,Ae

(
ol

z—\/ﬁ

t)) GAO' Ao, Ac(

),
),

t)), GAc AnAn(@

),
),

(¢
GAX,Ap,Ap( ( )) GAy Aq, Aq(
G*Ap,Ar,Ar((p(t))/ GAq,As,As( (t

)), Gan,a0,A0(@(t)
G*Ax,Ar,Ar((p(t))/ G;\y,As,As ((P(t)

Gacaeao(@t)), GAgaraclo(t)

Letting A = I (I is the identity mapping) in Theorem 3.38, we can obtain the following corollary.

Corollary 3.39. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let ¢ : RT — R*

be a gauge function such that @ 1({0}) = {0}, @(t) > t and limn 00 @™(t) = +oo forany t > 0. Let T :
X x X x X x X = X be a mapping such that

Gilk—(X,U,C,O'),T(p,q,n,()'),T(r,s,e,T)(t) = mln{pr r( ( )) G; q, 5(@(”)1
G;kcpp((p( )) G;;qq((p(t))/ mm
Gprr(@(t), Gy e s (@t

)),Ghe,0l
Gorr(@(1), Gy s s(0(t)

o
,GZo0lw(t

forall x,y,p,q,7,5,(,1,0,0,0,7T€ Xand t > 0. Then T has a unique fixed point in X.
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Theorem 3.40. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let : RT™ — R™ bea
gauge function such that @1 ({0}) = {0}, @(t) < tand limy, o @™(t) =0foranyt >0. Let T: X x X x X x X —
Xand A : X — X be two mappings such that

Gikr(X/er/U)/T(p/q/nro-)rT(rrs/e/T) ((p(t)) 2 min{GRx,Ap,Ar(t)’ *Ay,Aq,AS (t)’ G*AC,AT],AG (t)/ G*AO',AO',AT(t)I
G*AX,A]:),AP (t)/ G;\y,Aq,Aq (t)/ GRC,An,An (t)/ G*AO',AO',AO'(t)/
t\p,AT,AT(t)f t\q,As,As (t)/ GRn,AG,AG (t)/ G*AG,AT,AT(t)/
Ax,ArAr(t), Gay asas(t), Gacaoae(t), Gagarac(t))
forall x,y,p,q,7,5,(,1,0,0,0,T € X, where T(X x X x X x X) C A(X), A is continuous and commutative with

T. Then there exists a unique w € X such that u = Au = T(u,u,u, u).
In Theorem 3.40, if we take A =1 (I is the identity mapping), then we have the following corollary.

Corollary 3.41. Let (X, G*, A) be a complete PGM-space such that A is a t-norm of H-type. Let @: RT™ — R™ bea
gauge function such that @ ' ({0}) = {0}, @(t) < tand lim, 0 @™(t) =0foranyt >0. Let T: X x X x X x X —
X be a mapping satisfying

Gikr(x,y,C,G),T(p,q,n,o),T(r,s,G,T)((p(t)) > mln{GXp r( ) y q, s(t) z,n 0 t) 0' o,T t)r
Glpp(t), Gy ,q,q(t)

(
PP u.4.4 tnn (1), G 6,0(t),
G;rr(t) qss(t)/ 'r],G G(t) GETT(’C),
)IGZG,G( ) O‘T,T( )}

forall x,y,p,q,7,5,(,1n,0,0,0,T € Xand t > 0. Then T has a unique fixed point in X.

(
(
xrr(t) yss(

In Theorem 3.40, if we take @(t) = At (0 < A < 1), then we have the following corollary.

Corollary 3.42. Let (X, G*,A) be a complete PGM-space such that A is a t-norm of H-type. Let T: X x X x X x
X — Xand A : X — X be two mappings such that

t) G*AO',AO',AT (t)/
t)/ G*AO',AO',AO'(t)’

Gikl'(x,y,C,cr),T(p,q,n,cr),T(r,s,G T) U\t) mln{GAx JAPD, Ar( )/ G*Ay,Aq,As t) *AC An,A0

( (
Gax,Ap,Ap(t), Gayaqaq(t) GAganan(

ApArAr(t), Gagasas(t) Ganaoao(t), Gasarac(t),
G*AX,AT‘,AT‘(t)’ *Ay,As,As (t)/ G*AC,AG,AG (t)/ G;\O',AT,AT(t)}

for all x,y,p,q,7,5,(,1n,0,0,0,T € X, where A € (0,1), T(X x X x X x X) C A(X), A is continuous and
commutative with T. Then there exists a unique w € X such that u = Au = T(u, u, u, u).

4. An example

In this section, we give the following example to illustrate Theorem 3.11.
Example 4.1. Let X = [0,00), A = Ap. Then A is a t-norm of H-type. Define the mapping G* : X3 x

1, t <0,
Giy.()=¢ Ix—yl+ly—z[+|z—x]
e 2t , t>0

for all x,y,z € X. Then (X, G*,A;) is a PGM-space. In fact, it is easy to check that G* satisfies (PGM-1)-
(PGM-3). Next we show G*(x,y,z)(s +t) = A(G*(x,a,a)(s), G*(a,y,y)(t)) = G*(x,a,a)(s)G"(a,y,y)(t)
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for all x,y,z,a € Xand all s,t > 0. In fact, since

x—yl+ly—zl+[z—xl < x—al+la—yl+ly—zl+lz—a|+|a—x]

X

2(s+1t) 2(s+1t)
_2x—al la—yl+ly—z+lz—al
2(s+1t) 2(s+1t)
2lx —a a— — —a
_ |23 |+| y|+IthZI+Iz |,
we have
=yl ly —z 4z —x]
G*(x,y,z)(s+t) =e 2(s+1)
<2lx—al+|a—y|+ly—7~|+lz—a|>
>e \ 28 2t = G} 0,a(8)Gly . (1).

This shows that G* satisfies (PGM-4). Hence (X, G*,A;) is a Menger PGM-space.
Suppose that ¢(t) = % Let T(w,v) =u+v, Au=3uforall u,v € Xand T(X, X) C A(X), and let A be
continuous and commutative with T. For each x,y,p,q,h,1 € X and t > 0, since

(x+y)—(p+adl+Ip+q)—(h+[+I|(h+1)—(x+y)l
t
_2x+y)—(p+g)l+2(p+q) = (h+D[+2/(h+1) — (x+y)l

2t
o (x=pl+p—=hl+Mh—=x)+(y—ql+Ilq—=U+1—yl)
= 2t
2x —pl+2ly — ql+2[p —h| +2[q — U +2[h — x| + 2[1 — y
2t

3(Ix — p|+lp h|+[h— XI) 3(ly—ql+Ilqg—U+I[l—yl)
t

6 6 6lp—h| 6lq—1 6h— 6|l —
kbl Syl St Sa—, Ghox] 6 UUX

N =

t t t t t

(3lx — p|+lp h|+[h— XI) 3(ly—ql+Ilg—U+[l—yl)
t

E
|

2|13x — 3 2[3y—3 23p—3h| 23q—-3l] 2[Bh—-3 2[31-3 1
o m+yt dl, Ao —3h, 23q-3Y, 23h -3, 2 tygx

N

é -O-(X/U/P, CI; h/ l) X 6/
we get that
3 t
GTu), Tpa)Tn 1 (5)
7|(x+y)—( P+al+llp+4g)—(h+Ul+I[(h+1)— (x+y)
= e t

1
-Q(x,y,p,q9, 1) x A

B(x—pltlp-hlthox)  3ly-—gltla-Utl-y)  2Bx—3p
— |e t X e t X e t

WV
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2|3y — 3¢ 2|3p — 3h| 2|3q — 3l 2|3h — 3x| 2|31 -3yl 1
X e t X e t X e t X e t X e t ]

= |Gaxap,An(GAy Aq AL () GAxAp,Ap(H)GAyAqAq(T)

1
§
X GapAnan(t)GagaLAL(t)GAxAnAR(H)GAy ALALL)

Thus all the conditions of Theorem 3.11 are satisfied. Therefore, 0 is the unique common coupled fixed
point of T and A.
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