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Abstract

In this paper, we present some new fixed point and common fixed point (common coupled fixed point, common tripled
fixed point, and common quadruple fixed point) theorems of probabilistic contractions with a gauge function ϕ in generalized
probabilistic metric spaces proposed by Zhou et al. [C.-L. Zhou, S.-H. Wang, L. Ćirić, S. M. Alsulami, Fixed Point Theory Appl.,
2014 (2014), 15 pages]. Our results extend some existing results. Moreover, an example is given to illustrate our main results.
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1. Introduction

The notion of a coupled fixed point was introduced by Opoı̆cev [17], and then Guo and Lakshmikan-
tham [6] in 1987 proved some fixed point theorems for coupled fixed point under certain conditions in
Banach space. Later, Bhaskar and Lakshmikantham [5] proved the existence and uniqueness of a coupled
fixed point result under a weak contractivity condition in the context of partially ordered metric spaces.
In 2009, Lakshmikantham and Ćirić [13] extended the result by introducing the notion of the g-monotone
property. Based on Lakshmikantham and Ćirić’s work, many researchers have obtained more coupled
fixed point theorems in metric space; see [4, 10, 11, 14, 18]. Recently, the investigation of coupled fixed
point theorem has been extended from metric spaces to Menger probabilistic metric spaces. For example,
using the properties of the pseudo-metric and the triangular norm, Xiao et al. [22] gave some common
coupled fixed point theorems in Menger probabilistic metric spaces. Ćirić et al. [3] established some cou-
pled fixed point theorems for mixed monotone mappings in the partially ordered Menger probabilistic
metric spaces. In 2014, Wu [21] presented some coupled fixed point theorems for nonlinear contractive
operators in partially ordered Menger probabilistic metric spaces, which improved and generalized some
main results of Ćirić et al. [3].
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The concept of tripled fixed point was introduced by Berinde and Borcut [2]. In their manuscript,
some new tripled point theorems are obtained. In 2012, Karapınar and Luong [12] presented the notion
of quadruple fixed point and proved the related fixed point theorems.

Inspired by the works of [2], [12], and [22], in this paper, we try to give some new fixed point and com-
mon fixed point (common coupled fixed point, common tripled fixed point, and common quadruple fixed
point) theorems under probabilistic ϕ-contractive in generalized probabilistic metric spaces proposed by
Zhou et al. [23]. The obtained results generalize the corresponding ones from [22].

2. Preliminaries

Suppose that R = (−∞,+∞), R+ = [0,+∞), R = R∪ {−∞,+∞}, and let Z+ be the set of all positive
integers. A function G : R → [0, 1] is called a distribution function if it is nondecreasing and left-
continuous with F(−∞) = 0, F(+∞) = 1. The set of all probability distribution functions is denoted by
D∞. Suppose that D = {F ∈ D∞ : inft∈R F(t) = 0, supt∈R F(t) = 1}, D+∞ = {F ∈ D∞ : F(0) = 0}, and
D+ = D∩D+∞.

Definition 2.1 ([19]). A mapping ∆ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm if ∆ satisfies the following
conditions:

(1) ∆ is commutative and associative, i.e., ∆(a,b) = ∆(b,a) and ∆(a,∆(b, c)) = ∆(∆(a,b), c) for all
a,b, c ∈ [0, 1];

(2) ∆ is continuous;
(3) ∆(a, 1) = a for all a ∈ [0, 1];
(4) ∆(a,b) 6 ∆(c,d) whenever a 6 c and b 6 d for all a,b, c,d ∈ [0, 1].

From the definition of ∆, it follows that ∆(a,b) 6 min{a,b} for all a,b ∈ [0, 1].
Two typical examples of continuous t-norm are ∆M(a,b) = min{a,b} and ∆p(a,b) = ab for all

a,b ∈ [0, 1].

Definition 2.2 ([7]). A t-norm ∆ is said to be of H-type (Hadžić type) if a family of functions {∆n(t)}+∞
n=1

is equicontinuous at t = 1, that is, for any ε ∈ (0, 1), there exists δ ∈ (0, 1) such that

t > 1 − δ⇒ ∆n(t) > 1 − ε

for all n > 1, where ∆n : [0, 1]→ [0, 1] is defined as follows:

∆1(t) = ∆(t, t),∆2(t) = ∆(t,∆1(t)), · · · ,∆n(t) = ∆(t,∆n−1(t)), · · · .

Obviously, ∆n(t) 6 t for any n ∈ N and t ∈ [0, 1].

∆M is a trivial example of t-norm of Hadzić-type [8].

Definition 2.3. If ϕ : R+ → R+ is a function such that ϕ(0) = 0, then ϕ is called a gauge function. If
t ∈ R+, then ϕn(t) denotes the nth iteration of ϕ(t) and ϕ−1({0}) = {t ∈ R+ : ϕ(t) = 0}.

Definition 2.4 ([15]). A Menger probabilistic metric space (shortly, Menger PM-space) is a triple (X,F,∆),
where X is a nonempty set, ∆ is a continuous t-norm, and F is a mapping from X×X→ D+∞ (Fx,y denotes
the value of F at the pair (x,y)) satisfying the following conditions:

(PM-1) Fx,y(t) = 1 for all x,y ∈ X and t > 0 if and only if x = y;
(PM-2) Fx,y(t) = Fy,x(t) for all x,y ∈ X and t > 0;
(PM-3) Fx,z(t+ s) > ∆(Fx,y(t), Fy,z(s)) for all x,y, z ∈ X and every s > 0, t > 0.

Definition 2.5 ([16]). Let X be a nonempty set and G : X× X× X :→ R+ be a function satisfying the
following properties:
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(G1) G(x,y, z) = 0 if x = y = z,
(G2) 0 < G(x, x,y) for all x,y ∈ X with x 6= y,
(G3) G(x, x,y) 6 G(x,y, z) for all x,y, z ∈ X with y 6= z,
(G4) G(x,y, z) = G(x, z,y) = G(y, z, x) = · · · for all x,y, z ∈ X (symmetry in all three variables),
(G5) G(x,y, z) 6 G(x,a,a) +G(a,y, z) for all x,y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair
(X,G) is called a G-metric space.

In 2014, Zhou et al. [23] introduced the following probabilistic version of G-metric space, which is a
generalization of Menger PM-space.

Definition 2.6 ([23]). A Menger probabilistic G-metric space (briefly, PGM-space) is a triple (X,G∗,∆),
where X is a nonempty set, ∆ is a continuous t-norm, and G∗ is a mapping from X×X×X into D+∞ (G∗x,y,z
denotes the value of G∗ at the point (x,y, z)) satisfying the following conditions:

(PGM-1) G∗x,y,z(t) = 1 for all x,y, z ∈ X and t > 0 if and only if x = y = z;

(PGM-2) G∗x,x,y(t) > G
∗
x,y,z(t) for all x,y ∈ X with z 6= y and t > 0;

(PGM-3) G∗x,y,z(t) = G
∗
x,z,y(t) = G

∗
y,x,z(t) = · · · (symmetry in all three variables);

(PGM-4) G∗x,y,z(t+ s) > ∆(G
∗
x,a,a(s),G∗a,y,z(t)) for all x,y, z,a ∈ X and every s > 0, t > 0.

Definition 2.7 ([23]). Let (X,G∗,∆) be a PGM-space and x0 be any point in X. For any ε > 0 and δ with
0 < δ < 1, an (ε, δ)-neighborhood of x0 is the set of all points y in X for which G∗x0,y,y(ε) > 1 − δ and
G∗y,x0,x0

(ε) > 1 − δ. We write

Nx0(ε, δ) = {y ∈ X : G∗x0,y,y(ε) > 1 − δ,G∗y,x0,x0
(ε) > 1 − δ}.

Definition 2.8 ([23]).

(1) A sequence {xn} in a PGM-space (X,G∗,∆) is said to be convergent to a point x ∈ X (write xn → x)
if, for any ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ such that xn ∈ Nx(ε, δ) whenever
n > Mε,δ.

(2) A sequence {xn} in a PGM-space (X,G∗,∆) is called a Cauchy sequence if, for any ε > 0 and 0 < δ < 1,
there exists a positive integer Mε,δ such that G∗xn,xm,xl(ε) > 1 − δ whenever m,n, l > Mε,δ.

(3) A PGM-space (X,G∗,∆) is said to be complete if every Cauchy sequence in X converges to a point in
X.

Theorem 2.9 ([23]). Let (X,G∗,∆) be a PGM-space. Let {xn}, {yn}, and {zn} be sequences in X and x,y, z ∈ X.
If xn → x, yn → y, and zn → z as n→∞, then, for any t > 0,G∗xn,yn,zn(t)→ G∗x,y,z(t) as n→∞.

Lemma 2.10 ([9]). Suppose that F ∈ D+. For each n ∈ Z+, let Fn : R → [0, 1] be nondecreasing, and gn :
(0,+∞)→ (0,+∞) satisfy limn→∞ gn(t) = 0 for any t > 0. If

Fn(gn(t)) > F(t)

for any t > 0, then limn→∞ Fn(t) = 1 for any t > 0.

Definition 2.11. A point (x1, . . . , xn) ∈ Xn (n = 1, 2, 3, 4) is

(1) a coupled fixed point [5] if n = 2, T(x1, x2) = x1 and T(x2, x1) = x2;
(2) a tripled fixed point [2] if n = 3, T(x1, x2, x3) = x1, T(x2, x1, x3) = x2, and T(x3, x1, x2) = x3;
(3) a quadruple fixed point [12] if n = 4, T(x1, x2, x3, x4) = x1, T(x2, x1, x3, x4) = x2, T(x3, x1, x2, x4) = x3,

and T(x4, x1, x2, x3) = x4.
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Definition 2.12 ([20]). Let X be a non-empty set, T : X× X → X and A : X → X be two mappings. A is
said to be commutative with T , if AT(x,y) = T(Ax,Ay) for all x,y ∈ X. A point u ∈ X is called a common
fixed point of T and A, if u = Au = T(u,u).

Definition 2.13. Let X be a non-empty set, T : X× X× X× X → X and A : X → X be two mappings. A is
said to be commutative with T , if AT(x,y,p,q) = T(Ax,Ay,Ap,Aq) for all x,y,p,q ∈ X. A point u ∈ X is
called a common fixed point of T and A, if u = Au = T(u,u,u,u).

3. Common fixed point results for probabilistic ϕ-contractions in generalized probabilistic metric
spaces

Theorem 3.1. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X → X and
g : X→ X be two mappings such that

G∗Tx,Ty,Tz(ϕ(t)) > G
∗
Ax,Ay,Az(t)G

∗
Ay,Az,Az(t)G

∗
Az,Ay,Ay(t) (3.1)

for all x,y, z ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X
such that Au = Tu = u.

Proof. Let x0 ∈ X. By assumption T(X) ⊂ A(X), there exists x1 ∈ X such that Tx0 = Ax1. By the same
arguments, there exists x2 ∈ X such that Tx1 = Ax2. Continuing this process we can construct a sequence
{xn} in X such that

Axn+1 = Txn, n ∈N.

Due to (3.1), we have

G∗Axn,Axn+1,Axn+1
(ϕ(t)) = G∗Txn−1,Txn,Txn(ϕ(t)) > G

∗
Axn−1,Axn,Axn(t)G

∗
Axn,Axn,Axn(t)G

∗
Axn,Axn,Axn(t)

= G∗Axn−1,Axn,Axn(t),

by taking x = xn−1 and y = z = xn. Thus, for each natural number n, we have

G∗Axn,Axn+1,Axn+1
(ϕn(t)) > G∗Axn−1,Axn,Axn(ϕ

n−1(t)) > · · · > G∗Ax1,Ax2,Ax2
(ϕ(t)) > G∗Ax0,Ax1,Ax1

(t).

From Lemma 2.10, we have
lim
n→∞G∗Axn,Axn+1,Axn+1

(t) = 1 (3.2)

for all t > 0. For any k ∈ Z+ and t > 0, we shall show the following inequality by mathematical induction:

G∗Axn,Axn+k,Axn+k(t) > ∆
k(G∗Axn,Axn+1,Axn+1

(t−ϕ(t))). (3.3)

Let k = 1. Since

G∗Axn,Axn+1,Axn+1
(t) > G∗Axn,Axn+1,Axn+1

(t−ϕ(t))

= ∆
(
G∗Axn,Axn+1,Axn+1

(t−ϕ(t)), 1
)

> ∆
(
G∗Axn,Axn+1,Axn+1

(t−ϕ(t)),G∗Axn,Axn+1,Axn+1
(t−ϕ(t))

)
= ∆1

(
G∗Axn,Axn+1,Axn+1

(t−ϕ(t))
)

.

Thus (3.3) holds for k = 1.
Suppose now that (3.3) holds for some fixed k > 1. Then, by the monotony of G∗ and (3.1) we get

G∗Axn+1,Axn+k+1,Axn+k+1
(t) > G∗Axn+1,Axn+k+1,Axn+k+1

(ϕ(t))

= G∗Txn,Txn+k,Txn+k(ϕ(t))

> G∗Axn,Axn+k,Axn+k(t) > ∆
k(G∗Axn,Axn+1,Axn+1

(t−ϕ(t))).

(3.4)
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Therefore, from (PGM-4) and (3.4), we have

G∗Axn,Axn+k+1,Axn+k+1
(t) = G∗Axn,Axn+k+1,Axn+k+1

(t−ϕ(t) +ϕ(t))

> ∆(G∗Axn,Axn+1,Axn+1
(t−ϕ(t)),G∗Axn+1,Axn+k+1,Axn+k+1

(ϕ(t)))

> ∆(G∗Axn,Axn+1,Axn+1
(t−ϕ(t)),∆k(G∗Axn,Axn+1,Axn+1

(t−ϕ(t)))

= ∆k+1(G∗Axn,Axn+1,Axn+1
(t−ϕ(t))).

Thus we prove that if (3.3) holds for some fixed k > 1, then (3.3) holds for k + 1. Then by the
mathematical induction we conclude that (3.3) holds for all k > 1.

Next, we shall prove that {Axn} is a Cauchy sequence, that is,

lim
m,n,l→∞G∗Axn,Axm,Axl(t) = 1

for any t > 0. For this aim, firstly, we can show that limm,n,→∞G∗Axn,Axm,Axm(t) = 1 for any t > 0.
Suppose that ε ∈ (0, 1] is given. Since ∆ is a t-norm of H-type, there exists δ > 0, such that

∆n(s) > 1 − ε (3.5)

for all n > 1 and when 1 − δ < s 6 1.
On the other hand, from (3.2) we have

lim
n→∞G∗Axn,Axn+1,Axn+1

(t−ϕ(t)) = 1,

which implies that there exists n0 ∈N such that G∗Axn,Axn+1,Axn+1
(t−ϕ(t)) > 1− δ for all n > n0. Hence,

using (3.3) and (3.5), we obtain that G∗Axn,Axn+k,Axn+k(t) > 1 − ε for k ∈ Z+ and n > n0. Thus

lim
m,n→∞G∗Axn,Axm,Axm(t) = 1

for any t > 0. Moreover, from (PGM-4), we get that

G∗Axn,Axm,Axl(t) > ∆

(
G∗Axn,Axn,Axm

( t
2

)
,G∗Axn,Axn,Axl

( t
2

))
,

G∗Axn,Axn,Axm

( t
2

)
> ∆

(
G∗Axn,Axm,Axm

( t
4

)
,G∗Axn,Axm,Axm

( t
4

))
,

and

G∗Axn,Axn,Axl

( t
2

)
> ∆

(
G∗Axn,Axl,Axl

( t
4

)
,G∗Axn,Axl,Axl

( t
4

))
.

Therefore, by the continuity of ∆, we have

lim
m,n,l→∞G∗Axn,Axm,Axl(t) = 1

for any t > 0. This means that {Axn} is a Cauchy sequence. Since X is complete, then there exists u ∈ X
such that limn→∞{Axn} = u. Since A is continuous, we have limn→∞{AAxn} = Au. On the other hand,
we have AAxn+1 = ATxn = TAxn since A and T commute. Thus, from (3.1) we have

G∗Axn+1,Tu,Tu(ϕ(t)) = G
∗
TAxn,Tu,Tu(ϕ(t)) > G

∗
AAxn,Au,Au(t). (3.6)

The sequence {Axn+1} is convergent to u since {Axn+1} is a subsequence of {Axn}. Letting n → ∞ on
both sides of inequality (3.6), we get that

G∗Au,Tu,Tu(ϕ(t)) > G
∗
Au,Au,Au(t).
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Hence Au = Tu.
Next, we shall prove that u = Au = Tu. By (3.1) we obtain that

G∗Axn,Au,Au(ϕ(t)) = G
∗
Axn,Tu,Tu(ϕ(t)) = G

∗
Txn−1,Tu,Tu(ϕ(t)) > G

∗
Axn−1,Au,Au(t). (3.7)

Denote Bn(t) = G∗Axn,Au,Au(t). By (3.7), it is easy to find that

Bn(ϕ
n(t)) > Bn−1(ϕ

n−1(t)) > · · · > B1(ϕ(t)) > B0(t).

Since B0(t) ∈ D+ and limn→∞ϕn(t) = 0, by Lemma 2.10 we get

lim
n→∞Bn(t) = lim

n→∞G∗Axn,Au,Au(t) = 1,

which implies that u = Au. Then u = Au = Tu.
Now we show that u is the unique common fixed point of T and A. Suppose that, contrary to our

claim, there exists another common fixed point w ∈ X with w 6= u. From (3.1) we have

G∗w,u,u(ϕ(t)) = G
∗
Tw,Tu,Tu(ϕ(t)) > G

∗
Aw,Au,Au(t) = G

∗
w,u,u(t),

which is a contradiction since ϕ(t) < t. Hence, the common fixed point of T and A is unique.

Corollary 3.2. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X → X and
g : X→ X be two mappings such that

G∗Tx,Ty,Tz(ϕ(t)) > G
∗
Ax,Ay,Az(t)

for all x,y, z ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X
such that Au = Tu = u.

Proof. Due to

G∗Tx,Ty,Tz(ϕ(t)) > G
∗
Ax,Ay,Az(t) > G

∗
Ax,Ay,Az(t)G

∗
Ay,Az,Az(t)G

∗
Az,Ay,Ay(t),

we conclude from Theorem 3.1 that the mappings T and A have a unique common fixed point in X.

Remark 3.3. Corollary 3.2 is the probabilistic version of Theorem 3.1 in [1].

Taking y = z in Corollary 3.2, we get the following corollary.

Corollary 3.4. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X → X and
A : X→ X be two mappings such that

G∗Tx,Ty,Ty(ϕ(t)) > G
∗
Ax,Ay,Ay(t)

for all x,y ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X such
that Au = Tu = u.

Remark 3.5. Corollary 3.4 is the probabilistic version of Theorem 3.2 in [1].

In Theorem 3.1, if we take A = I (I is the identity mapping), then we have the following result.

Corollary 3.6. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X → X be a
mapping such that

G∗Tx,Ty,Tz(ϕ(t)) > G
∗
x,y,z(t)G

∗
y,z,z(t)G

∗
z,y,y(t)

for all x,y, z ∈ X and t > 0. Then T has a unique fixed point in X.
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In Theorem 3.1, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.

Corollary 3.7. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X → X and
A : X→ X be two mappings such that

G∗Tx,Ty,Tz(λt) > G
∗
Ax,Ay,Az(t)G

∗
Ay,Az,Az(t)G

∗
Az,Ay,Ay(t)

for all x,y ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X such
that Au = Tu = u.

Following similar argument in the proof of Theorem 3.1, we can deduce the next theorem. We omit
the details of the proof.

Theorem 3.8. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t, and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X→ X and
A : X→ X be two mappings such that

G∗Tx,Ty,Tz(t) > G
∗
Ax,Ay,Az(ϕ(t))G

∗
Ay,Az,Az(ϕ(t))G

∗
Az,Ay,Ay(ϕ(t))

for all x,y, z ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X
such that Au = Tu = u.

Taking y = z in Theorem 3.8, we get the following corollary.

Corollary 3.9. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X → X and
A : X→ X be two mappings such that

G∗Tx,Ty,Ty(t) > G
∗
Ax,Ay,Ay(ϕ(t))

for all x,y ∈ X, where T(X) ⊂ A(X), A is continuous and commutative with T . Then there is a unique u ∈ X such
that Au = Tu = u.

In Theorem 3.8, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.10. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X → X be
a mapping such that

G∗Tx,Ty,Tz(t) > G
∗
x,y,z(ϕ(t))G

∗
y,z,z(ϕ(t))G

∗
z,y,y(ϕ(t))

for all x,y, z ∈ X and t > 0. Then T has a unique fixed point in X.

Next, we present some new common coupled fixed point results under probabilistic ϕ-contractive
conditions in PGM-space.

Theorem 3.11. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X× X → X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(ϕ(t)) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Ax,Ap,Ap(t)G

∗
Ay,Aq,Aq(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Ax,Ar,Ar(t)G

∗
Ay,As,As(t)]

1
6

(3.8)

for all x,y,p,q, r, s ∈ X, where T(X× X) ⊂ A(X), A is continuous and commutative with T . Then there exists a
unique u ∈ X such that u = Au = T(u,u).
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Proof. Let x0,y0 be two arbitrary points of X. Since T(X× X) ⊂ A(X), we can choose x1,y1 ∈ X such that
Ax1 = T(x0,y0) and Ay1 = T(y0, x0). Again from T(X× X) ⊂ A(X), we can choose x2,y2 ∈ X such that
Ax2 = T(x1,y1) and Ay2 = T(y1, x1). Continuing this process we can construct sequences {xn} and {yn} in
X such that

Axn+1 = T(xn,yn) and Ayn+1 = T(yn, xn)

for all n ∈N. From (3.8), we get

G∗Axn,Axn+1,Axn+1
(ϕ(t)) = G∗T(xn−1,yn−1),T(xn,yn),T(xn,yn)(ϕ(t))

> [G∗Axn−1,Axn,Axn(t)G
∗
Ayn−1,Ayn,Ayn(t)]

1/2
(3.9)

and
G∗Ayn,Ayn+1,Ayn+1

(ϕ(t)) = G∗T(yn−1,xn−1),T(yn,xn),T(yn,xn)(ϕ(t))

> [G∗Ayn−1,Ayn,Ayn(t)G
∗
Axn−1,Axn,Axn(t)]

1/2
(3.10)

for any t > 0.
To simplify the writing, denote Pn(t) = [G∗Axn−1,Axn,Axn(t)G

∗
Ayn−1,Ayn,Ayn(t)]

1/2. Using (3.9) and
(3.10) we obtain that Pn+1(ϕ(t)) > Pn(t). Hence, for n > 1 it follows that

G∗Axn,Axn+1,Axn+1
(ϕn(t)) > Pn(ϕ

n−1(t)) > · · · > P1(t)

and
G∗Ayn,Ayn+1,Ayn+1

(ϕn(t)) > Pn(ϕ
n−1(t)) > · · · > P1(t).

Since P1(t) = [G∗Ax0,Ax1,Ax1
(t)G∗Ay0,Ay1,Ay1

(t)]1/2 ∈ D+ and limn→∞ϕn(t) = 0 for any t > 0, by Lemma
2.10 we get

lim
n→∞G∗Axn,Axn+1,Axn+1

(t) = 1 (3.11)

and
lim
n→∞G∗Ayn,Ayn+1,Ayn+1

(t) = 1. (3.12)

Thus, by (3.11) and (3.12), we obtain that

lim
n→∞Pn(t) = 1

for all t > 0.
Now we prove by induction that

G∗Axn,Axn+k,Axn+k(t) > ∆
k(Pn(t−ϕ(t))) (3.13)

and
G∗Ayn,Ayn+k,Ayn+k(t) > ∆

k(Pn(t−ϕ(t))) (3.14)

for any k ∈ Z+.
Indeed, if we take k = 1, then from the monotonicity of G∗ and (3.8), we obtain that

G∗Axn,Axn+1,Axn+1
(t) > G∗Axn,Axn+1,Axn+1

(ϕ(t))

= G∗T(xn−1,yn−1),T(xn,yn),T(xn,yn)(ϕ(t))

> [G∗Axn−1,Axn,Axn(t)G
∗
Ayn−1,Ayn,Ayn(t)]

1
2

> [G∗Axn−1,Axn,Axn(t−ϕ(t))G
∗
Ayn−1,Ayn,Ayn(t−ϕ(t))]

1
2

= Pn(t−ϕ(t))

= ∆
(
Pn(t−ϕ(t)), 1

)
> ∆

(
Pn(t−ϕ(t)),Pn(t−ϕ(t))

)
= ∆1

(
Pn(t−ϕ(t))

)
.
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Similarly, we have
G∗Ayn,Ayn+1,Ayn+1

(t) > ∆1
(
Pn(t−ϕ(t))

)
.

Thus (3.13) and (3.14) hold for k = 1.
If we assume that (3.13) is true for some fixed k, then since ϕ(t) < t, by (3.9) we have

G∗Axn,Axn+1,Axn+1
(t) > G∗Axn,Axn+1,Axn+1

(ϕ(t)) > Pn(t) (3.15)

for all t > 0. Moreover, from (3.8) and (3.13), we get

G∗Axn+1,Axn+k+1,Axn+k+1
(ϕ(t)) > [G∗Axn,Axn+k,Axn+k(t)G

∗
Ayn,Ayn+k,Ayn+k(t)]

1/2

> ∆k(Pn(t−ϕ(t))).
(3.16)

Hence, by (PGM-4), (3.15), (3.16), and the monotonicity of ∆, we obtain that

G∗Axn,Axn+k+1,Axn+k+1
(t) = G∗Axn,Axn+k+1,Axn+k+1

(t−ϕ(t) +ϕ(t))

> ∆(G∗Axn,Axn+1,Axn+1
(t−ϕ(t)),G∗Axn+1,Axn+k+1,Axn+k+1

(ϕ(t)))

> ∆(Pn(t−ϕ(t)),∆k(Pn(t−ϕ(t)))) = ∆k+1(Pn(t−ϕ(t))).

Similarly, we have G∗Ayn,Ayn+k+1,Ayn+k+1
(t) > ∆k+1(Pn(t − ϕ(t))). Therefore, by induction, (3.13) and

(3.14) hold for all k ∈ Z+.
Next, we shall prove that {Axn} and {Ayn} are all Cauchy sequences, that is,

lim
m,n,l→∞G∗Axn,Axm,Axl(t) = 1 and lim

m,n,l→∞G∗Ayn,Aym,Ayl(t) = 1

for any t > 0.
To this end, firstly, we can show that

lim
m,n→∞G∗Axn,Axm,Axm(t) = 1 and lim

m,n→∞G∗Ayn,Aym,Aym(t) = 1

for any t > 0.
Suppose that ε ∈ (0, 1] is given. Since ∆ is a t-norm of H-type, there exists δ > 0, such that

∆n(s) > 1 − ε (3.17)

for all n > 1 and when 1 − δ < s 6 1.
On the other hand, by (3.11) and (3.12), we have

lim
n→∞G∗Axn,Axn+1,Axn+1

(t−ϕ(t)) = 1 and lim
n→∞G∗Ayn,Ayn+1,Ayn+1

(t−ϕ(t)) = 1.

That is
lim
n→∞Pn(t−ϕ(t)) = 1,

which implies that there exists n0 ∈ N such that Pn(t−ϕ(t)) > 1 − δ for all n > n0. Hence, from (3.13),
(3.14), and (3.17), we get

G∗Axn,Axn+k,Axn+k(t) > 1 − ε and G∗Ayn,Ayn+k,Ayn+k(t) > 1 − ε

for k ∈ Z+ and n > n0. These show that

lim
m,n→∞G∗Axn,Axm,Axm(t) = 1 and lim

m,n→∞G∗Ayn,Aym,Aym(t) = 1
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for any t > 0. From (PGM-4), it follows that

G∗Axn,Axm,Axl(t) > ∆

(
G∗Axn,Axn,Axm

( t
3

)
,G∗Axn,Axn,Axl

(2t
3

))
;

G∗Axn,Axn,Axm

( t
3

)
> ∆

(
G∗Axn,Axm,Axm

( t
6

)
,G∗Axn,Axm,Axm

( t
6

))
;

G∗Axn,Axn,Axl

(2t
3

)
> ∆

(
G∗Axn,Axl,Axl

( t
3

)
,G∗Axn,Axl,Axl

( t
3

))
.

Therefore, by the continuity of ∆, we have

lim
m,n,l→∞G∗Axn,Axm,Axl(t) = 1 and lim

m,n,l→∞G∗Ayn,Aym,Ayl(t) = 1

for any t > 0. These imply that {Axn} and {Ayn} are all Cauchy sequences. Since X is complete, there
exist u, v ∈ X such that limn→∞Axn = u and limn→∞Ayn = v. By the continuity of A, we get

lim
n→∞AAxn = Au and lim

n→∞AAyn = Av.

Since A and T are commutative mappings, we obtain

AAxn+1 = AT(xn,yn) = T(Axn,Ayn).

Then, from (3.8) and ϕ(t) < t, we have

G∗AAxn+1,T(u,v),T(u,v)(t) > G
∗
AAxn+1,T(u,v),T(u,v)(ϕ(t))

= G∗T(Axn,Ayn),T(u,v),T(u,v)(ϕ(t))

> [G∗AAxn,Au,Au(t)G
∗
AAyn,Av,Av(t)]

1/2.

(3.18)

Taking the limit as n tends to infinity in (3.18), we obtain limn→∞AAxn = T(u, v). Hence, T(u, v) = Au.
In a similar way, we can prove that T(v,u) = Av.

Next, we shall show that Au = v and Av = u. Indeed, from (3.8) we obtain that

G∗Au,Ayn,Ayn(ϕ(t)) = G
∗
T(u,v),T(yn−1,xn−1),T(yn−1,xn−1)

(ϕ(t))

> [G∗Au,Ayn−1,Ayn−1
(t)G∗Av,Axn−1,Axn−1

(t)]1/2.
(3.19)

Similarly, we have

G∗Av,Axn,Axn(ϕ(t)) > [G∗Av,Axn−1,Axn−1
(t)G∗Au,Ayn−1,Ayn−1

(t)]1/2. (3.20)

Denote Qn(t) = G∗Au,Ayn,Ayn(t)G
∗
Av,Axn,Axn(t). From (3.19) and (3.20), we get

Qn(ϕ
n(t)) > Qn−1(ϕ

n−1(t)) > · · · > Q0(t),

G∗Au,Ayn,Ayn(ϕ
n(t)) > [Q0(t)]

1/2,

and
G∗Av,Axn,Axn(ϕ

n(t)) > [Q0(t)]
1/2.

Since [Q0(t)]
1/2 ∈ D+ and limn→∞ϕn(t) = 0, by Lemma 2.10 we obtain that

lim
n→∞Ayn = Au and lim

n→∞Axn = Av.
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These show that v = Au and u = Av. Hence, v = T(u, v) and u = T(v,u). Finally, we prove that u = v. By
(3.8), we have

G∗u,v,u(ϕ(t)) = G
∗
T(v,u),T(u,v),T(v,u)(ϕ(t)) > [G∗Av,Au,Av(t)G

∗
Au,Av,Au(t)]

1/2

= [G∗u,v,u(t)G
∗
v,u,v(t)]

1/2
(3.21)

and

G∗v,u,v(ϕ(t)) = G
∗
T(u,v),T(v,u),T(u,v)(ϕ(t)) > [G∗Au,Av,Au(t)G

∗
Av,Au,Av(t)]

1/2

= [G∗v,u,v(t)G
∗
u,v,u(t)]

1/2.
(3.22)

Suppose that R(t) = [G∗v,u,v(t)G
∗
u,v,u(t)]

1/2. From (3.21) and (3.22), we have R(ϕn(t)) > R(t). Using
Lemma 2.10, we have R(t) = 1, i.e., u = v. The uniqueness of u follows from (3.8). This completes the
proof.

Remark 3.12. Theorem 3.11 generalizes and extends the corresponding result in Xiao et al. [22].

In Theorem 3.11, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.13. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X→ X be
a mapping satisfying

G∗T(x,y),T(p,q),T(r,s)(ϕ(t)) > [G∗x,p,r(t)G
∗
y,q,s(t)G

∗
x,p,p(t)G

∗
y,q,q(t)

×G∗p,r,r(t)G
∗
q,s,s(t)G

∗
x,r,r(t)G

∗
y,s,s(t)]

1
6

for all x,y,p,q, r, s ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.11, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.

Corollary 3.14. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X× X → X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(λt) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Ax,Ap,Ap(t)G

∗
Ay,Aq,Aq(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Ax,Ar,Ar(t)G

∗
Ay,As,As(t)]

1
6

for all x,y,p,q, r, s ∈ X, where λ ∈ (0, 1), T(X×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T(u,u).

From the proof of Theorem 3.11, we can similarly prove the following result.

Theorem 3.15. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(t) > [G∗Ax,Ap,Ar(ϕ(t))G
∗
Ay,Aq,As(ϕ(t))

×G∗Ax,Ap,Ap(ϕ(t))G
∗
Ay,Aq,Aq(ϕ(t))G

∗
Ap,Ar,Ar(ϕ(t))

×G∗Aq,As,As(ϕ(t))G
∗
Ax,Ar,Ar(ϕ(t))G

∗
Ay,As,As(ϕ(t))]

1
6

for all x,y,p,q, r, s ∈ X, where T(X× X) ⊂ A(X), A is continuous and commutative with T . Then there exists a
unique u ∈ X such that u = Au = T(u,u).

Letting A = I (I is the identity mapping) in Theorem 3.15, we can obtain the following corollary.



J. Tian, X. Hu, J. Nonlinear Sci. Appl., 10 (2017), 3939–3962 3950

Corollary 3.16. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X→ X

be a mapping satisfying

G∗T(x,y),T(p,q),T(r,s)(t) > [G∗x,p,r(ϕ(t))G
∗
y,q,s(ϕ(t))G

∗
x,p,p(ϕ(t))G

∗
y,q,q(ϕ(t))

×G∗p,r,r(ϕ(t))G
∗
q,s,s(ϕ(t))G

∗
x,r,r(ϕ(t))G

∗
y,s,s(ϕ(t))]

1
6

for all x,y,p,q, r, s ∈ X and t > 0. Then T has a unique fixed point in X.

Theorem 3.17. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ : R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(t) > min{G∗Ax,Ap,Ar(ϕ(t)),G
∗
Ay,Aq,As(ϕ(t)),

G∗Ax,Ap,Ap(ϕ(t)),G
∗
Ay,Aq,Aq(ϕ(t)),G

∗
Ap,Ar,Ar(ϕ(t)),

G∗Aq,As,As(ϕ(t)),G
∗
Ax,Ar,Ar(ϕ(t)),G

∗
Ay,As,As(ϕ(t))}

(3.23)

for all x,y,p,q, r, s ∈ X, where T(X× X) ⊂ A(X), A is continuous and commutative with T. Then there exists a
unique u ∈ X such that u = Au = T(u,u).

Proof. Following the lines of the proof of Theorem 3.11, we can construct two sequences {xn}
∞
n=1 and

{yn}
∞
n=1 in X such that Axn+1 = T(xn,yn) and Ayn+1 = T(yn, xn). By (3.23) we get (for t > 0)

G∗Axn,Axn+1,Axn+1
(t) = G∗T(xn−1,yn−1),T(xn,yn),T(xn,yn)(t)

> min{G∗Axn−1,Axn,Axn(ϕ(t)),G
∗
Ayn−1,Ayn,Ayn(ϕ(t))}

(3.24)

and
G∗Ayn,Ayn+1,Ayn+1

(t) = G∗T(yn−1,xn−1),T(yn,xn),T(yn,xn)(t)

> min{G∗Ayn−1,Ayn,Ayn(ϕ(t)),G
∗
Axn−1,Axn,Axn(ϕ(t))}.

(3.25)

Denote Dn(t) = min{G∗Axn−1,Axn,Axn(t),G
∗
Ayn−1,Ayn,Ayn(t)}. By (3.24) and (3.25), it is easy to find that

Dn+1(t) > Dn(ϕ(t)). This implies that

Dn+1(t) > Dn(ϕ(t)) > Dn−1(ϕ
2(t)) > · · · > D1(ϕ

n(t)). (3.26)

Since limt→+∞D1(t) = limt→+∞ min{G∗Ax0,Ax1,Ax1
(t),G∗Ay0,Ay1,Ay1

(t)} = 1 and limn→∞ϕn(t) = +∞
for each t > 0, we have limn→∞D1(ϕ

n(t)) = 1.
On the other hand, by using (3.24)-(3.26), we get

G∗Axn,Axn+1,Axn+1
(t) > D1(ϕ

n(t)) and G∗Ayn,Ayn+1,Ayn+1
(t) > D1(ϕ

n(t)).

Hence, we have

lim
n→∞G∗Axn,Axn+1,Axn+1

(t) = 1 and lim
n→∞G∗Ayn,Ayn+1,Ayn+1

(t) = 1.

These imply that
lim
n→∞Dn(t) = 1 for all t > 0.

In the next step we show that, for any k ∈ Z+,

G∗Axn,Axn+k,Axn+k(ϕ(t)) > ∆
k(Dn(ϕ(t) − t)) (3.27)

and
G∗Ayn,Ayn+k,Ayn+k(ϕ(t)) > ∆

k(Dn(ϕ(t) − t)). (3.28)
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As k = 1,

G∗Axn,Axn+1,Axn+1
(ϕ(t)) > G∗Axn,Axn+1,Axn+1

(t)

= G∗T(xn−1,yn−1),T(xn,yn),T(xn,yn)(t)

> min{G∗Axn−1,Axn,Axn(ϕ(t)),G
∗
Ayn−1,Ayn,Ayn(ϕ(t))}

> min{G∗Axn−1,Axn,Axn(ϕ(t) − t),G
∗
Ayn−1,Ayn,Ayn(ϕ(t) − t)}

= Dn(ϕ(t) − t)

= ∆
(
Dn(ϕ(t) − t), 1

)
> ∆

(
Dn(ϕ(t) − t),Dn(ϕ(t) − t)

)
= ∆1

(
Dn(ϕ(t) − t)

)
.

Similarly, we have
G∗Ayn,Ayn+1,Ayn+1

(ϕ(t)) > ∆1
(
Dn(ϕ(t) − t)

)
.

Thus (3.27) and (3.28) hold for k = 1.
Assume that (3.27) and (3.28) hold for some fixed k(k > 1). Since ϕ(t) > t, by (3.24) we have

G∗Axn,Axn+1,Axn+1
(t) > Dn(ϕ(t)) > Dn(t) (3.29)

for all t > 0. By (3.23) and (3.27) we have

G∗Axn+1,Axn+k+1 ,Axn+k+1
(t) = G∗T(xn,yn),T(xn+k,yn+k),T(xn+k,yn+k)(t)

> min{G∗Axn,Axn+k,Axn+k(ϕ(t)),G
∗
Ayn,Ayn+k,Ayn+k(ϕ(t))}

> ∆k(Dn(ϕ(t) − t)).

(3.30)

Thus, by (PGM-4), (3.29), (3.30), and the monotonicity of ∆, we have

G∗Axn,Axn+k+1,Axn+k+1
(ϕ(t)) = G∗Axn,Axn+k+1,Axn+k+1

(ϕ(t) − t+ t)

> ∆(G∗Axn,Axn+1,Axn+1
(ϕ(t) − t),G∗Axn+1,Axn+k+1,Axn+k+1

(t))

> ∆(Dn(ϕ(t) − t),∆k(Dn(ϕ(t) − t)))

= ∆k+1(Dn(ϕ(t) − t)).

Similarly, we have G∗Ayn,Ayn+k+1,Ayn+k+1
(ϕ(t)) > ∆k+1(Dn(ϕ(t) − t)). Hence, by induction, (3.27) and

(3.28) hold for all k ∈ Z+.
By the same method as in Theorem 3.11, we can obtain that {Axn} and {Ayn} are all Cauchy sequences.

Since X is complete, there exist u, v ∈ X such that limn→∞Axn = u and limn→∞Ayn = v. From the
continuity of A it follows that

lim
n→∞AAxn = Au and lim

n→∞AAyn = Av.

From (3.23) and the commutativity of A with T it follows that

G∗AAxn+1,T(u,v),T(u,v)(t) = G
∗
AT(xn,yn),T(u,v),T(u,v)(t)

= G∗T(Axn,Ayn),T(u,v),T(u,v)(t)

> min{G∗AAxn,Au,Au(ϕ(t)),G
∗
AAyn,Av,Av(ϕ(t))}.

(3.31)

Now on making n → ∞ in (3.31), we have limn→∞AAxn = T(u, v). Hence, Au = T(u, v). In the same
manner we can prove that Av = T(v,u).
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Next, we shall show that Au = v and Av = u. In fact, by (3.23) we have

G∗Au,Ayn,Ayn(t) = G
∗
T(u,v),T(yn−1,xn−1),T(yn−1,xn−1)

(t)

> min{G∗Au,Ayn−1,Ayn−1
(ϕ(t)),G∗Av,Axn−1,Axn−1

(ϕ(t))}
(3.32)

and

G∗Au,Axn,Axn(t) = G
∗
T(u,v),T(xn−1,yn−1),T(xn−1,yn−1)

(t)

> min{G∗Au,Axn−1,Axn−1
(ϕ(t)),G∗Av,Ayn−1,Ayn−1

(ϕ(t))}.
(3.33)

Denote En(t) = min{G∗Au,Ayn,Ayn(t),G
∗
Av,Axn,Axn(t)}. From (3.32) and (3.33), it is easy to find that

En(t) > En−1(ϕ(t)) > · · · > E0(ϕ
n(t)).

Since limn→∞ϕn(t) = +∞, we have

E0(ϕ
n(t)) = min{G∗Au,Ay0,Ay0

(ϕn(t)),G∗Av,Ax0,Ax0
(ϕn(t))}→ 1

as n→∞. This shows that En(t)→ 1 as n→∞, and so

lim
n→∞Ayn = Au and lim

n→∞Axn = Av.

Hence, Au = v and Av = u.
Finally, we shall prove that u = v. From (3.23) we get

G∗u,v,v(t) = G
∗
Av,Au,Au(t) = G

∗
T(v,u),T(u,v),T(u,v)(t)

> min{G∗Av,Au,Au(ϕ(t)),G
∗
Au,Av,Av(ϕ(t))}

= min{G∗u,v,v(ϕ(t)),G
∗
v,u,u(ϕ(t))}

(3.34)

and
G∗v,u,u(t) = G

∗
Au,Av,Av(t) = G

∗
T(u,v),T(v,u),T(v,u)(t)

> min{G∗Au,Av,Av(ϕ(t)),G
∗
Av,Au,Au(ϕ(t))}

= min{G∗v,u,u(ϕ(t)),G
∗
u,v,v(ϕ(t))}.

(3.35)

Suppose that F(t) = min{G∗u,v,v(t),G∗v,u,u(t)}. From (3.34) and (3.35), we obtain that F(t) > F(ϕn(t)).
Letting n → ∞, we have F(t) = 1, i.e., u = v. Since the uniqueness of u follows from (3.23), the proof of
Theorem 3.17 is completed.

Remark 3.18. Theorem 3.17 generalizes and extends the corresponding result in Xiao et al. [22].

Letting A = I (I is the identity mapping) in Theorem 3.17, we can obtain the following corollary.

Corollary 3.19. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ : R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X→ X

be a mapping such that

G∗T(x,y),T(p,q),T(r,s)(t) > min{G∗x,p,r(ϕ(t)),G
∗
y,q,s(ϕ(t)),G

∗
x,p,p(ϕ(t)),G

∗
y,q,q(ϕ(t)),

G∗p,r,r(ϕ(t)),G
∗
q,s,s(ϕ(t)),G

∗
x,r,r(ϕ(t)),G

∗
y,s,s(ϕ(t))}

for all x,y,p,q, r, s ∈ X and t > 0. Then T has a unique fixed point in X.

By the same method as in Theorem 3.17, we can obtain the following theorem.
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Theorem 3.20. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X× X → X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(ϕ(t)) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Ax,Ap,Ap(t),G

∗
Ay,Aq,Aq(t),

G∗Ap,Ar,Ar(t),G
∗
Aq,As,As(t),G

∗
Ax,Ar,Ar(t),G

∗
Ay,As,As(t)}

for all x,y,p,q, r, s ∈ X, where T(X× X) ⊂ A(X), A is continuous and commutative with T. Then there exists a
unique u ∈ X such that u = Au = T(u,u).

In Theorem 3.20, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.21. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be
a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X→ X be
a mapping satisfying

G∗T(x,y),T(p,q),T(r,s)(ϕ(t)) > min{G∗x,p,r(t),G
∗
y,q,s(t),G

∗
x,p,p(t),G

∗
y,q,q(t),

G∗p,r,r(t),G
∗
q,s,s(t),G

∗
x,r,r(t),G

∗
y,s,s(t)}

for all x,y,p,q, r, s ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.20, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.

Corollary 3.22. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X× X → X

and A : X→ X be two mappings such that

G∗T(x,y),T(p,q),T(r,s)(λt) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Ax,Ap,Ap(t),G

∗
Ay,Aq,Aq(t),

G∗Ap,Ar,Ar(t),G
∗
Aq,As,As(t),G

∗
Ax,Ar,Ar(t),G

∗
Ay,As,As(t)}

for all x,y,p,q, r, s ∈ X, where λ ∈ (0, 1), T(X×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T(u,u).

Now, we give the common tripled fixed point results under probabilistic ϕ-contractive conditions in
PGM-space.

Theorem 3.23. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(ϕ(t)) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Aζ,Aη,Aθ(t)

×G∗Ax,Ap,Ap(t)G
∗
Ay,Aq,Aq(t)G

∗
Aζ,Aη,Aη(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Aη,Aθ,Aθ(t)

×G∗Ax,Ar,Ar(t)G
∗
Ay,As,As(t)G

∗
Aζ,Aθ,Aθ(t)]

1
9

(3.36)

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where T(X× X× X) ⊂ A(X), A is continuous and commutative with T . Then
there exists a unique u ∈ X such that u = Au = T(u,u,u).

Proof. Let x0,y0, ζ0 be any given points of X. Since T(X × X × X) ⊂ A(X), we can choose x1,y1, ζ1 ∈
X such that Ax1 = T(x0,y0, ζ0), Ay1 = T(y0, x0, ζ0), and Aζ1 = T(ζ0, x0,y0). Again from T(X × X ×
X) ⊂ A(X), we can choose x2,y2, ζ2 ∈ X such that Ax2 = T(x1,y1, ζ1), Ay2 = T(y1, x1, ζ1), and Aζ2 =
T(ζ1, x1,y1). Continuing this process, we can construct sequences {xn}, {yn}, and {ζn} in X such that
Axn+1 = T(xn,yn, ζn), Ayn+1 = T(yn, xn, ζn), and Aζn+1 = T(ζn, xn,yn) for all n ∈N.
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By the same methods as in Theorem 3.11, we can prove that {Axn}, {Ayn}, and {Aζn} are all Cauchy
sequences. Since X is complete, there exist u, v,w ∈ X such that limn→∞Axn = u, limn→∞Ayn = v, and
limn→∞Aζn = w. From the continuity of A it follows that

lim
n→∞AAxn = Au, lim

n→∞AAyn = Av, and lim
n→∞AAζn = Aw.

From (3.36) and the commutativity of A with T, we obtain that

G∗AAxn+1,T(u,v,w),T(u,v,w)(ϕ(t)) = G
∗
AT(xn,yn,ζn),T(u,v,w),T(u,v,w)(ϕ(t))

= G∗T(Axn,Ayn,Aζn),T(u,v,w),T(u,v,w)(ϕ(t))

> [G∗AAxn,Au,Au(t)G
∗
AAyn,Av,Av(t)G

∗
AAζn,Aw,Aw(t)]

1
3 .

(3.37)

Now on making n→∞ in (3.37), we get limn→∞AAxn = T(u, v,w). Hence, Au = T(u, v,w). In the same
manner we can prove that Av = T(v,u,w) and Aw = T(w,u, v).

Next, we shall show that Au = v, Av = u, and Aw = w. In fact, by (3.36) we have

G∗Au,Ayn,Ayn(ϕ(t)) = G
∗
T(u,v,w),T(yn−1,xn−1,ζn−1),T(yn−1,xn−1,ζn−1)

(ϕ(t))

> [G∗Au,Ayn−1,Ayn−1
(t)G∗Av,Axn−1,Axn−1

(t)G∗Aw,Aζn−1,Aζn−1
(t)]

1
3 ,

(3.38)

G∗Av,Axn,Axn(ϕ(t)) = G
∗
T(v,u,w),T(xn−1,yn−1,ζn−1),T(xn−1,yn−1,ζn−1)

(ϕ(t))

> [G∗Av,Axn−1,Axn−1
(t)G∗Au,Ayn−1,Ayn−1

(t)G∗Aw,Aζn−1,Aζn−1
(t)]

1
3 ,

(3.39)

and

G∗Aw,Aζn,Aζn(ϕ(t)) = G
∗
T(w,u,v),T(ζn−1,xn−1,yn−1),T(ζn−1,xn−1,yn−1)

(ϕ(t))

> [G∗Aw,Aζn−1,Aζn−1
(t)G∗Au,Axn−1,Axn−1

(t)G∗Av,Ayn−1,Ayn−1
(t)]

1
3 .

(3.40)

Denote Hn(t) = G∗Au,Ayn,Ayn(t)G
∗
Av,Axn,Axn(t)G

∗
Aw,Aζn,Aζn(t). From (3.38), (3.39), and (3.40), we find

that
Hn(ϕ

n(t)) > Hn−1(ϕ
n−1(t)) > · · · > H0(t).

Since limn→∞ϕn(t) = 0, from Lemma 2.10, we have

Hn(t) = G
∗
Au,Ayn,Ayn(t)G

∗
Av,Axn,Axn(t)G

∗
Aw,Aζn,Aζn(t)→ 1

as n→∞. This shows that

lim
n→∞Ayn = Au, lim

n→∞Axn = Av, lim
n→∞Aζn = Aw.

Hence, Au = v, Av = u, Aw = w.
Finally, we shall prove that u = v and u = w. From (3.36) we get

G∗u,v,v(ϕ(t)) = G
∗
Av,Au,Au(ϕ(t)) = G

∗
T(v,u,w),T(u,v,w),T(u,v,w)(ϕ(t))

> [G∗Av,Au,Au(t)G
∗
Au,Av,Av(t)G

∗
Aw,Aw,Aw(t)]

1
3 = [G∗u,v,v(t)G

∗
v,u,u(t)]

1
3 ,

(3.41)

and
G∗v,u,u(ϕ(t)) = G

∗
Au,Av,Av(ϕ(t)) = G

∗
T(u,v,w),T(v,u,w),T(v,u,w)(ϕ(t))

> [G∗Au,Av,Av(t)G
∗
Av,Au,Au(t)G

∗
Aw,Aw,Aw(t)]

1
3 = [G∗v,u,u(t)G

∗
u,v,v(t)]

1
3 .

(3.42)

Suppose that I(t) = G∗u,v,v(t)G
∗
v,u,u(t). From (3.41) and (3.42), we obtain that I(ϕ(t)) > [I(t)]

2
3 . Hence, we

have I(ϕn(t)) > [I(t)](
2
3 )
n

. From Lemma 2.10, we get I(t) = 1 for all t > 0, i.e., u = v. Similarly, we can
prove that u = w. Hence, there exists u ∈ X, such that u = Au = T(u,u,u). Since the uniqueness of u
follows from (3.36), the proof of Theorem 3.23 is completed.
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In Theorem 3.23, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.24. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X→ X

be a mapping satisfying

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(ϕ(t)) > [G∗x,p,r(t)G
∗
y,q,s(t)G

∗
ζ,η,θ(t)G

∗
x,p,p(t)G

∗
y,q,q(t)

×G∗ζ,η,η(t)G
∗
p,r,r(t)G

∗
q,s,s(t)G

∗
η,θ,θ(t)G

∗
x,r,r(t)G

∗
y,s,s(t)G

∗
ζ,θ,θ(t)]

1
9

for all x,y,p,q, r, s, ζ,η, θ ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.23, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.

Corollary 3.25. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X×X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(λt) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Aζ,Aη,Aθ(t)

×G∗Ax,Ap,Ap(t)G
∗
Ay,Aq,Aq(t)G

∗
Aζ,Aη,Aη(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Aη,Aθ,Aθ(t)

×G∗Ax,Ar,Ar(t)G
∗
Ay,As,As(t)G

∗
Aζ,Aθ,Aθ(t)]

1
9

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where λ ∈ (0, 1), T(X× X× X) ⊂ A(X), A is continuous and commutative with
T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u).

In a similar way, we can prove the following result.

Theorem 3.26. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X→ X and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(t) > [G∗Ax,Ap,Ar(ϕ(t))G
∗
Ay,Aq,As(ϕ(t))G

∗
Aζ,Aη,Aθ(ϕ(t))

×G∗Ax,Ap,Ap(ϕ(t))G
∗
Ay,Aq,Aq(ϕ(t))G

∗
Aζ,Aη,Aη(ϕ(t))

×G∗Ap,Ar,Ar(ϕ(t))G
∗
Aq,As,As(ϕ(t))G

∗
Aη,Aθ,Aθ(ϕ(t))

×G∗Ax,Ar,Ar(ϕ(t))G
∗
Ay,As,As(ϕ(t))G

∗
Aζ,Aθ,Aθ(ϕ(t))]

1
9

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where T(X× X× X) ⊂ A(X), A is continuous and commutative with T . Then
there exists a unique u ∈ X such that u = Au = T(u,u,u).

Letting A = I (I is the identity mapping) in Theorem 3.26, we can obtain the following corollary.

Corollary 3.27. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X→ X be a mapping satisfying

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(t) > [G∗x,p,r(ϕ(t))G
∗
y,q,s(ϕ(t))G

∗
ζ,η,θ(ϕ(t))

×G∗x,p,p(ϕ(t))G
∗
y,q,q(ϕ(t))G

∗
ζ,η,η(ϕ(t))

×G∗p,r,r(ϕ(t))G
∗
q,s,s(ϕ(t))G

∗
η,θ,θ(ϕ(t))

×G∗x,r,r(ϕ(t))G
∗
y,s,s(ϕ(t))G

∗
ζ,θ,θ(ϕ(t))]

1
9

for all x,y,p,q, r, s, ζ,η, θ ∈ X and t > 0. Then T has a unique fixed point in X.
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From the proof of Theorem 3.23, we can similarly prove the following result.

Theorem 3.28. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X×X→
X and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(t) > min{G∗Ax,Ap,Ar(ϕ(t)),G
∗
Ay,Aq,As(ϕ(t)),G

∗
Aζ,Aη,Aθ(ϕ(t)),

G∗Ax,Ap,Ap(ϕ(t)),G
∗
Ay,Aq,Aq(ϕ(t)),G

∗
Aζ,Aη,Aη(ϕ(t)),

G∗Ap,Ar,Ar(ϕ(t)),G
∗
Aq,As,As(ϕ(t)),G

∗
Aη,Aθ,Aθ(ϕ(t)),

G∗Ax,Ar,Ar(ϕ(t)),G
∗
Ay,As,As(ϕ(t)),G

∗
Aζ,Aθ,Aθ(ϕ(t))}

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where T(X×X×X) ⊂ A(X), A is continuous and commutative with T. Then there
exists a unique u ∈ X such that u = Au = T(u,u,u).

Letting A = I (I is the identity mapping) in Theorem 3.28, we can obtain the following corollary.

Corollary 3.29. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm ofH-type. Let ϕ : R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T : X×X×X→
X be a mapping such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(t) > min{G∗x,p,r(ϕ(t)),G
∗
y,q,s(ϕ(t)),G

∗
ζ,η,θ(ϕ(t)),G

∗
x,p,p(ϕ(t)),

G∗y,q,q(ϕ(t)),G
∗
ζ,η,η(ϕ(t)),G

∗
p,r,r(ϕ(t)),G

∗
q,s,s(ϕ(t)),

G∗η,θ,θ(ϕ(t)),G
∗
x,r,r(ϕ(t)),G

∗
y,s,s(ϕ(t)),G

∗
ζ,θ,θ(ϕ(t))}

for all x,y,p,q, r, s, ζ,η, θ ∈ X and t > 0. Then T has a unique fixed point in X.

In a similar way, we can prove the following result.

Theorem 3.30. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(ϕ(t)) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Aζ,Aη,Aθ(t),G

∗
Ax,Ap,Ap(t),

G∗Ay,Aq,Aq(t),G
∗
Aζ,Aη,Aη(t),G

∗
Ap,Ar,Ar(t),G

∗
Aq,As,As(t),

G∗Aη,Aθ,Aθ(t),G
∗
Ax,Ar,Ar(t),G

∗
Ay,As,As(t),G

∗
Aζ,Aθ,Aθ(t)}

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where T(X×X×X) ⊂ A(X), A is continuous and commutative with T. Then there
exists a unique u ∈ X such that u = Au = T(u,u,u).

In Theorem 3.30, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.31. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X→ X

be a mapping satisfying

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(ϕ(t)) > min{G∗x,p,r(t),G
∗
y,q,s(t),G

∗
ζ,η,θ(t),G

∗
x,p,p(t),G

∗
y,q,q(t),G

∗
ζ,η,η(t),

G∗p,r,r(t),G
∗
q,s,s(t),G

∗
η,θ,θ(t),G

∗
x,r,r(t),G

∗
y,s,s(t),G

∗
ζ,θ,θ(t)}

for all x,y,p,q, r, s, ζ,η, θ ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.30, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.
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Corollary 3.32. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X×X×X→ X

and A : X→ X be two mappings such that

G∗T(x,y,ζ),T(p,q,η),T(r,s,θ)(λt) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Aζ,Aη,Aθ(t),G

∗
Ax,Ap,Ap(t),

G∗Ay,Aq,Aq(t),G
∗
Aζ,Aη,Aη(t),G

∗
Ap,Ar,Ar(t),G

∗
Aq,As,As(t),

G∗Aη,Aθ,Aθ(t),G
∗
Ax,Ar,Ar(t),G

∗
Ay,As,As(t),G

∗
Aζ,Aθ,Aθ(t)}

for all x,y,p,q, r, s, ζ,η, θ ∈ X, where λ ∈ (0, 1), T(X× X× X) ⊂ A(X), A is continuous and commutative with
T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u).

Finally, by the same methods as in Theorems 3.23, 3.26, 3.28, and 3.30, we can obtain the following
common quadruple fixed point results under probabilistic ϕ-contractive conditions in PGM-space.

Theorem 3.33. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X×X→
X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(ϕ(t)) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Aζ,Aη,Aθ(t)G

∗
Aσ,Aσ,Aτ(t)

×G∗Ax,Ap,Ap(t)G
∗
Ay,Aq,Aq(t)G

∗
Aζ,Aη,Aη(t)G

∗
Aσ,Aσ,Aσ(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Aη,Aθ,Aθ(t)G

∗
Aσ,Aτ,Aτ(t)

×G∗Ax,Ar,Ar(t)G
∗
Ay,As,As(t)G

∗
Aζ,Aθ,Aθ(t)G

∗
Aσ,Aτ,Aτ(t)]

1
16

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where T(X× X× X× X) ⊂ A(X), A is continuous and commutative with
T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).

In Theorem 3.33, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.34. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X×X→
X be a mapping satisfying

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(ϕ(t)) > [G∗x,p,r(t)G
∗
y,q,s(t)G

∗
ζ,η,θ(t)G

∗
σ,σ,τ(t)G

∗
x,p,p(t)G

∗
y,q,q(t)

×G∗ζ,η,η(t)G
∗
σ,σ,σ(t)G

∗
p,r,r(t)G

∗
q,s,s(t)G

∗
η,θ,θ(t)G

∗
σ,τ,τ(t)

×G∗x,r,r(t)G
∗
y,s,s(t)G

∗
ζ,θ,θ(t)G

∗
σ,τ,τ(t)]

1
16

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.33, if we take ϕ(t) = λt (λ ∈ (0, 1)), then we have the following corollary.

Corollary 3.35. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X× X× X×
X→ X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(λt) > [G∗Ax,Ap,Ar(t)G
∗
Ay,Aq,As(t)G

∗
Aζ,Aη,Aθ(t)G

∗
Aσ,Aσ,Aτ(t)

×G∗Ax,Ap,Ap(t)G
∗
Ay,Aq,Aq(t)G

∗
Aζ,Aη,Aη(t)G

∗
Aσ,Aσ,Aσ(t)

×G∗Ap,Ar,Ar(t)G
∗
Aq,As,As(t)G

∗
Aη,Aθ,Aθ(t)G

∗
Aσ,Aτ,Aτ(t)

×G∗Ax,Ar,Ar(t)G
∗
Ay,As,As(t)G

∗
Aζ,Aθ,Aθ(t)G

∗
Aσ,Aτ,Aτ(t)]

1
16

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where λ ∈ (0, 1), T(X × X × X × X) ⊂ A(X), A is continuous and
commutative with T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).
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Theorem 3.36. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X×X→ X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(t) > [G∗Ax,Ap,Ar(ϕ(t))G
∗
Ay,Aq,As(ϕ(t))G

∗
Aζ,Aη,Aθ(ϕ(t))G

∗
Aσ,Aσ,Aτ(ϕ(t))

×G∗Ax,Ap,Ap(ϕ(t))G
∗
Ay,Aq,Aq(ϕ(t))G

∗
Aζ,Aη,Aη(ϕ(t))G

∗
Aσ,Aσ,Aσ(ϕ(t))

×G∗Ap,Ar,Ar(ϕ(t))G
∗
Aq,As,As(ϕ(t))G

∗
Aη,Aθ,Aθ(ϕ(t))G

∗
Aσ,Aτ,Aτ(ϕ(t))

×G∗Ax,Ar,Ar(ϕ(t))G
∗
Ay,As,As(ϕ(t))G

∗
Aζ,Aθ,Aθ(ϕ(t))G

∗
Aσ,Aτ,Aτ(ϕ(t))]

1
16

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where T(X× X× X× X) ⊂ A(X), A is continuous and commutative with
T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).

Letting A = I (I is the identity mapping) in Theorem 3.36, we can obtain the following corollary.

Corollary 3.37. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X×X→ X be a mapping satisfying

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(t)

> [G∗x,p,r(ϕ(t))G
∗
y,q,s(ϕ(t))G

∗
ζ,η,θ(ϕ(t))G

∗
σ,σ,τ(ϕ(t))G

∗
x,p,p(ϕ(t))G

∗
y,q,q(ϕ(t))

×G∗ζ,η,η(ϕ(t))G
∗
σ,σ,σ(ϕ(t))G

∗
p,r,r(ϕ(t))G

∗
q,s,s(ϕ(t))G

∗
η,θ,θ(ϕ(t))G

∗
σ,τ,τ(ϕ(t))

×G∗x,r,r(ϕ(t))G
∗
y,s,s(ϕ(t))G

∗
ζ,θ,θ(ϕ(t))G

∗
σ,τ,τ(ϕ(t))]

1
16

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X and t > 0. Then T has a unique fixed point in X.

Theorem 3.38. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ : R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X×X→ X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(t)

> min{G∗Ax,Ap,Ar(ϕ(t)),G
∗
Ay,Aq,As(ϕ(t)),G

∗
Aζ,Aη,Aθ(ϕ(t)),G

∗
Aσ,Aσ,Aτ(ϕ(t)),

G∗Ax,Ap,Ap(ϕ(t)),G
∗
Ay,Aq,Aq(ϕ(t)),G

∗
Aζ,Aη,Aη(ϕ(t)),G

∗
Aσ,Aσ,Aσ(ϕ(t)),

G∗Ap,Ar,Ar(ϕ(t)),G
∗
Aq,As,As(ϕ(t)),G

∗
Aη,Aθ,Aθ(ϕ(t)),G

∗
Aσ,Aτ,Aτ(ϕ(t)),

G∗Ax,Ar,Ar(ϕ(t)),G
∗
Ay,As,As(ϕ(t)),G

∗
Aζ,Aθ,Aθ(ϕ(t)),G

∗
Aσ,Aτ,Aτ(ϕ(t))}

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where T(X× X× X× X) ⊂ A(X), A is continuous and commutative with
T. Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).

Letting A = I (I is the identity mapping) in Theorem 3.38, we can obtain the following corollary.

Corollary 3.39. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ : R+ → R+

be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and limn→∞ϕn(t) = +∞ for any t > 0. Let T :
X×X×X×X→ X be a mapping such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(t) > min{G∗x,p,r(ϕ(t)),G
∗
y,q,s(ϕ(t)),G

∗
ζ,η,θ(ϕ(t)),G

∗
σ,σ,τ(ϕ(t)),

G∗x,p,p(ϕ(t)),G
∗
y,q,q(ϕ(t)),G

∗
ζ,η,η(ϕ(t)),G

∗
σ,σ,σ(ϕ(t)),

G∗p,r,r(ϕ(t)),G
∗
q,s,s(ϕ(t)),G

∗
η,θ,θ(ϕ(t)),G

∗
σ,τ,τ(ϕ(t)),

G∗x,r,r(ϕ(t)),G
∗
y,s,s(ϕ(t)),G

∗
ζ,θ,θ(ϕ(t)),G

∗
σ,τ,τ(ϕ(t))}

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X and t > 0. Then T has a unique fixed point in X.
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Theorem 3.40. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such thatϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X×X→
X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(ϕ(t)) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Aζ,Aη,Aθ(t),G

∗
Aσ,Aσ,Aτ(t),

G∗Ax,Ap,Ap(t),G
∗
Ay,Aq,Aq(t),G

∗
Aζ,Aη,Aη(t),G

∗
Aσ,Aσ,Aσ(t),

G∗Ap,Ar,Ar(t),G
∗
Aq,As,As(t),G

∗
Aη,Aθ,Aθ(t),G

∗
Aσ,Aτ,Aτ(t),

G∗Ax,Ar,Ar(t),G
∗
Ay,As,As(t),G

∗
Aζ,Aθ,Aθ(t),G

∗
Aσ,Aτ,Aτ(t)}

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where T(X× X× X× X) ⊂ A(X), A is continuous and commutative with
T. Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).

In Theorem 3.40, if we take A = I (I is the identity mapping), then we have the following corollary.

Corollary 3.41. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let ϕ: R+ → R+ be a
gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ϕn(t) = 0 for any t > 0. Let T : X×X×X×X→
X be a mapping satisfying

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(ϕ(t)) > min{G∗x,p,r(t),G
∗
y,q,s(t),G

∗
ζ,η,θ(t),G

∗
σ,σ,τ(t),

G∗x,p,p(t),G
∗
y,q,q(t),G

∗
ζ,η,η(t),G

∗
σ,σ,σ(t),

G∗p,r,r(t),G
∗
q,s,s(t),G

∗
η,θ,θ(t),G

∗
σ,τ,τ(t),

G∗x,r,r(t),G
∗
y,s,s(t),G

∗
ζ,θ,θ(t),G

∗
σ,τ,τ(t)}

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X and t > 0. Then T has a unique fixed point in X.

In Theorem 3.40, if we take ϕ(t) = λt (0 < λ < 1), then we have the following corollary.

Corollary 3.42. Let (X,G∗,∆) be a complete PGM-space such that ∆ is a t-norm of H-type. Let T : X× X× X×
X→ X and A : X→ X be two mappings such that

G∗T(x,y,ζ,σ),T(p,q,η,σ),T(r,s,θ,τ)(λt) > min{G∗Ax,Ap,Ar(t),G
∗
Ay,Aq,As(t),G

∗
Aζ,Aη,Aθ(t)G

∗
Aσ,Aσ,Aτ(t),

G∗Ax,Ap,Ap(t),G
∗
Ay,Aq,Aq(t),G

∗
Aζ,Aη,Aη(t),G

∗
Aσ,Aσ,Aσ(t),

G∗Ap,Ar,Ar(t),G
∗
Aq,As,As(t),G

∗
Aη,Aθ,Aθ(t),G

∗
Aσ,Aτ,Aτ(t),

G∗Ax,Ar,Ar(t),G
∗
Ay,As,As(t),G

∗
Aζ,Aθ,Aθ(t),G

∗
Aσ,Aτ,Aτ(t)}

for all x,y,p,q, r, s, ζ,η, θ,σ,σ, τ ∈ X, where λ ∈ (0, 1), T(X × X × X × X) ⊂ A(X), A is continuous and
commutative with T . Then there exists a unique u ∈ X such that u = Au = T(u,u,u,u).

4. An example

In this section, we give the following example to illustrate Theorem 3.11.
Example 4.1. Let X = [0,∞), ∆ = ∆p. Then ∆ is a t-norm of H-type. Define the mapping G∗ : X3 ×
[0,∞)→ [0,∞) by

G∗x,y,z(t) =


1, t 6 0,

e
−
|x− y|+ |y− z|+ |z− x|

2t , t > 0

for all x,y, z ∈ X. Then (X,G∗,∆p) is a PGM-space. In fact, it is easy to check that G∗ satisfies (PGM-1)-
(PGM-3). Next we show G∗(x,y, z)(s+ t) > ∆(G∗(x,a,a)(s),G∗(a,y,y)(t)) = G∗(x,a,a)(s)G∗(a,y,y)(t)
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for all x,y, z,a ∈ X and all s, t > 0. In fact, since

|x− y|+ |y− z|+ |z− x|

2(s+ t)
6

|x− a|+ |a− y|+ |y− z|+ |z− a|+ |a− x|

2(s+ t)

=
2|x− a|
2(s+ t)

+
|a− y|+ |y− z|+ |z− a|

2(s+ t)

<
2|x− a|

2s
+

|a− y|+ |y− z|+ |z− a|

2t
,

we have

G∗(x,y, z)(s+ t) = e
−
|x− y|+ |y− z|+ |z− x|

2(s+ t)

> e
−

(
2|x− a|

2s
+

|a− y|+ |y− z|+ |z− a|

2t

)
= G∗x,a,a(s)G

∗
a,y,z(t).

This shows that G∗ satisfies (PGM-4). Hence (X,G∗,∆p) is a Menger PGM-space.
Suppose that ϕ(t) = t

2 . Let T(u, v) = u+ v, Au = 3u for all u, v ∈ X and T(X,X) ⊂ A(X), and let A be
continuous and commutative with T . For each x,y,p,q,h, l ∈ X and t > 0, since

|(x+ y) − (p+ q)|+ |(p+ q) − (h+ l)|+ |(h+ l) − (x+ y)|

t

=
2|(x+ y) − (p+ q)|+ 2|(p+ q) − (h+ l)|+ 2|(h+ l) − (x+ y)|

2t

6
(|x− p|+ |p− h|+ |h− x|) + (|y− q|+ |q− l|+ |l− y|)

2t

+
2|x− p|+ 2|y− q|+ 2|p− h|+ 2|q− l|+ 2|h− x|+ 2|l− y|

2t

=

(
3(|x− p|+ |p− h|+ |h− x|)

t
+

3(|y− q|+ |q− l|+ |l− y|)

t

+
6|x− p|
t

+
6|y− q|
t

+
6|p− h|
t

+
6|q− l|
t

+
6|h− x|

t
+

6|l− y|
t

)
× 1

6

=

(
(3|x− p|+ |p− h|+ |h− x|)

t
+

3(|y− q|+ |q− l|+ |l− y|)

t

+
2|3x− 3p|

t
+

2|3y− 3q|
t

+
2|3p− 3h|

t
+

2|3q− 3l|
t

+
2|3h− 3x|

t
+

2|3l− 3y|
t

)
× 1

6

, Ω(x,y,p,q,h, l)× 1
6

,

we get that

G∗T(x,y),T(p,q),T(h,l)(
t

2
)

= e
−
|(x+ y) − (p+ q)|+ |(p+ q) − (h+ l)|+ |(h+ l) − (x+ y)|

t

> e
−Ω(x,y,p,q,h, l)× 1

6

=

[
e
−

3(|x− p|+ |p− h|+ |h− x|)

t × e
−

3(|y− q|+ |q− l|+ |l− y|)

t × e
−

2|3x− 3p|
t
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× e
−

2|3y− 3q|
t × e

−
2|3p− 3h|

t × e
−

2|3q− 3l|
t × e

−
2|3h− 3x|

t × e
−

2|3l− 3y|
t

] 1
6

=
[
G∗Ax,Ap,Ah(t)G

∗
Ay,Aq,Al(t)G

∗
Ax,Ap,Ap(t)G

∗
Ay,Aq,Aq(t)

×G∗Ap,Ah,Ah(t)G
∗
Aq,Al,Al(t)G

∗
Ax,Ah,Ah(t)G

∗
Ay,Al,Al(t))

] 1
6
.

Thus all the conditions of Theorem 3.11 are satisfied. Therefore, 0 is the unique common coupled fixed
point of T and A.
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