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Abstract
In this work, Sumudu transform of Dixon elliptic functions for higher arbitrary powers smN(x,α);N > 1, smN(x,α)cm(x,α);

N > 0 and smN(x,α)cm2(x,α);N > 0 by considering modulus α 6= 0 is obtained as three term recurrences and hence expanded
as product of quasi associated continued fractions where the coefficients are functions of α. Secondly the coefficients of quasi
associated continued fractions are used for Hankel determinants calculations by connecting the formal power series (Maclaurin
series) and associated continued fractions. c©2017 All rights reserved.
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1. Introduction

Jacobi elliptic functions sn(x,k), cn(x,k) and dn(x,k), there ratios were applied with Laplace trans-
form to calculate Hankel determinants from their continued fractions in [26] and Fourier series of those
functions were used to derive the different ways of writing square and triangular numbers [26]. Contin-
ued fractions related to Hahn and orthogonal polynomials from the results of Laplace transform of Jacobi
elliptic functions such as difference equations derived in [16]. Bimodular Jacobi elliptic functions treated
with Laplace transform to solve as continued fractions and by using modular transformation results were
traced back to Jacobi elliptic functions in [9]. Determinants of Bernoulli numbers, coefficients of Maclau-
rin series of Jacobi elliptic functions were calculated through continued fractions in [2] and orthogonal
polynomials from Fourier series of Jacobi elliptic functions in [8].

On studying the cubic curve x3 + y3 − 3αxy = 1 in [11] gave raise to elliptic functions sm(x,α) and
cm(x,α) named after Dixon whose functions are doubly periodic, related properties and examples given
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in [12]. Similar cubic curve on α = 0 is studied and led to elliptic functions in [13]. sm(x, 0) and cm(x, 0)
are applied to conformal mapping study and addition, multiplication formulae pertaining those maps
given in [1]. Dixon elliptic functions are used for representing factorial of numbers given in [3] and
related to Fermat cubes, combinatorics given in [10]. Laplace transform is applied to Dixon functions and
extended to various types of continued fractions in [9]. In [22] Dixon functions connecting trefoil curve
and Weierstrass elliptic functions [22, 23] have been described.

Sumudu transform successor of Laplace transform in problem solving possess unique properties
namely unit, scale and dimension preserving where other transforms does not satisfy, studied to solve
fractional Maxwell’s equations in [21]. Sumudu transform is applied for various engineering problems
for their solutions in [4, 14, 15, 18] and solved with perturbation, decomposition methods in [25, 28]. New
definition of Sumudu transform for trigonometric functions and infinite series expansions is derived in
[5]. Symbolic C++ and Maple procedure for Sumudu transform is given in [6]. Sumudu transform of
Dumont bimodular Jacobi elliptic functions from which Sumudu transform of tan(ax), sec(ax) and their
products for arbitrary powers are derived as product of associated continued fractions and their Hankel
determinants in [7]. Sumudu transform [4–7, 14, 15, 18–21, 25, 28, 29] of f(x) is defined in the set

A = {f(x)| ∃M, τ1, τ2 > 0, |f(x)| < Me
|x|
τj , if x ∈ (−1)j × [0,∞)},

given by integral equation

S[f(x)](u) =

∫∞
0
e−xf(ux)dx = 1/u

∫∞
0
e−x/uf(x)dx ; u ∈ (−τ1, τ2). (1.1)

In [32] Novel Integral Transform (NIT) is defined and shown as dual for Laplace, Laplace Carson and
Sumudu transforms. NI[f(x)](γ) = 1/γ2S[f(x)](u)u=1/γ. Here γ is the NIT variable, and extended to
(−∞,∞) and showed dual to Fourier transform in [33].

In this paper Sumudu transform is applied to Dixon Elliptic Functions (DEF) namely smN(x,α),
smN(x,α)cm(x,α) and smN(x,α)cm2(x,α) to show their results as product of Quasi Associated Contin-
ued Fractions (QACF). Coefficients of obtained QACF are employed for Hankel determinants derivations
using Heliermann correspondence connecting formal power series to associated continued fractions.

2. Preliminaries

Considering the cubic curve x3 + y3 − 3αxy = 1; (α 6= −1) in [11] derived the two set of functions
sm(x,α) and cm(x,α) which are doubly periodic also showed they are elliptic. Derivative of DEF ([11,
Eqs. (1) and (3), page 171] and [9, Eqs. (1.18) and (1.19), page 9])

d

dx
sm(x,α) = cm2(x,α) −αsm(x,α) and

d

dx
cm(x,α) = −sm2(x,α) +αcm(x,α), (2.1)

with ([9, Eq. (1.21), page 10]),
sm(0,α) = 1 and cm(0,α) = 1, (2.2)

and the functions satisfy the cubic curve mentioned above named Pythagorean theorem ([11, Eq. (2), page
171] and [9, Eq. (1.22), page 10])

sm3(x,α) + cm3(x,α) − 3αsm(x,α)cm(x,α) = 1. (2.3)

Continued fraction notation taken from ([17, Eq. (2.1.4 b), page 18] and ([24, Eq. (1.2.5
′
), page 8])

∞
K
n=1

an

bn
=

a1

b1+

a2

b2+

a3

b3 + · · ·
=

a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
. . .

.
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Definition 2.1. Let a = {an}, b = {bn} and u is an indeterminate, then the continued fraction of following
form is called associated continued fraction ([17, Eq. (7.2.1), page 241]), [30] and ([31, Eq. (54.1), page
208]):

1 +
a0u

1 + b0u+

∞
K
n=1

−anu

1 + bnu
.

Remark 2.2. The continued fraction of the form

a0u

c0 + b0u+

∞
K
n=1

−anu

cn + bnu

is called QACF. Moreover the coefficients a0,b0, c0,an,bn and cn;n > 1 are functions of u rather con-
stants.

Definition 2.3. Let c = {cv}
∞
v=1 be a sequence in C. Then the following m ×m matrices are defined

[9, 17, 26], whose determinants are denoted by respective H(n)
m and χm:

H
(n)
m = H

(n)
m (cv) = det


cn cn+1 · · · cm+n−2 cn+m−1
cn+1 cn+2 · · · cm+n−1 cm+n

...
...

. . .
...

...
cm+n−1 cm+n · · · c2m+n−3 c2m+n−2

 ,

χm = χm(cv) = det


c1 c2 · · · cm−1 cm+1
c2 c3 · · · cm cm+2
...

...
. . .

...
...

cm cm+1 · · · c2m−2 c2m

 .

Remark 2.4. The matrix for χm is obtained from the matrix for H(1)
m+1 by deleting the last row and next to

last column [9, 17, 26]. For n = 1, H(1)
1 = c1 and χ1 = c2. Determinants H(n)

m and χm [27] are named as
persymmetric determinants (or) Turanian determinants (or) Hankel determinants.

The relation between formal power series and its associated continued fractions is given as lemma [9],
([17, Theorem 7.14, pp 244–248]), [26].

Lemma 2.5. When an associated continued fraction converges to formal power series,

1 +

∞∑
v=1

cvz
v = 1 +

a0z

1 + b0z+

∞
K
n=1

−anz
2

1 + bnz
, (an 6= 0), (2.4)

then,

H
(1)
m ([cv]) 6= 0, am =

H
(1)
m H

(1)
m−2(

H
(1)
m−1

)2 and bm =
χm−1

H
(1)
m−1

−
χm

H
(1)
m

, (m > 1), (2.5)

where H(1)
−1 = H

(1)
0 = 1 and χ0 = 0. Conversely if (2.5) is true then (2.4) is true. Also,

H
(1)
m ([cv]) =

m∏
j=1

a
m+1−j
j =

m−1∏
j=0

a
m−j
j , and

χm([cv])

H
(1)
m ([cv])

= −

m∑
j=1

bj, (m > 1). (2.6)

3. Main results 1: Sumudu transform of Dixon elliptic functions (α 6= 0)

In [9] Laplace transform is applied for DEF and obtained QACF for up to third power of sm(x,α)
and second power of sm(x,α)cm(x,α) results given. In this paper, we generalize the previous work to
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arbitrary powers and show its back traceable to results of [9]. Followed by, Hankel determinants are
derived for the QACF using Lemma 2.5 by assuming c0 = cn;n > 1 = 1. Applying Sumudu transform
(1.1) to higher powers of DEF, main results of this paper are given in following three theorems.

Theorem 3.1. Sumudu transform of DEF smN(x,α);N > 1 is given by QACF:
(i)

S[sm(x,α)](u) =
(1 − 5αu)u
F∗1 + 4u3+

−6E4u
6

F4 +G4u3+

∞
K
n=2

−E3n+1H3n−2u
6

F3n+1 +G3n+1u3 . (3.1)

(ii)

S[sm2(x,α)](u) =
2(1 − 7αu)u2

F2 +G2u3+

∞
K
n=1

−E3n+2H3n−1u
6

F3n+2 +G3n+2u3 . (3.2)

(iii) Let N = 3, 6, 9, 12, · · ·

S[smN(x,α)](u) =

N
3∏
i=1

E3iu
3

F3i +G3iu3+

∞
K
n=1

−E3n+3iH3n+3i−3u
6

F3n+3i +G3n+3iu3 . (3.3)

(iv) Let N = 4, 7, 10, 13, · · ·

S[smN(x,α)](u) =
(1 − 5αu)u
F∗1 + 4u3+

−6E4u
6

F4 +G4u3+

∞
K
n=2

−E3n+1H3n−2u
6

F3n+1 +G3n+1u3

×

N−1
3∏
i=1

E3i+1u
3

F3i+1 +G3i+1u3+

∞
K
n=1

−E3n+3i+1H3n+3i−2u
6

F3n+3i+1 +G3n+3i+1u3 . (3.4)

(v) Let N = 5, 8, 11, 14, · · ·

S[smN(x,α)](u) =
2(1 − 7αu)
F2 +G2u3+

∞
K
n=1

−E3n+2H3n−1u
6

F3n+2 +G3n+2u3

×

N−2
3∏
i=1

E3i+2u
3

F3i+2 +G3i+2u3+

∞
K
n=1

−E3n+3i+2H3n+3i−1u
6

F3n+3i+2 +G3n+3i+2u3 , (3.5)

where E(.), F(.),G(.) and H(.) are polynomials in u and α defined in equations (3.10), (3.11), (3.12), (3.13)
respectively and F∗1 = F∗1(u,α) = (1 − 5αu)(1 − 2αu)(1 +αu) [9].

Proof. For N > 0:

S[smN(x,α)](u) = AN =

∫∞
0
e−xsmN(xu,α)dx, (3.6)

S[smN(x,α)cm(x,α)](u) = BN =

∫∞
0
e−xsmN(xu,α)cm(xu,α)dx, (3.7)

S[smN(x,α)cm2(x,α)](u) = CN =

∫∞
0
e−xsmN(xu,α)cm2(xu,α)dx. (3.8)

Integrating by parts, (3.6) reduces to the following difference equations using (2.1), (2.2), (2.3) in AN and
CN−1 with A0 = 1:

A1 = uC0 −αuA1,
A2 = 2uC1 − 2αuA2,
A3 = 3uC2 − 3αuA3,

...
AN = NuCN−1 −NαuAN.

Solving for AN using recurrences of (3.7) and (3.8) leads to QACF:
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AN
AN−3

=
ENu

3

FN +GNu3 −HNu3AN+3
AN

, (N > 3), (3.9)

where,

EN = EN(u,α) = (N− 2)(N− 1)N(1 − (2N+ 3)αu), (N > 3), (3.10)
FN = FN(u,α) = (1 − (2N− 3)αu)(1 − (2N+ 3)αu)(1 +Nαu)(1 − 2Nαu), (N > 2), (3.11)

GN = GN(u,α) = (1 − (2N+ 3)αu)(N− 1)2N+ (1 − (2N− 3)αu)N(N+ 1)2, (N > 2), (3.12)
HN = HN(u,α) = N(N+ 1)(N+ 2)(1 − (2N− 3)αu), (N > 3). (3.13)

For N = 1, 2 and 3

A1 =
(1 − 5αu)u

(1 − 5αu)(1 − 2αu)(1 +αu) + 4u3 − 6u3A4
A1

, (3.14)

A2 =
2(1 − 7αu)u2

F2 +G2u3 −H2u3A5
A2

, (3.15)

A3 =
E3u

3

F3 +G3u3 −H3u3A6
A3

. (3.16)

Now (3.1) and (3.2) are immediate consequences from respective (3.14) and (3.15) iterating with (3.9).
Equations (3.3), (3.4), (3.5) are obtained by continuous iteration of (3.9) starting with (3.16) and after
mathematical calculations and simplification completes the proof.

Remark 3.2. Multiplying u to (3.1) and (3.2) gives the result in [9] ([9, Theorems 22 and 23, page 65]).
Multiplying (3.3) with u and for N = 3 gives the result in [9] ([9, Theorem 24, page 65]). Results derived
in equations (3.3), (3.4), (3.5) are new with the existing literature.

Theorem 3.3. Sumudu transform of DEF smN(x,α)cm(x,α);N > 0 is given by QACF:

(i)

S[cm(x,α)] =
P∗0

Q∗0 + 2u3+

−6P3u
6

Q3 + R3u3+

∞
K
n=2

−S3n−3P3nu
6

Q3n + R3nu3 . (3.17)

(ii)

S[sm(x,α)cm(x,α)] =
P∗1u

Q∗1 + 12u3+

∞
K
n=1

−S3n−2P3n+1u
6

Q3n+1 + R3n+1u3 . (3.18)

(iii)

S[sm2(x,α)cm(x,α)] =
2P∗2u

2

Q2 + R2u3+

∞
K
n=1

−S3n−1P3n+2u
6

Q3n+2 + R3n+2u3 . (3.19)

(iv) Let N = 3, 6, 9, 12, · · ·

S[smN(x,α)cm(x,α)] =
P∗0

Q∗0 + 2u3+

−6P3u
6

Q3 + R3u3+

∞
K
n=2

−S3n−3P3nu
6

Q3n + R3nu3

×

N
3∏
i=1

P3iu
3

Q3i + R3iu3+

∞
K
n=1

−S3n+3i−3P3n+3iu
6

Q3n+3i + R3n+3iu3 .

(3.20)
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(v) Let N = 4, 7, 10, 13, · · ·

S[smN(x,α)cm(x,α)] =
P∗1u

Q∗1 + 12u3+

∞
K
n=1

−S3n−2P3n+1u
6

Q3n+1 + R3n+1u3

×

N−1
3∏
i=1

P3i+1u
3

Q3i+1 + R3i+1u3+

∞
K
n=1

−S3n+3i−2P3n+3i+1u
6

Q3n+3i+1 + R3n+3i+1u3 .

(3.21)

(vi) Let N = 5, 8, 11, 14, · · ·

S[smN(x,α)cm(x,α)] =
2P∗2u

2

Q2 + R2u3+

∞
K
n=1

−S3n−1P3n+2u
6

Q3n+2 + R3n+2u3

×

N−2
3∏
i=1

P3i+2u
3

Q3i+2 + R3i+2u3+

∞
K
n=1

−S3n+3i−1P3n+3i+2u
6

Q3n+3i+2 + R3n+3i+2u3 ,

(3.22)

where P(.), Q(.), R(.) and S(.) are polynomials in u and α given by equations (3.24), (3.25), (3.26), (3.27),
respectively [9] and P∗0 , Q∗0 , P∗1 , Q∗1 and P∗2 are polynomials in u and α given by equations (3.31), (3.32),
(3.33), (3.34), (3.35), respectively.

Proof. Using equations (2.1), (2.2), (2.3), evaluating by parts, (3.7) reduces to the following difference
equations in AN−1 and BN:

B0 = 1 − uA2 +αuB0,
B1 = u− 2uA3 + 3αuB1,
B2 = 2uA1 − 3uA4 + 5αuB2,
B3 = 3uA2 − 4uA5 + 7αuB3,

...
BN = NuAN−1 − (N+ 1)uAN+2 + (2N+ 1)αuBN.

Solving for BN using recurrences of (3.6) and (3.8) leads to QACF:

BN
BN−3

=
PNu

3

QN + RNu3 − SNu3BN+3
BN

, (N > 3), (3.23)

where,

PN = PN(u,α) =(N− 2)(N− 1)N(1 − (2N+ 4)αu)(1 + (N+ 2)αu), (N > 3), (3.24)
QN = QN(u,α) =(1 − (2N− 2)αu)(1 + (N− 1)αu)(1 − (2N+ 4)αu)

× (1 + (N+ 2)αu)(1 − (2N+ 1)αu), (N > 2), (3.25)

RN = RN(u,α) =(N− 1)N2(1 − (2N+ 4)αu)(1 + (N+ 2)αu)

+ (N+ 1)2(N+ 2)(1 − (2N− 2)αu)(1 + (N− 1)αu), (N > 2), (3.26)
SN = SN(u,α) =(N+ 1)(N+ 2)(N+ 3)(1 − (2N− 2)αu)(1 + (N− 1)αu), (N > 1). (3.27)

For N = 0, 1 and 2:

B0 =
P∗0

Q∗0 + 2u3 − 6u3B3
B0

, (3.28)

B1 =
P∗1u

Q∗1 + 12u3 − S1u3B4
B1

, (3.29)
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B2 =
2P∗2u

2

Q2 + R2u3 − S2u3B5
B2

, (3.30)

where,

P∗0 = P∗0 (u,α) =(1 − 4αu)(1 + 2αu), (3.31)
Q∗0 = Q∗0(u,α) =(1 − 4αu)(1 + 2αu)(1 −αu), (3.32)
P∗1 = P∗1 (u,α) =(1 − 6αu)(1 + 3αu), (3.33)
Q∗1 = Q∗1(u,α) =(1 − 6αu)(1 + 3αu)(1 − 3αu), (3.34)
P∗2 = P∗2 (u,α) =(1 − 8αu)(1 + 4αu). (3.35)

Hence equations (3.17), (3.18), (3.19) follow from (3.28), (3.29), (3.30) respectively iterating with (3.23).
And equations (3.20), (3.21), (3.22) are obtained from continuous iteration with (3.23) and simplification
which completes the proof.

Remark 3.4. Multiplying u to equations (3.17), (3.18), (3.19) gives results in [9] ([9, Theorems 25–27, pp
66–67]). Equations (3.20), (3.21), (3.22) are new with existing literature.

Theorem 3.5. Sumudu transform of DEF smN(x,α)cm2(x,α);N > 0 is given by QACF:

(i)

S[cm2(x,α)] =
T∗0

V∗0 +W∗0u
3+

−X∗0T3u
6

V3 +W3u3+

∞
K
n=2

−X3n−3T3nu
6

V3n +W3nu3 . (3.36)

(ii)

S[sm(x,α)cm2(x,α)] =
T∗1

V∗1 +W∗1u
3+

−X∗1T4u
6

V4 +W4u3+

∞
K
n=2

−X3n−2T3n+1u
6

V3n+1 +W3n+1u3 . (3.37)

(iii)

S[sm2(x,α)cm2(x,α)] =
T∗2 u

2

V2 +W2u3+

∞
K
n=1

−X3n−1T3n+2u
6

V3n+2 +W3n+2u3 . (3.38)

(iv) Let N = 3, 6, 9, 12, · · ·

S[smN(x,α)cm2(x,α)] =
T∗0

V∗0 +W∗0u
3+

−X∗0T3u
6

V3 +W3u3+

∞
K
n=2

−X3n−3T3nu
6

V3n +W3nu3

×

N
3∏
i=1

T3iu
3

V3i +W3iu3+

∞
K
n=1

−X3n+3i−3T3n+3iu
6

V3n+3i +W3n+3iu3 .

(3.39)

(v) Let N = 4, 7, 10, 13, · · ·

S[smN(x,α)cm2(x,α)] =
T∗1

V∗1 +W∗1u
3+

−X∗1T4u
6

V4 +W4u3+

∞
K
n=2

−X3n−2T3n+1u
6

V3n+1 +W3n+1u3

×

N−1
3∏
i=1

T3i+1u
3

V3i+1 +W3i+1u3+

∞
K
n=1

−X3n+3i−2T3n+3i+1u
6

V3n+3i+1 +W3n+3i+1u3 .

(3.40)
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(vi) Let N = 5, 8, 11, 14, · · ·

S[smN(x,α)cm2(x,α)] =
T∗2 u

2

V2 +W2u3+

∞
K
n=1

−X3n−1T3n+2u
6

V3n+2 +W3n+2u3

×

N−2
3∏
i=1

T3i+2u
3

V3i+2 +W3i+2u3+

∞
K
n=1

−X3n+3i−1T3n+3i+2u
6

V3n+3i+2 +W3n+3i+2u3 ,

(3.41)

where T(.), V(.), W(.) and X(.) are polynomials in u and α given by equations (3.43), (3.44), (3.45), (3.46),
respectively and T∗0 , V∗0 , W∗0 , X∗0 , T∗1 , V∗1 , W∗1 , W∗1 and T∗2 are polynomials in u and α given by equations
(3.50), (3.51), (3.52), (3.53), (3.54), (3.55), (3.56), (3.57), (3.58), respectively.

Proof. Integrating by parts and using (2.1), (2.2), (2.3), equation (3.8) reduces to the following difference
equations in BN−1 and CN:

C0 = 1 − 2uB2 + 2αuC0,
C1 = uB0 − 3uB3 + 4αuC1,
C2 = 2uB1 − 4uB4 + 6αuC2,
C3 = 3uB2 − 5uB5 + 8αuC3,

...
CN = NuBN−1 − (N+ 2)uBN+2 + (2N+ 2)αuCN.

Solving for CN using recurrences of (3.6) and (3.7) yields QACF only in CN:

CN
CN−3

=
TNu

3

VN +WNu3 −XNu3CN+3
CN

, (N > 3), (3.42)

where,

TN = TN(u,α) =(N− 2)(N− 1)N(1 + (N+ 1)αu)(1 + (N+ 4)αu)
× (1 − (2N+ 5)αu), (N > 3), (3.43)

VN = VN(u,α) =(1 + (N+ 1)αu)(1 + (N− 2)αu)(1 − (2N− 1)αu)
× (1 − (2N+ 2)αu)(1 + (N+ 4)αu)(1 − (2N+ 5)αu), (N > 1), (3.44)

WN =WN(u,α) =(1 + (N− 2)αu)(1 − (2N+ 5)αu)(1 + (N+ 4)αu)N2(N+ 1)
+ (1 + (N− 2)αu)(1 − (2N− 1)αu)

× (1 + (N+ 4)αu)(N+ 1)(N+ 2)2, (N > 1), (3.45)
XN = XN(u,α) =(N+ 2)(N+ 3)(N+ 4)(1 + (N+ 1)αu)

× (1 + (N− 2)αu)(1 − (2N− 1)αu), (N > 1). (3.46)

For N = 0, 1 and 2:

C0 =
T∗0

V∗0 +W∗0u
3 −X∗0u

3C3
C0

, (3.47)

C1 =
T∗1 u

V∗1 +W∗1u
3 −X∗1u

3C4
C1

, (3.48)

C2 =
T∗2 u

2

V2 +W2u3 −X2u3C5
C2

, (3.49)
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where,

T∗0 = T∗0 (u,α) =(1 +αu)(1 + 4αu)(1 − 5αu), (3.50)
V∗0 = V∗0 (u,α) =(1 +αu)(1 + 4αu)(1 − 5αu)(1 − 2αu), (3.51)
W∗0 =W∗0 (u,α) =4(1 + 4αu), (3.52)
X∗0 = X∗0(u,α) =24(1 +αu), (3.53)
T∗1 = T∗1 (u,α) =(1 + 2αu)(1 − 7αu)(1 + 5αu), (3.54)
V∗1 = V∗1 (u,α) =(1 + 2αu)(1 − 7αu)(1 + 5αu)(1 −αu)(1 − 4αu), (3.55)
W∗1 =W∗1 (u,α) =2(1 − 7αu)(1 + 5αu) + 18(1 −αu)(1 + 5αu), (3.56)
X∗1 = X∗1(u,α) =60(1 −αu)(1 + 2αu), (3.57)
T∗2 = T∗2 (u,α) =2(1 + 3αu)(1 − 9αu)(1 + 6αu). (3.58)

Now equations (3.36), (3.37), (3.38) follow from respective equations (3.47), (3.48), (3.49) iterating with
(3.42). Equations (3.39), (3.40), (3.41) are obtained by iterating continuously (3.42) and simplifying com-
pletes the proof.

Remark 3.6. All the results in Theorem 3.5, equations (3.36), (3.37), (3.38), (3.39), (3.40), (3.41) are new with
the existing literature.

Remark 3.7. NIT of DEF smN(x,α);N > 1, smN(x,α)cm(x,α);N > 0 and smN(x,α)cm2(x,α);N > 0 can
be obtained from Theorems 3.1, 3.3 and 3.5 respectively by replacing u = 1/γ and multiplying with 1/γ2

and simplifying yields the NIT of DEF.

4. Main results 2: Hankel determinants derivations

In [9] QACF is given for Laplace transform of DEF (α 6= 0) and for Hankel determinants calculations to
those QACF ([9, first query, pp 73–73]) are given as future directions. In this section Hankel determinants
pertaining from Section 3 using Lemma 2.5 are calculated. Main results of this section are given in the
following three theorems.

Theorem 4.1. Hankel determinants corresponding to Theorem 3.1 are given by,

(i)

H
(1)
1 ([sm(x,α)]3v+1) = (1 − 5αu), (4.1)

H
(1)
2 ([sm(x,α)]3v+1) = 6(1 − 5αu)2E4, (4.2)

H
(1)
m ([sm(x,α)]3v+1) = 6(m−1)(1 − 5αu)m

m−1∏
j=0

E
(m−j−1)
3j+4

m−2∏
j=1

H
(m−j−1)
3j+1 , m > 3, (4.3)

χ1([sm(x,α)]3v+1)

H
(1)
1 ([sm(x,α)]3v+1)

= −4, (4.4)

χm([sm(x,α)]3v+1)

H
(1)
m ([sm(x,α)]3v+1)

= −

4 +

m−1∑
j=1

G3j+1

 , m > 2. (4.5)

(ii)

H
(1)
1 ([sm2(x,α)]3v+2) = 2(1 − 7αu), (4.6)

H
(1)
m ([sm2(x,α)]3v+2) = 2m(1 − 7αu)m

m−1∏
j=1

E
(m−j)
3j+2 H

(m−j)
3j−1 , m > 2, (4.7)
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χm([sm2(x,α)]3v+2)

H
(1)
m ([sm2(x,α)]3v+2)

= −

m∑
j=1

G3j−1, m > 1. (4.8)

(iii) Let N = 3, 6, 9, 12, · · ·

H
(1)
1 ([smN(x,α)]3v+N) = E3i, (4.9)

H
(1)
m ([smN(x,α)]3v+N) = Em3i

m−1∏
j=1

E
(m−j)
3j+3i H

(m−j)
3j+3i−3, m > 2, (4.10)

χm([smN(x,α)]3v+N)

H
(1)
m ([smN(x,α)]3v+N)

= −

m∑
j=1

G3j+3i−3, m > 1, (4.11)

where i = 1, 2, 3, · · · , N3 .
(iv) Let N = 4, 7, 10, 13, · · ·

H
(1)
1 ([smN(x,α)]3v+N) = E3i+1,

H
(1)
m ([smN(x,α)]3v+N) = Em3i+1

m−1∏
j=1

E
(m−j)
3j+3i+1H

(m−j)
3j+3i−2, m > 2,

χm([smN(x,α)]3v+N)

H
(1)
m ([smN(x,α)]3v+N)

= −

m∑
j=1

G3j+3i−2, m > 1,

where i = 1, 2, 3, · · · , N−1
3 .

(v) Let N = 5, 8, 11, 14, · · ·

H
(1)
1 ([smN(x,α)]3v+N) = E3i+2,

H
(1)
m ([smN(x,α)]3v+N) = Em3i+2

m−1∏
j=1

E
(m−j)
3j+3i+2H

(m−j)
3j+3i−1, m > 2,

χm([smN(x,α)]3v+N)

H
(1)
m ([smN(x,α)]3v+N)

= −

m∑
j=1

G3j+3i−1, m > 1,

where i = 1, 2, 3, · · · , N−2
3 .

Here E(.), G(.) and H(.) are given by (3.10), (3.12) and (3.13), respectively.

Proof. Maclaurin series of smN(x,α);N > 1 is given by,

smN(x,α) =
∞∑
v=0

[smN(x,α)]3v+Nx3v+N

(3v+N)!
, N > 1,

where [smN(x,α)]3v+N are Maclaurin series coefficients in polynomials of α. Next assume

(1 − 5αu)(1 − 2αu)(1 +αu) ≡ 1,

in (3.1), (3.4) and FN; (N > 2) ≡ 1 in Theorem 3.1, so that it satisfies Lemma 2.5. Now applying coefficients
of Theorem 3.1 in (2.6) of Lemma 2.5 gives the Hankel determinants for equations (3.1), (3.2), (3.3), (3.4),
(3.5) of Theorem 3.1 by respective enumerates in Theorem 4.1.
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Remark 4.2. Substituting α = 0 in equations (4.1), (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10),
(4.11) for N = 3 in Theorem 4.1 gives the Hankel determinants in [9] ([9, Theorems 10–12, pp 48–50]),
respectively.

Theorem 4.3. Hankel determinants corresponding to Theorem 3.3 are given by,

(i)

H
(1)
1 ([cm(x,α)]3v) = P∗0 , (4.12)

H
(1)
2 ([cm(x,α)]3v) = 6(P∗0 )

2P3, (4.13)

H
(1)
m ([cm(x,α)]3v) = 6(m−1)(P∗0 )

mP
(m−1)
3

m−2∏
j=1

S
(m−j−1)
3j P

(m−j−1)
3j+3 , m > 3, (4.14)

χ1([cm(x,α)]3v)

H
(1)
1 ([cm(x,α)]3v)

= −2, (4.15)

χm([cm(x,α)]3v)

H
(1)
m ([cm(x,α)]3v)

= −

2 +

m−1∑
j=1

R3j

 , m > 2. (4.16)

(ii)

H
(1)
1 ([sm(x,α)cm(x,α)]3v+1) = P

∗
1 , (4.17)

H
(1)
m ([sm(x,α)cm(x,α)]3v+1) = (P∗1 )

m
m−1∏
j=1

S
(m−j)
3j−2 P

(m−j)
3j+1 , m > 2, (4.18)

χ1([sm(x,α)cm(x,α)]3v+1)

H
(1)
1 ([sm(x,α)cm(x,α)]3v+1)

= −12, (4.19)

χm([sm(x,α)cm(x,α)]3v+1)

H
(1)
m ([sm(x,α)cm(x,α)]3v+1)

= −

12 +

m−1∑
j=1

R3j+1

 , m > 2. (4.20)

(iii)

H
(1)
1 ([sm2(x,α)cm(x,α)]3v+2) = 2P∗2 , (4.21)

H
(1)
m ([sm2(x,α)cm(x,α)]3v+2) = 2m(P∗2 )

m
m−1∏
j=1

S
(m−j)
3j−1 P

(m−j)
3j+2 , m > 2, (4.22)

χm([sm2(x,α)cm(x,α)]3v+2)

H
(1)
m ([sm2(x,α)cm(x,α)]3v+2)

= −

m∑
j=1

R3j−1, m > 1. (4.23)

(iv) Let N = 3, 6, 9, 12, · · ·

H
(1)
1 ([smN(x,α)cm(x,α)]3v+N) = P3i,

H
(1)
m ([smN(x,α)cm(x,α)]3v+N) = (P3i)

m
m−1∏
j=1

S
(m−j)
3j+3i−3P

(m−j)
3j+3i , m > 2,

χm([smN(x,α)cm(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm(x,α)]3v+N)

= −

m∑
j=1

R3j+3i−3, m > 1,

where i = 1, 2, 3, · · · , N3 .



A. Kilicman, R. Silambarasan, O. Altun, J. Nonlinear Sci. Appl., 10 (2017), 4000–4014 4011

(v) Let N = 4, 7, 10, 13, · · ·

H
(1)
1 ([smN(x,α)cm(x,α)]3v+N) = P3i+1,

H
(1)
m ([smN(x,α)cm(x,α)]3v+N) = (P3i+1)

m
m−1∏
j=1

S
(m−j)
3j+3i−2P

(m−j)
3j+3i+1 ; m > 2,

χm([smN(x,α)cm(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm(x,α)]3v+N)

= −

m∑
j=1

R3j+3i−2, m > 1,

where i = 1, 2, 3, · · · , N−1
3 .

(vi) Let N = 5, 8, 11, 14, · · ·

H
(1)
1 ([smN(x,α)cm(x,α)]3v+N) = P3i+2,

H
(1)
m ([smN(x,α)cm(x,α)]3v+N) = (P3i+2)

m
m−1∏
j=1

S
(m−j)
3j+3i−1P

(m−j)
3j+3i+2, m > 2,

χm([smN(x,α)cm(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm(x,α)]3v+N)

= −

m∑
j=1

R3j+3i−1, m > 1,

where i = 1, 2, 3, · · · , N−2
3 .

Here P(.), R(.), S(.), P∗0 , P∗1 and P∗2 are given by respective equations (3.24), (3.26), (3.27), (3.31), (3.33) and
(3.35).

Proof. Maclaurin series of smN(x,α)cm(x,α);N > 0 is given by,

smN(x,α)cm(x,α) =
∞∑
v=0

[smN(x, 0)cm(x, 0)]3v+Nx3v+N

(3v+N)!
, N > 0,

where [smN(x,α)cm(x,α)]3v+N;N > 0 denotes Maclaurin series coefficients in polynomials of α. Now
assume (1− 4αu)(1+ 2αu)(1−αu) ≡ 1 in (3.17) and (3.20), (1− 6αu)(1+ 3αu)(1− 3αu) ≡ 1 in (3.18) and
(3.21), QN;N > 2 ≡ 1 in Theorem 3.3 so that it satisfies Lemma 2.5. Applying coefficients of Theorem 3.3
in (2.6) of Lemma 2.5 gives the Hankel determinants for equations (3.17), (3.18), (3.19), (3.20), (3.21), (3.22)
by respective enumerates of Theorem 4.3.

Remark 4.4. Substituting α = 0 in equations (4.12), (4.13), (4.14), (4.15), (4.16), (4.17), (4.18), (4.19), (4.20),
(4.21), (4.22), (4.23), Theorem 4.3 gives the results in [9] ([9, Theorems 13–15, pp 51–53]), respectively.

Theorem 4.5. Hankel determinants corresponding to Theorem 3.5 are given by,

(i)

H
(1)
1 ([cm2(x,α)]3v) = T∗0 ,

H
(1)
2 ([cm2(x,α)]3v) = (T∗0 )

2X∗0T3,

H
(1)
m ([cm2(x,α)]3v) = (T∗0 )

m(X∗0)
m−1(T3)

m−1
m−2∏
j=1

X
(m−j−1)
3j T

(m−j−1)
3j+3 , m > 3,

χ1([cm
2(x,α)]3v)

H
(1)
1 ([cm2(x,α)]3v)

= −W∗0 ,

χm([cm2(x,α)]3v)

H
(1)
m ([cm2(x,α)]3v)

= −

W∗0 +

m−1∑
j=1

W3j

 , m > 2.
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(ii)

H
(1)
1 ([sm(x,α)cm2(x,α)]3v+1) = T

∗
1 ,

H
(1)
2 ([sm(x,α)cm2(x,α)]3v+1) = (T∗1 )

2X∗1T4,

H
(1)
m ([sm(x,α)cm2(x,α)]3v+1) = (T∗1 )

m(X∗1)
m−1(T4)

m−1
m−2∏
j=1

X
(m−j−1)
3j+1 T

(m−j−1)
3j+4 , m > 3,

χ1([sm(x,α)cm2(x,α)]3v+1)

H
(1)
1 ([sm(x,α)cm2(x,α)]3v+1)

= −W∗1 ,

χm([sm(x,α)cm2(x,α)]3v+1)

H
(1)
m ([sm(x,α)cm2(x,α)]3v+1)

= −

W∗1 +

m−1∑
j=1

W3j+1

 , m > 2.

(iii)

H
(1)
1 ([sm2(x,α)cm2(x,α)]3v+2) = T

∗
2 ,

H
(1)
m ([sm2(x,α)cm2(x,α)]3v+2) = (T∗2 )

m
m−1∏
j=1

X
(m−j)
3j−1 T

(m−j)
3j+2 , m > 2,

χm([sm2(x,α)cm2(x,α)]3v+2)

H
(1)
m ([sm2(x,α)cm2(x,α)]3v+2)

= −

m∑
j=1

W3j−1, m > 1.

(iv) Let N = 3, 6, 9, 12, · · ·

H
(1)
1 ([smN(x,α)cm2(x,α)]3v+N) = T3i,

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N) = (T3i)

m
m−1∏
j=1

X
(m−j)
3j+3i−3T

(m−j)
3j+3i , m > 2,

χm([smN(x,α)cm2(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N)

= −

m∑
j=1

W3j+3i−3, m > 1,

where i = 1, 2, 3, · · · , N3 .
(v) Let N = 4, 7, 10, 13, · · ·

H
(1)
1 ([smN(x,α)cm2(x,α)]3v+N) = T3i+1,

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N) = (T3i+1)

m
m−1∏
j=1

X
(m−j)
3j+3i−2T

(m−j)
3j+3i+1, m > 2,

χm([smN(x,α)cm2(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N)

= −

m∑
j=1

W3j+3i−2, m > 1,

where i = 1, 2, 3, · · · , N−1
3 .

(vi) Let N = 5, 8, 11, 14, · · ·

H
(1)
1 ([smN(x,α)cm2(x,α)]3v+N) = T3i+2,

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N) = (T3i+2)

m
m−1∏
j=1

X
(m−j)
3j+3i−1T

(m−j)
3j+3i+2, m > 2,



A. Kilicman, R. Silambarasan, O. Altun, J. Nonlinear Sci. Appl., 10 (2017), 4000–4014 4013

χm([smN(x,α)cm2(x,α)]3v+N)

H
(1)
m ([smN(x,α)cm2(x,α)]3v+N)

= −

m∑
j=1

W3j+3i−1, m > 1,

where i = 1, 2, 3, · · · , N−2
3 .

Here T(.), W(.), X(.), T∗0 , W∗0 , X∗0 , T∗1 , W∗1 , X∗1 and T∗2 are given by respective equations (3.43), (3.45),
(3.46), (3.50), (3.52), (3.53), (3.54), (3.56), (3.57) and (3.58).

Proof. Maclaurin series of smN(x,α)cm2(x,α);N > 0 is given by,

smN(x,α)cm2(x,α) =
∞∑
v=0

[smN(x, 0)cm(x, 0)]3v+Nx3v+N

(3v+N)!
, N > 0,

where [smN(x,α)cm2(x,α)]3v+N;N > 0 denotes Maclaurin series coefficients in polynomials of α. Now
assume V∗0 ≡ 1,V∗1 ≡ 1 and VN;N > 2 ≡ 1 in Theorem 3.5 so that it satisfies Lemma 2.5. Applying
coefficients of Theorem 3.5 in (2.6) of Lemma 2.5 gives the Hankel determinants for equations (3.36),
(3.37), (3.38), (3.39), (3.40), (3.41) by respective enumerates of Theorem 4.5.

Remark 4.6. Theorem 4.5 appears for first time in this work.

5. Conclusion

QCAF expansions of smN(x,α);N > 4, smN(x,α)cm(x,α);N > 3 and smN(x,α)cm2(x,α);N > 0
were appears for the first time in this work to the literature reviewed. Hankel determinants results were
checked with Maple and confirmed that the results were exact as well as coincides with the results of
lower order associated continued fractions in literature. Remarks 4.2 and 4.4 ensures that the assumption
of c0 and cn;n > 1 in the denominator of QACF to 1 is correct in Hankel determinants calculations. Also
the compact form of Hankel determinants results in this work will ease the implementation in any of
the Computer Algebra Software (CAS). For the future study it remains the open query to find Sumudu
transform of cm3(x,α) and other higher powers which leads to the four term recurrences. Next Hankel
determinants calculations of QACF by restricting the assumptions made in this paper remains open query
for further study.
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