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Abstract

In this paper, we study mainly on a class of column upper-minus-lower (CUML) Toeplitz matrices without standard Toeplitz
structure, which are “ similar” to the Toeplitz matrices. Their (−1,−1)-cyclic displacements coincide with cyclic displacement
of some standard Toeplitz matrices. We obtain the formula on representation for the inverses of CUML Toeplitz matrices in
the form of sums of products of (−1, 1)-circulants and (1,−1)-circulants factor by constructing the corresponding displacement
of the matrices. In addition, based on the relation between CUML Toeplitz matrices and CUML Hankel matrices, the inverse
formula of CUML Hankel matrices can also be obtained. c©2017 All rights reserved.
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1. Introduction

Matrices have important applications in pure and applied mathematics [3, 24, 29]. Many scholars
study their properties as well as the representation of their inverse formula. For example, in [31], Potts
and Steidl gave attention to preconditioners for ill-conditioned Toeplitz matrices. The authors studied
the hyponormality and spectra on Toeplitz operators in [5–7, 11]. Artzi and Shalom [4] presented that
three columns of the inverse of a scalar Toeplitz matrix, when properly chosen, are always enough to
reconstruct it. And on this basis Labahn and Shalom showed that the invertibility of a Toeplitz can be
determined through the solvability of two standard equations, and the inverse matrix is represented by
two of its columns and the entries of the original Toeplitz matrix in [25]. In addition, Ng et al. [30]
proposed a modification of G. Labahn-T. Shalom theorem with another (shorter) proof. Labahn and
Shalom [26] presented that formula for the inverse of layered or striped Toeplitz matrices are in the terms
of solutions of standard equations. In [10], the inverse of an invertible Toeplitz matrix was obtained in the
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form of Toeplitz Bezoutian of two columns. The Toeplitz inversion formula involving circulant matrices
have also been proposed in [2, 27, 28].

In [18], Jiang and Hong suggested the inverse formula of CUPL-Toeplitz matrices. Zheng et al. [34]
gave the decomposition formulas of a class of CUPL Toeplitz matrices. The explicit inverse of nonsingular
conjugate-Toeplitz and conjugate-Hankel matrices are provided in [12, 20]. Jiang and Wang [21] presented
that the group inverse of an RFPL-Toeplitz matrix can be represented as the sum of products of lower
and upper triangular Toeplitz matrices. The inverses of CUPL-Toeplitz and CUPL-Hankel matrices can
be expressed by the Gohberg-Heinig type formula in [13].

It is well-known, in [23] that any matrix A ∈ Cn×n is uniquely determined by its displacement,
i.e., ∇0(A) = A− Z0AZ

T
0 , where Z0 is the lower shift matrix. Furthermore, Gohberg and Olshevsky [9]

provided the new formula for representation of matrices (in particular, the Toeplitz matrices) and their
inverses in the form of sums of products of factor circulants based on the analysis of the factor ϕ-cyclic
displacement of matrices. Here the ϕ-cyclic displacement of a matrix A ∈ Cn×n is defined as

∇ϕ(A) = A−ZϕAZ
T
1
ϕ

,

where

Zϕ =



0 · · · · · · 0 ϕ

1
. . . 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


, ϕ 6= 0

is the ϕ-cyclic lower shift matrix [9] (see also [1, 8] for case ϕ = 1).
We derive formula for representation of the inverses of the column upper-minus-lower Toeplitz ma-

trices and the column upper-minus-lower Hankel matrices based on the construct of new cyclic displace-
ments of matrices in a more general situation (see (2.3) below for definition). This formula is involving
with the factor (−1,−1)-circulants instead of the factor ϕ-circulants of the Toeplitz matrices that are the
implications of the corresponding formula given in [9], and are useful for the analysis of the complexity
of the inversion.

2. Preliminaries

According to the characteristics and applications of Toeplitz matrices and the matrices “close” to the
Toeplitz matrices, in this paper we start to study a class of new type matrices “close” to Toeplitz matrices.
More precisely, we deal with a column upper-minus-lower (CUML) Toeplitz matrix of the form as

TCUML =



t0 t−1 · · · t2−n t1−n

t1 t0 − t1
. . . . . . t2−n

t2 t1 − t2
. . . . . .

...
...

...
. . . . . . t−1

tn−1 tn−2 − tn−1 · · · t1 − t2 t0 − t1


n×n

, (2.1)

where t0, t±1, · · · , t±(n−1) are complex numbers.
It is clear, the entries tij of the matrix in (2.1) are given by the following formula:

tij =

{
ti−j, j = 1 or j > i,
ti−j − ti−j+1, 2 6 j 6 i.



X. Jiang, K. Hong, Z. Fu, J. Nonlinear Sci. Appl., 10 (2017), 4058–4070 4060

In particular, if t1−n = t1, t2−n = t2, · · · , t−1 = tn−1, then TCUML is a row first-minus-last right
circulant matrix, which is firstly defined in [32].

In passing, a column upper-minus-lower (CUML) Hankel matrix is of the form as

HCUML =


h0 h1 · · · hn−2 hn−1
h1 . . . . . . hn−1 − hn hn
... . . . . . . hn − hn+1 hn+1

hn−2 . . . . . .
...

...
hn−1 − hn hn − hn+1 · · · h2n−3 − h2n−2 h2n−2


n×n

, (2.2)

where h0,h1, · · · ,h2n−2 are complex numbers.
Obviously, the entries hij of the matrix in (2.2) are given by the following formula:

hij =

{
hi+j−2, j = n or i+ j 6 n,
hi+j−2 − hi+j−1, i+ j > n and j < n.

Specially, if h0 = hn, h1 = hn+1, · · · ,hn−2 = h2n−2, then HCUML is called a row last-minus-first left-
circulant matrix, which is firstly defined in [32].

It should be noted that HCUMLJ is a CUML Toeplitz matrix, where J is the “reverse unit matrix”, having
ones along the antidiagonal and zeros elsewhere.

The (−1,−1)-cyclic displacement of a matrix A ∈ Cn×n is defined as

∇−1,−1(A) = A− Ξ−1,−1AΞ
−1
−1,−1, (2.3)

where

Ξ−1,−1 =



0 0 · · · · · · 0 −1

1 −1
. . . 0

0 1 −1
. . .

...
...

. . . . . . . . . . . .
...

...
. . . 1 −1 0

0 · · · · · · 0 1 −1


, Ξ−1

−1,−1 =



−1 1 1 1 · · · 1

−1 0 1
. . . . . .

...
...

...
. . . . . . . . . 1

−1
...

. . . . . . 1

−1
...

. . . 1
−1 0 · · · · · · · · · 0


,

Ξ−1,−1 is the (−1,−1)-cyclic lower shift matrix. The integer number ε = rank∇−1,−1(A) is referred to as
(−1,−1)-cyclic displacement rank of the matrix A. Matrix A has (−1,−1)-cyclic displacement structure
(with respect to Ξ−1,−1), if ε is comparatively small.

According to the linear transformation ∇−1,−1(·) in Cn×n presented via (2.3), it is quite clear that for
an invertible matrix A ∈ Cn×n, a relation exists between the (−1,−1)-cyclic displacements of the inverse
matrix A−1 and the (−1,−1)-cyclic displacement of A, namely

∇−1,−1(A) = −A · ∇−1,−1(A
−1) · Ξ−1,−1AΞ

−1
−1,−1. (2.4)

From (2.4), we know that the (−1,−1)-cyclic displacement rank is inherited under matrix inversion
rank∇−1,−1(A) = rank∇−1,−1(A

−1). Utilizing the (−1,−1)-cyclic displacement technique, the equation
(2.4) provides a way of constructing the (−1,−1)-cyclic displacement of the inverse matrix of A. If, in
particular, the (−1,−1)-cyclic displacement of A ∈ Cn×n is given as the outer sum

∇−1,−1(A) =

ε∑
i=1

ai · bTi , (2.5)

where ai, bi ∈ Cn, i = 1, 2, · · · , ε, ε = rank∇−1,−1(A), from (2.4), the analogous representation for
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∇−1,−1(A
−1) can be received by solving 2ε matrix equations, involving the matrix A and the vectors of

outer sum (2.5):

∇−1,−1(A
−1) = −

ε∑
i=1

(A−1ai) · (bTi Ξ−1,−1A
−1Ξ−1

−1,−1).

According to the above statement, set b̂Ti = bTi · Ξ−1,−1 (i = 1, 2, · · · , ε) and let the vectors fi and ŝTi be
the solutions of the following equations

Afi = ai (i = 1, 2, · · · , ε), (2.6)

and

ŝTi A = b̂Ti (i = 1, 2, · · · , ε), (2.7)

furthermore, in view of (2.4), we have

∇−1,−1(A
−1) = −

ε∑
i=1

fi · sTi , (2.8)

where

sTi = ŝTi · Ξ−1
−1,−1. (2.9)

Solving the equations

yT1A = eT0 (2.10)

with eT0 = (1, 0, · · · , 0) ∈ Cn, and

Ay2 = e0 (2.11)

yields the first row and the first column of A−1, respectively. Note that, in our consideration, the matrix
A is supposed to be invertible from the very beginning.

Moreover, the solvability of equations (2.6) and (2.11) implies invertibility of A. Indeed, let fi (i =
1, 2, · · · , ε) and y2 be the solutions of (2.6) and (2.11), respectively, and let pTA = 0 with p = (p0,p1, · · · ,
pn−1)

T ∈ Cn. Then

pT (A− Ξ−1,−1AΞ
−1
−1,−1)Ξ−1,−1

(2.5)
==== pT

ε∑
i=1

ai · bTi Ξ−1,−1
(2.6)
==== pTA

ε∑
i=1

fi · bTi Ξ−1,−1 = 0,

so that pTΞ−1,−1A = 0. From

pTΞ−1,−1(A− Ξ−1,−1AΞ
−1
−1,−1)Ξ−1,−1 = pTΞ−1,−1A

ε∑
i=1

fibTi Ξ−1,−1 = 0,

it follows that pTΞ2
−1,−1A = 0. In this way, we get finally

pTΞk−1,−1A = 0, k = 0, 1, · · · ,n− 1.

Post-multiplying the last identities by the solution y2 of the equation (2.11), we can get the following
formula

0 = pTΞk−1,−1Ay2 = pTΞk−1,−1e0, k = 0, 1, · · · ,n− 1,

i.e.,
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p0 = pTe0 = 0, p1 = pTΞ−1,−1e0 = pTe1 = 0,

pk = pTΞk−1,−1e0

= pT [0, (−1)k−1,C1
k−1(−1)k−2,C2

k−1(−1)k−3, · · · ,−Ck−2
k−1, 1, 0, · · · , 0]T = 0, k = 2, 3, · · · ,n− 1,

where Cin is binomial coefficient
(
n

i

)
. Given the above, we can conclude all coordinates of the vector p

are equal to zero, and hence A is invertible. Analogously, we may show that the solvability of equations
(2.7) and (2.10) yields the invertibility of A as well.

Thus, we have proved the following.

Theorem 2.1. Let A ∈ Cn×n, and ∇−1,−1(A) is given by (2.5). If the equations (2.6) and (2.11) ((2.7) and (2.10),
respectively) have the solutions fi and y2 (ŝTi and yT1 ), respectively, then A is invertible, and thus (2.7) and (2.10)
((2.6) and (2.11), respectively) are solvable, and ∇−1,−1(A

−1) is of the form as in (2.8) with sTi = ŝTi · Ξ
−1
−1,−1, i =

1, 2, · · · , ε.

3. Factor circulant decompositions of CUML Toeplitz matrices

Before stating the main results, we first introduce the related notations. In [14–16], RSFPLRcircfr(pT )
denotes the row skew first-plus-last right circulant matrix with the first row pT = [p0 p1 · · · pn−1], i.e.,
the matrix of the form

RSFPLRcircfr(pT ) =



p0 p1 p2 · · · pn−1

−pn−1 p0 + pn−1
. . . . . .

...
... −pn−1 + pn−2

. . . . . . p2

−p2
...

. . . . . . p1
−p1 −p2 + p1 · · · −pn−1 + pn−2 p0 + pn−1


.

It can be seen that it is a matrix with an arbitrary first row and the following rule for obtaining any
other row from the previous one: get the i+ 1st row by adding the last element of the ith row to the first
element of the ith row, and −1 times the last element of the ith row, and then shifting the elements of the
ith row (cyclically) one position to the right.

In this paper, we denote the row skew first-plus-last right circulant with the first column p=[p0 p1 · · ·
pn−1]

T by RSFPLRcircfc(p), i.e., the matrix of the form

RSFPLRcircfc(p) =



p0 −pn−1 −pn−2 · · · −p1

p1 p0 − p1
. . . . . .

...

p2 p1 − p2
. . . . . . −pn−2

...
...

. . . . . . −pn−1
pn−1 pn−2 − pn−1 · · · p1 − p2 p0 − p1


.

If need be, we shall refer to such matrices RSFPLRcircfr(pT ) and RSFPLRcircfc(p) as factor
(−1, 1)-circulants. It should be noted that if pT = (p0,p1, · · · ,pn−1), then

RSFPLRcircfr(pT ) = RSFPLRcircfc(p̃)

with p̃ = (p0 − pn−1 − pn−2 · · · − p1)
T , and that the identity

RSFPLRcircfr(pT )RSFPLRcircfr(qT ) = RSFPLRcircfr(qT )RSFPLRcircfr(pT )

and

RSFPLRcircfc(p)RSFPLRcircfc(q) = RSFPLRcircfc(q)RSFPLRcircfc(p)

holds for any column vector p, q ∈ Cn.
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In [32], RFMLRcircfr(pT ) denotes the row first-minus-last right circulant matrix with the first row
pT = [p0 p1 · · · pn−1], i.e., the matrix of the form

RFMLRcircfr(pT ) =



p0 p1 p2 · · · pn−1

pn−1 p0 − pn−1
. . . . . .

...
... pn−1 − pn−2

. . . . . . p2

p2
...

. . . . . . p1
p1 p2 − p1 · · · pn−1 − pn−2 p0 − pn−1


.

The matrix over C has an arbitrary first row; the following rule is applied to obtain any other row from
the previous one: get the i+ 1st row by subtracting the last element of the ith row from the first element
of the ith row, and then shifting the elements of the ith row (cyclically) one position to the right. In this
paper, we describe the row first-minus-last right circulant with the first column p = [p0 p1 · · · pn−1]

T

by RFMLRcircfc(p), i.e., the matrix of the form

RFMLRcircfc(p) =



p0 pn−1 pn−2 · · · p1

p1 p0 − p1
. . . . . .

...

p2 p1 − p2
. . . . . . pn−2

...
...

. . . . . . pn−1
pn−1 pn−2 − pn−1 · · · p1 − p2 p0 − p1


.

If need be, we shall refer such matrices RFMLRcircfr(pT ) and RFMLRcircfc(p) as factor (1,−1)-
circulants. It should be noted that if pT = (p0,p1, · · · ,pn−1), then

RFMLRcircfr(pT ) = RFMLRcircfc(p̃)

with p̃ = (p0,pn−1,pn−2, · · · ,p1)
T , and that the identity

RFMLRcircfr(pT )RFMLRcircfr(qT ) = RFMLRcircfr(qT )RFMLRcircfr(pT )

and

RFMLRcircfc(p)RFMLRcircfc(q) = RFMLRcircfc(q)RFMLRcircfc(p)

holds for any column vector p, q ∈ Cn.
In particular, let TCUML be an n×n CUML Toeplitz matrix with (t0, t−1, · · · , t1−n) and (t0, t1, · · · , tn−1)

T

as its first row and first column, respectively. Considering the (−1,−1)-cyclic displacement of TCUML, we
have

∇−1,−1(TCUML) = TCUML − Ξ−1,−1TCUMLΞ
−1
−1,−1

=


0 t−1 + tn−1 · · · t1−n + t1

t1 + t1−n 0 · · · 0
...

...
...

tn−1 + t−1 0 · · · 0



=


β

t1 + t1−n
...

tn−1 + t−1

 · eT0 + e0 ·
(
−β t−1 + tn−1 · · · t1−n + t1

)
= x · eT0 + e0 · zT ,

(3.1)
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where β may be an arbitrary complex number, x = (β, t1 + t1−n, · · · , tn−1 + t−1)
T , zT = (−β, t−1 +

tn−1, · · · , t1−n + t1), e0 = (1, 0, · · · , 0)T ∈ Cn.
Obviously, (−1,−1)-cyclic displacement rank for the CUML Toeplitz matrix is less than or equal to 2,

so that such TCUML has (−1,−1)-cyclic displacement structure if n is sufficiently large.
Furthermore, in the CUML Toeplitz matrix case, ∇−1,−1(TCUML) also has the specific form given by

(3.1). Then the equations (2.6) and (2.7) reduce respectively to

TCUMLf1 = x and TCUMLf2 = e0, (3.2)

and

ŝT1 TCUML = eT0 Ξ−1,−1 and ŝT2 TCUML = zTΞ−1,−1. (3.3)

Thus, by (2.8), we have

∇−1,−1(T
−1
CUML) = −

2∑
i=1

fi · sTi , (3.4)

where

f1 = T−1
CUMLx, sT1 = eT0 Ξ−1,−1T

−1
CUMLΞ

−1
−1,−1, f2 = T−1

CUMLe0, sT2 = zTΞ−1,−1T
−1
CUMLΞ

−1
−1,−1.

Then from (2.5) and [1, 8], we can easily obtain the next theorem.

Theorem 3.1. If the equality

∇−1,−1(TCUML) =

ε∑
i=1

ai · bTi , (ai, bi ∈ Cn)

holds, then

TCUML = RSFPLRcircfc(TCUML) +

ε∑
i=1

L(ai) · SCirc(bT
i ),

where RSFPLRcircfc(TCUML) is the row skew first-plus-last right circulant with the same first column as that of
TCUML, and L(ai) is the lower triangular Toeplitz matrix with the first column ai = (ai0,ai1, · · · ,ai,n−1)

T , and
SCirc(bT

i ) is the skew circulant matrix with the first row bTi = (bi0,bi1, · · · ,bi,n−1), [17, 19, 22, 33].

Theorem 3.2. Let ∇−1,−1(·) be the linear operator in Cn×n defined by (2.3). Then the following statements hold:

(i) the equality ∇−1,−1(A) = 0 holds if and only if A is a row skew first-plus-last right circulant matrix;
(ii) if the equation

∇−1,−1(X) =

ε∑
i=1

ai · bTi , (3.5)

where ai, bTi (i = 1, 2, · · · , ε) are given vectors, is solvable with respect to X ∈ Cn×n, then
ε∑
i=1

RSFPLRcircfc(ai) ·RSFPLRcircfr(bTi ) = 0; (3.6)

(iii) if 2ε vectors ai and bTi (i = 1, 2, · · · , ε) satisfy the condition (3.6), then the equation (3.5) has the solution

X = RSFPLRcircfc(X) +
1
2

ε∑
i=1

RFMLRcircfc(ai) ·RSFPLRcircfr(bTi ), (3.7)

where RSFPLRcircfc(X) is the row skew first-plus-last right circulant with the same first column as that of X;
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(iv) under the conditions of the assertion (iii) the solution X of the equation (3.5) may also be written in the form

X = RSFPLRcircfr(X) +
1
2

ε∑
i=1

RSFPLRcircfc(ai) ·RFMLRcircfr(bTi ),

where RSFPLRcircfr(X) is the row skew first-plus-last right circulant with the same first row as that of X.

Proof.

(i) Let matrix A = (aij)
n−1
i,j=0 meet the requirement ∇−1,−1(A) = 0, i.e., A = Ξ−1,−1AΞ

−1
−1,−1. From this

equality, it follows that:
aij = ai+1,j+1, if j 6= 0,
a0j = −an−j,0, if j 6= 0,
ai0 = −a0,n−i, if i 6= 0,
ai1 = ai−1,0 + ai,0, if i 6= 0.

By definition, these relations describe that A is a row skew first-plus-last right circulant matrix.
On the other hand, if A is a row skew first-plus-last right circulant matrix, calculating by the formula

(2.3) we get ∇−1,−1(A) = 0.

(ii) Let ∇−1,−1(X) =
ε∑
i=1

ai · bTi . Then taking into account the equality (2.3), we have

0 =

n−1∑
j=0

Ξ
j
−1,−1 · (X− Ξ−1,−1XΞ

−1
−1,−1) · (Ξ

T
−1,−1)

j

=

n−1∑
j=0

ε∑
i=1

(Ξj−1,−1ai) · (bTi (ΞT−1,−1)
j) =

ε∑
i=1

RSFPLRcircfc(ai) ·RSFPLRcircfr(bTi ).

The last equality follows from the general identity U · VT =
n−1∑
k=0

fk · sTk , where fk and sk are the k-th

columns of the matrices U and V , correspondingly. The assertion (ii) is proved.

(iii) Suppose that vectors ai, bi (i = 1, 2, · · · , ε) satisfy the condition (3.6) and compute the (−1,−1)-cyclic
displacement of the matrix X defined by (3.7). Therefore we have

∇−1,−1(X) = ∇−1,−1(RSFPLRcircfc(X)) +
1
2

ε∑
i=1

∇−1,−1(RFMLRcircfc(ai)) ·RSFPLRcircfr(bTi ). (3.8)

Clearly, (−1,−1)-cyclic displacement for RFMLRcircfc(r) with the first column r = [r0 r1 · · · rn−1]
T , has

the following simple form

∇−1,−1(RFMLRcircfc(r)) =


0 2rn−1 · · · 2r1

2r1 0 · · · 0
...

...
...

2rn−1 0 · · · 0

 = 2(r · eT0 − e0 · r̃T ),

where r̃T = [r0 − rn−1 − rn−2 · · · − r1] is the first row of the RSFPLRcircfc(r). Calculating in this way, the
(−1,−1)-cyclic displacement for each matrix RFMLRcircfc(ai) on the right hand side of (3.8) and taking
into account that ∇−1,−1(RSFPLRcircfc(X)) = 0 in view of (i), we have

∇−1,−1(X) =

ε∑
i=1

ai · eT0 ·RSFPLRcircfr(bTi ) −
ε∑
i=1

e0 · ãTi ·RSFPLRcircfr(bTi ), (3.9)
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where ãTi are the first rows of the matrices RSFPLRcircfc(ai) (i = 1, 2, · · · , ε). Therefore, in view of (3.6)
the sum of the last ε terms in (3.9) is equal to zero matrix. Furthermore, eT0 · RSFPLRcircfr(bTi ) = bTi
(i = 1, 2, · · · , ε), and hence the matrix X defined by (3.7) satisfies the equation (3.5), therefore, in view
of (3.6), the first columns of the matrices X and RSFPLRcircfc(X) coincide. The assertion (iii) is now
completely proved.

(iv) The assertion (iv) can be proved with the same arguments.

According to the proposition (i) of Theorem 3.2, every complex matrix A is determined by its (−1,−1)-
cyclic displacement up to a row skew first-plus-last right circulant matrix. Therefore, an arbitrary complex
matrix is uniquely determined by its (−1,−1)-cyclic displacement and any one of its rows or columns.

4. Inversion of CUML Toeplitz and CUML Hankel matrices

Before stating the main results below, we first introduce the related notations.

Theorem 4.1. Let TCUML be an arbitrary CUML Toeplitz matrix and let ∇−1,−1(·) be the linear operator in Cn×n

defined by (2.3). If the corresponding equations (3.2) and (3.3) have the solutions fi and ŝTi (i = 1, 2), respectively,
then

2∑
i=1

RSFPLRcircfc(fi) ·RSFPLRcircfr(sTi ) = 0, (4.1)

where sTi = ŝTi · Ξ
−1
−1,−1.

Proof. As TCUML is an arbitrary n×n CUML Toeplitz matrix, then TCUML satisfies the condition

TTCUML = Z−1JΞ−1,−1 · TCUML · Ξ−1
−1,−1JZ

−1
−1,

where

Z−1 =


0 · · · · · · 0 −1
1 0 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

 , J =



0 · · · · · · 0 1
... . . . 1 0
... . . . . . . . . .

...

0 1 . . .
...

1 0 · · · · · · 0


,

i.e., Z−1 is the skew cyclic lower shift matrix [17], J is the n×n reverse unit matrix, and Ξ−1,−1 is the same
as in the equation (2.3). Assume that Ψ = Z−1JΞ−1,−1. Then

TTCUML = ΨTCUMLΨ
−1, (4.2)

where

Ψ =


0 0 · · · 0 1
0 . . . 1 −1
... . . . . . . . . . 0

0 1 . . . . . .
...

1 −1 0 · · · 0

 and Ψ−1 =


1 1 · · · 1 1
1 . . . 1 0
... . . . . . . . . .

...
1 1 . . . 0
1 0 · · · 0 0

 .

For TCUML and the representation (3.1) with a given β ∈ C of its (−1,−1)-cyclic displacement, we
assume that the corresponding equations (3.2) and (3.3) have the solutions f1 and f2, and ŝT1 and ŝT2 ,
respectively, that is,

TCUMLf1 = x, TCUMLf2 = e0,
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and
ŝT1 TCUML = eT0 · Ξ−1,−1, ŝT2 TCUML = zT · Ξ−1,−1.

Set, as in equation (2.9),

sT1 = ŝT1 · Ξ−1
−1,−1, sT2 = ŝT2 · Ξ−1

−1,−1. (4.3)

Performing transformations to both equations in (4.3) and taking into account the identity (4.2), and
eT0 = −eT0 Z−1J, zT = xTZ−1J, we can get that vectors sT1 and sT2 are related with the solutions f2 =
(f2,0, f2,1, · · · , f2,n−1)

T and f1 = (f1,0, f1,1, · · · , f1,n−1)
T of the equations TCUMLf2 = e0 and TCUMLf1 = x in

the following way

sT1 = eT0 · Ξ−1,−1 · T−1
CUMLΞ

−1
−1,−1 = −fT2 Z−1J, sT2 = zT · Ξ−1,−1 · T−1

CUMLΞ
−1
−1,−1 = fT1 Z−1J.

These imply that sT1 = (f2,0 − f2,n−1 · · · − f2,1) is the first row of the matrix RSFPLRcircfc(f2), and
−sT2 = (f1,0 − f1,n−1 · · · − f1,1) is the first row of the matrix RSFPLRcircfc(f1). Hence,

RSFPLRcircfc(f1) = −RSFPLRcircfr(sT2 ), RSFPLRcircfc(f2) = RSFPLRcircfr(sT1 ).

As
RSFPLRcircfr(f1)RSFPLRcircfr(f2) = RSFPLRcircfr(f2)RSFPLRcircfr(f1),

the assertion (ii) is now completely proved.

Next, we give the main results of this paper.

Theorem 4.2. Let TCUML be a CUML Toeplitz matrix with the (−1,−1)-cyclic displacement being given in (3.1)
as the outer sum ∇−1,−1(TCUML) = x · eT0 + e0 · zT .

(i) If the equations (3.2), (3.3), and (2.10) have the corresponding solutions fi, ŝTi (i=1,2) and yT1 , then TCUML is
invertible and T−1

CUML is of the form as

T−1
CUML = RSFPLRcircfr(yT1 ) −

1
2

2∑
i=1

RSFPLRcircfc(fi) ·RFMLRcircfr(sTi ), (4.4)

where sTi = ŝTi · Ξ
−1
−1,−1 (i = 1, 2) and RSFPLRcircfr(yT1 ) is a row skew first-plus-last right circulant matrix

with the first row yT1 .
(ii) If the equations (3.2), (3.3), and (2.11) have the corresponding solutions fi, ŝTi (i=1,2) and y2, then TCUML is

invertible and T−1
CUML may also be written in the form

T−1
CUML = RSFPLRcircfc(y2) −

1
2

2∑
i=1

RFMLRcircfc(fi) ·RSFPLRcircfr(sTi ), (4.5)

where sTi = ŝTi · Ξ
−1
−1,−1 (i = 1, 2) and RSFPLRcircfc(y2) is a row skew first-plus-last right circulant with

the first column y2.

Proof. Due to Theorem 2.1, the solvability of the corresponding equations (3.2) yields the invertibility of
TCUML. Then the equations (3.3) are also solvable.

Now, we shall verify the equation (4.4). Observe Theorem 4.1 that vectors fi, sTi = ŝTi · Ξ
−1
−1,−1 (i =

1, 2) satisfy the condition (4.1), where fi, ŝTi (i = 1, 2) are the solutions of the equations (3.2) and (3.3),
respectively, and calculate the (−1,−1)-cyclic displacement of the matrix on the right hand side of (4.4),
denoted by B. The matrices RSFPLRcircfc(fi) (i = 1, 2) are row skew first-plus-last right circulants, and
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RFMLRcircfr(sTi ) (i = 1, 2) are row first-minus-last right circulants and hence are computable. From (4.4),
we deduce that:

∇−1,−1(B) = ∇−1,−1(RSFPLRcircfr(yT1 )) −
1
2

2∑
i=1

∇−1,−1[RSFPLRcircfc(fi) ·RFMLRcircfr(sTi )]

= ∇−1,−1(RSFPLRcircfr(yT1 )) −
1
2

2∑
i=1

RSFPLRcircfc(fi) · ∇−1,−1[RFMLRcircfr(sTi )].

(4.6)

The last equality follows from (2.3) and Theorem 4.1, as

∇−1,−1[RSFPLRcircfc(fi) ·RFMLRcircfr(sTi )]

=RSFPLRcircfc(fi) ·RFMLRcircfr(sTi )

− Ξ−1,−1RSFPLRcircfc(fi)Ξ−1
−1,−1 · Ξ−1,−1RFMLRcircfr(sTi )Ξ

−1
−1,−1

=RSFPLRcircfc(fi)[RFMLRcircfr(sTi ) − Ξ−1,−1RFMLRcircfr(sTi )Ξ
−1
−1,−1]

=RSFPLRcircfc(fi) · ∇−1,−1[RFMLRcircfr(sTi )], i = 1, 2.

Computing in this way the (−1,−1)-cyclic displacement for each matrix RFMLRcircfr(sTi ) on the right
hand side of (4.6) and taking into account the fact that ∇−1,−1(RSFPLRcircfr(yT1 )) = 0 (see (i) of Theorem
3.2), we obtain

∇−1,−1(B) =

2∑
i=1

RSFPLRcircfc(fi) · s̃i · eT0 −

2∑
i=1

RSFPLRcircfc(fi) · e0 · sTi , (4.7)

where s̃i is the first column of the RSFPLRcircfr(sTi ) (i = 1, 2). Therefore, in view of Theorem 4.1, the
first two terms on the right of (4.7) are equal to the zero matrix. Furthermore, RSFPLRcircfc(fi) · e0 = fi

(i = 1, 2), and hence the matrix B satisfies (4.6), ∇−1,−1(B) = −
2∑
i=1

fi · sTi , so that by (3.4), ∇−1,−1(T
−1
CUML) =

∇−1,−1(B), therefore, in view of (4.1), the first rows of the matrices T−1
CUML and B (or RSFPLRcircfr(yT1 ))

coincide. Thus B = T−1
CUML. The proof of assertion (i) is now completed.

The assertion (ii) can be proved in the same way as that given in (i).

From (i) and (ii) of Theorem 4.2, we further deduce the following.

Theorem 4.3. Let TCUML be a CUML Toeplitz matrix and let ∇−1,−1(TCUML) be of the form as in (3.1). If β ∈ C
and the equations (3.2) have the solutions f1 and f2, then TCUML is invertible and T−1

CUML is of the form as

T−1
CUML =

1
2
[
RFMLRcircfc(2e0 − f1) ·RSFPLRcircfc(f2) + RFMLRcircfc(f2) ·RSFPLRcircfc(f1)

]
. (4.8)

Proof. In view of (i) of Theorem 4.2, T−1
CUML does exist under the assumption of the theorem. We only need

to show that the formula (4.8) holds. Let the vectors f1 and f2 be the solutions of the equations (3.2). By
TCUMLf2 = e0, we have RSFPLRcircfc(T−1

CUML) = RSFPLRcircfc(f2); furthermore, in view of the arguments
of Theorem 4.1, RSFPLRcircfc(f1) = −RSFPLRcircfr(sT2 ), and RSFPLRcircfc(f2)= RSFPLRcircfr(sT1 ). Now,
wielding these expressions and (4.5), we can get the desired result.

Theorem 4.3 states that if TCUML is a CUML Toeplitz matrix and the equations (3.2) have solutions f1
and f2, then they are sufficient for restoring the whole matrix T−1

CUML.
Another representation of the inverse of a CUML Toeplitz matrix is obtained in the following theorem.
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Theorem 4.4. Let TCUML be a CUML Toeplitz matrix of the form as in (2.1). If for some γ ∈ C and the equations

TCUMLf2 = e0 and TCUML s = (γ, t−n+1, · · · , t−1)
T (4.9)

are solvable, then TCUML is invertible, and T−1
CUML is of the form as

T−1
CUML =

1
2
[RFMLRcircfc(e0 − s)RSFPLRcircfc(f2) + RFMLRcircfc(f2)RSFPLRcircfc(e0 + s)].

Proof. Let s ∈ Cn be a solution of the second equation in (4.9). Then the vector f1 = e0 + s solves the first
equation in (3.2) with β = t0 + γ, that is, TCUML(e0 + s) = (t0 + γ, t1 + t1−n, · · · , tn−1 + t−1)

T . Thus the
results of Theorem 4.4 are straightforward consequence of Theorem 4.3.

According to the definitions and characteristics of CUML Toeplitz matrices and CUML Hankel ma-
trices, the relationship between them is easy to comprehend. Thus, we can obtain the inverses of CUML
Hankel matrices.

Theorem 4.5. Let HCUML = (hi,j)
n−1
i,j=0 be an arbitrary CUML Hankel matrix defined by (2.2), and let J be the

reverse unit matrix. Then an n× n CUML Toeplitz matrix TCUML exists which satisfies that TCUML = HCUMLJ,
and HCUML is invertible if and only if TCUML is also. In that case the inverse of matrix HCUML is H−1

CUML = JT−1
CUML,

and Theorems 4.2, 4.3, and 4.4 are applicable to describe the formula on representation of the inverse of HCUML.
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