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Abstract
In this paper, by using the w-compatible conditions of mapping pair, we discuss the existence and uniqueness problem of

the common coupled fixed point for mappings defined on a set equipped with two rectangular b-metrics. Some new common
coupled fixed point theorems are obtained. We also provide illustrative examples in support of our new results. As application,
we provide an existence and uniqueness theorem of common solution for a class of nonlinear integral equations by using
the obtained new result. The results presented in this paper generalize the well-known comparable results in the literature.
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1. Introduction and preliminaries

The concept of rectangular metric space was first introduced by Branciari [6] in 2000. The applications
and theories in rectangular metric space have also been extensively studied by many scholars [2, 3, 5,
8, 10, 12, 14–16, 18, 19, 21] and they also have proved the common fixed point theorems under Banach
contractive conditions and Kannan type contractive conditions in rectangular metric spaces.

In 2015, George et al. [11] introduced the concept of rectangular b-metric space. It is well-known
that rectangular b-metric space is an important generalization of usual metric space, b-metric spaces
[7], and rectangular metric spaces. Since then, Aydi et al. [4], Ding et al. [9], and Roshan et al. [20]
obtained some fixed point and common fixed point results for mappings satisfying different contractive
conditions in rectangular b-metric spaces. However, so far, no one discussed coupled fixed point problem
in rectangular b-metric space.

The purpose of this paper is to prove some new coupled common fixed point theorems for mappings
defined on a set equipped with two b-rectangular metrics. We also provide an existence and uniqueness
theorem of solution for a class of nonlinear integral equations by using the obtained result.

Firstly, given some basic notions before introducing some main results.

Definition 1.1 ([7]). Let X be a nonempty set and s > 1 be a given real number. A function b : X× X →
[0,∞) is a b-metric on X if, for all x,y, z ∈ X, the following conditions hold:
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(b1) b(x,y) = 0 if and only if x = y;
(b2) b(x,y) = b(y, x);
(b3) b(x, z) 6 s[b(x,y) + b(y, z)] (b-triangular inequality).

In this case, the pair (X,b) is called a b-metric space (metric type space).

Definition 1.2 ([6]). Let X be a nonempty set, and let r : X× X → [0,∞) be a mapping such that for all
x,y ∈ X and all distinct points u, v ∈ X, each distinct from x and y:

(R1) r(x,y) = 0 if and only if x = y;
(R2) r(x,y) = r(y, x);
(R3) r(x, z) 6 r(x,u) + r(u, v) + r(v, z) (rectangular inequality).

Then (X, r) is called a rectangular or generalized metric space or Branciari’s space.

For properties and definitions of notions in Branciari’s spaces see [5].

Definition 1.3 ([11]). Let X be a nonempty set, s > 1 be a given real number and let rb : X× X → [0,∞)
be a mapping such that for all x,y ∈ X and distinct points u, v ∈ X, each distinct from x and y:

(Rb1) rb(x,y) = 0 if and only if x = y;
(Rb2) rb(x,y) = rb(y, x);
(Rb3) rb(x, z) 6 s[rb(x,u) + rb(u, v) + rb(v, z)] (b-rectangular inequality).

Then (X, rb) is called a rectangular b-metric space (RbMS) or a generalized b-metric space (b-g.m.s).
Moreover, s > 1 is the coefficient of rectangular b-metric space X.

Note that every metric space is a rectangular metric space and every rectangular metric space is a
rectangular b-metric space (with coefficient s = 1). However the converse is not necessarily true ([11,
Examples 2.4 and 2.5]). Also, every metric space is a b-metric space (metric type space) and every b-
metric space is a rectangular b-metric space (not necessarily with the same coefficient).

Note also that every b-metric space with coefficient s is a rectangular b-metric space with coefficient
s2 but the converse is not necessarily true ([11, Example 2.7]).

Definition 1.4 ([11]). Let (X, rb) be a rectangular b-metric space, {xn} be a sequence in X, and x ∈ X. Then

(a) the sequence {xn} is said to be convergent in X and converges to x, if for every ε > 0 there exists
n0 ∈N such that rb(xn, x) < ε for all n > n0 and this fact is represented by limn→∞ xn = x or xn → x

as n→∞;
(b) the sequence {xn} is said to be Cauchy sequence in (X, rb) if for every ε > 0 there exists n0 ∈N such

that rb(xn, xn+p) < ε for all n > n0, p > 0 or equivalently, if limn→∞ rb(xn, xn+p) = 0 for all p > 0;
(c) (X, rb) is said to be a complete rectangular b-metric space if every Cauchy sequence in X converges to

some x ∈ X.

Note that limit of sequence in a rectangular b-metric space is not necessarily unique and also every
rectangular b-metric convergent sequence in a rectangular b-metric space is not necessarily rectangular
b-metric-Cauchy ([11, Example 2.7]).

Definition 1.5 ([13]). An element (x,y) ∈ X×X is called a coupled fixed point of the mapping F : X×X→
X, if F(x,y) = x, F(y, x) = y.

Definition 1.6 ([17]). An element (x,y) ∈ X× X is called a coupled coincidence point of the mappings
F : X× X → X and g : X → X, if F(x,y) = gx, F(y, x) = gy, and in this case, (gx,gy) is called a coupled
point of coincidence.

Definition 1.7 ([17]). An element (x,y) ∈ X× X is called a common coupled fixed point of mappings
F : X×X→ X and g : X→ X, if F(x,y) = gx = x, F(y, x) = gy = y.

Definition 1.8 ([1]). Let X be a nonempty set. A pair of mappings F : X×X→ X and g : X→ X are called
to be w-compatible, if F(x,y) = gx and F(y, x) = gy, then we have gF(x,y) = F(gx,gy).
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2. Main results

Theorem 2.1. Let X be a nonempty set and rb1, rb2 are two rectangular b-metrics in X such that rb2(x,y) 6
rb1(x,y), for all x,y ∈ X. And the real number s > 1 is the coefficient of rectangular b-metric d1. Suppose that
F : X×X→ X and g : X→ X are two mappings, and there exist k1,k2, and k3 in [0, 1) with 0 6 k1 + k2 + k3 < 1
and 0 6 sk3 < 1 such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k1[rb2(gx,gu) + rb2(gy,gv)]
+ k2[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
+ k3[rb2(gu, F(u, v)) + rb2(gv, F(v,u))]

(2.1)

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, satisfying that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are w-
compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that u =
gu = F(u,u).

Proof. Let (x0,y0) ∈ X× X, by making the use of F(X× X) ⊂ g(X), then there exist x1,y1 ∈ X such that
gx1 = F(x0,y0), gy1 = F(y0, x0), and gz1 = F(z0, x0). By similar arguments as above, we can show that
there exist x2,y2 ∈ X such that gx2 = T(x1,y1) and gy2 = T(y1, x1), · · · . Repeating the above procedure,
we can construct two sequences {xn} and {yn} such that

gxn+1 = F(xn,yn), gyn+1 = F(yn, xn), ∀n > 0.

By taking (x,y) = (xn,yn) and (u, v) = (xn+1,yn+1) in (2.1), we obtain

rb1(gxn+1,gxn+2) + rb1(gyn+1,gyn+2)

= rb1(F(xn,yn), F(xn+1,yn+1)) + rb1(F(yn, xn), F(yn+1, xn+1))

6 k1[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)] + k2[rb2(gxn, F(xn,yn)) + rb2(gyn, F(yn, xn))]
+ k3[rb2(gxn+1, F(xn+1,yn+1)) + rb2(gyn+1, F(yn+1, xn+1))]

= k1[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)] + k2[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)]

+ k3[rb2(gxn+1,gxn+2) + rb2(gyn+1,gyn+2)]

6 k1[rb1(gxn,gxn+1) + rb1(gyn,gyn+1)] + k2[rb1(gxn,gxn+1) + rb1(gyn,gyn+1)]

+ k3[rb1(gxn+1,gxn+2) + rb1(gyn+1,gyn+2)].

(2.2)

It follows from (2.2) that

rb1(gxn+1,gxn+2) + rb1(gyn+1,gyn+2) 6

(
k1 + k2

1 − k3

)
[rb1(gxn,gxn+1) + rb1(gyn,gyn+1)]

= k[rb1(gxn,gxn+1) + rb1(gyn,gyn+1)],
(2.3)

where k = k1+k2
1−k3

, by the condition 0 6 k1 + k2 + k3 < 1, then we have 0 6 k < 1. By taking δn =
rb1(gxn,gxn+1)+ rb1(gyn,gyn+1) and repetition of the above inequality (2.3) n+ 1 times, we deduce that

δn+1 6 kδn 6 k2δn−1 6 · · · 6 kn+1δ0. (2.4)

As (x,y) = (xn,yn) and (u, v) = (xn+2,yn+2) in (2.1), also with (2.4), we get

rb1(gxn+1,gxn+3) + rb1(gyn+1,gyn+3)

= rb1(F(xn,yn), F(xn+2,yn+2)) + rb1(F(yn, xn), F(yn+2, xn+2))

6 k1[rb2(gxn,gxn+2) + rb2(gyn,gyn+2)] + k2[rb2(gxn, F(xn,yn)) + rb2(gyn, F(yn, xn))]
+ k3[rb2(gxn+2, F(xn+2,yn+2)) + rb2(gyn+2, F(yn+2, xn+2))]
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= k1[rb2(gxn,gxn+2) + rb2(gyn,gyn+2)] + k2[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)]

+ k3[rb2(gxn+2,gxn+3) + rb2(gyn+2,gyn+3)]

6 k1[rb2(gxn,gxn+2) + rb2(gyn,gyn+2)] + k2[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)] (2.5)

+ k3k
2[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)]

= k1[rb2(gxn,gxn+2) + rb2(gyn,gyn+2)] + (k2 + k3k
2)[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)]

6 k1[rb1(gxn,gxn+2)+rb1(gyn,gyn+2)]+(k2+k3k
2)[rb1(gxn,gxn+1)+rb1(gyn,gyn+1)].

By taking
δ∗n = rb1(gxn,gxn+2) + rb1(gyn,gyn+2)

and from k = k1+k2
1−k3

∈ [0, 1), we have

k1 + k2 + k3k
2 6 k1 + k2 + k3k = k1 + k2 + k3

k1 + k2

1 − k3
=
k1 + k2

1 − k3
= k.

Consequently, by the use of (2.4) and (2.5), we have

δ∗n+1 6 k1δ
∗
n + (k2 + k3k

2)δn 6 (k1 + k2 + k3k
2)max{δn, δ∗n} 6 kmax{δn, δ∗n}. (2.6)

It follows from (2.4) and (2.6) that

δ∗n+1 6 kmax{δn, δ∗n} 6 kmax{kδn−1,kmax{δn−1, δ∗n−1}}

= k2 max{δn−1, δ∗n−1} 6 k
3 max{δn−2, δ∗n−2} 6 · · · 6 kn+1 max{δ0, δ∗0 }.

(2.7)

Next, we show that {gxn} and {gyn} are Cauchy sequences in g(X). For this, we consider rb1(xn, xn+p)
two cases.

Case 1. p is an odd number, assume that p = 2m+ 1, then using (Rb3) we obtain

rb1(gxn,gxn+p) = rb1(gxn,gxn+2m+1)

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2) + rb1(gxn+2,gxn+2m+1)]

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)]

+ s2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4) + rb1(gxn+4,gxn+2m+1)]

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)] + s
2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4)]

+ s3[rb1(gxn+4,gxn+5) + rb1(gxn+5,gxn+6) + rb1(gxn+6,gxn+2m+1)]

6 · · ·
6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)] + s

2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4)]

+ s3[rb1(gxn+4,gxn+5) + rb1(gxn+5,gxn+6)] + · · ·
+ sm[rb1(gxn+2m−2,gxn+2m−1) + rb1(gxn+2m−1,gxn+2m) + rb1(gxn+2m,gxn+2m+1)].

That is

rb1(gxn,gxn+p)

= rb1(gxn,gxn+2m+1)

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)] + s
2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4)]

+ s3[rb1(gxn+4,gxn+5) + rb1(gxn+5,gxn+6)] + · · ·
+ sm[rb1(gxn+2m−2,gxn+2m−1)+rb1(gxn+2m−1,gxn+2m)]+smrb1(gxn+2m,gxn+2m+1).

(2.8)

We can similarly prove the following result
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rb1(gyn,gyn+p)

= rb1(gyn,gyn+2m+1)

6 s[rb1(gyn,gyn+1) + rb1(gyn+1,gyn+2)] + s
2[rb1(gyn+2,gyn+3) + rb1(gyn+3,gyn+4)] (2.9)

+ s3[rb1(gyn+4,gyn+5) + rb1(gyn+5,gyn+6)] + · · ·
+ sm[rb1(gyn+2m−2,gyn+2m−1)+rb1(gyn+2m−1,gyn+2m)]+smrb1(gyn+2m,gyn+2m+1).

Combining (2.4), (2.8), and (2.9), we have

rb1(gxn,gxn+p) + rb1(gyn,gyn+p)

= rb1(gxn,gxn+2m+1) + rb1(gyn,gyn+2m+1)

6 s(δn+δn+1)+s
2(δn+2+δn+3)+· · ·+sm(δn+2m−2+δn+2m−1)+s

mδn+2m

6 s
(
kn+kn+1) δ0+s

2 (kn+2+kn+3) δ0+· · ·+sm
(
kn+2m−2+kn+2m−1) δ0+s

mkn+2mδ0

= skn(1 + k)
[
1 + sk2 +

(
sk2)2

+ · · ·+
(
sk2)m−1

]
δ0 + s

mkn+2mδ0

=


[
skn(1 + k) ·m+ smkn+2m

]
δ0, sk2 = 1,(

skn(1 + k) · 1−(sk2)
m

1−sk2 + smkn+2m
)
δ0, sk2 6= 1,

6


[
skn(1 + k) ·m+ smkn+2m

]
δ0, sk2 = 1,(

skn(1+k)
1−sk2 + smkn+2m

)
δ0, sk2 6= 1.

(2.10)

Case 2. p is an even number, assume that p = 2m, then using (Rb3) we obtain

rb1(gxn,gxn+p)

= rb1(gxn,gxn+2m)

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2) + rb1(gxn+2,gxn+2m)]

6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)]

+ s2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4) + rb1(gxn+4,gxn+2m)]

6 · · ·
6 s[rb1(gxn,gxn+1) + rb1(gxn+1,gxn+2)] + s

2[rb1(gxn+2,gxn+3) + rb1(gxn+3,gxn+4)]

+ · · ·+ sm−1[rb1(gxn+2m−4,gxn+2m−3) + rb1(gxn+2m−3,gxn+2m−2)]

+ sm−1rb1(gxn+2m−2,gxn+2m).

(2.11)

By similar arguments as above,

rb1(gyn,gyn+p)

= rb1(gyn,gyn+2m)

6 s[rb1(gyn,gyn+1) + rb1(gyn+1,gyn+2)] + s
2[rb1(gyn+2,gyn+3) + rb1(gyn+3,gyn+4)]

+ · · ·+ sm−1[rb1(gyn+2m−4,gyn+2m−3) + rb1(gyn+2m−3,gxn+2m−2)]

+ sm−1[rb1(gyn+2m−2,gyn+2m)].

(2.12)

Combining (2.4), (2.7), (2.11) and (2.12), we have

rb1(gxn,gxn+p) + rb1(gyn,gyn+p)

= rb1(gxn,gxn+2m) + rb1(gyn,gyn+2m)
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6 s(δn + δn+1) + s
2(δn+2 + δn+3) + · · ·+ sm−1(δn+2m−4 + δn+2m−3) + s

m−1δ∗n+2m−2

6 s
(
kn + kn+1) δ0 + s

2 (kn+2 + kn+3) δ0

+ · · ·+ sm−1 (kn+2m−4 + kn+2m−3) δ0 + s
m−1kn+2m−2 max{δ0,d∗0 } (2.13)

= skn(1 + k)
[
1 + sk2 +

(
sk2)2

+ · · ·+
(
sk2)m−2

]
δ0 + s

m−1kn+2m−2 max{δ0, δ∗0 }

=


skn(1 + k)(m− 1)δ0 + s

m−1kn+2m−2 max{δ0, δ∗0 }, sk2 = 1,

skn(1 + k) · 1−(sk2)
m−1

1−sk2 · δ0 + s
m−1kn+2m−2 max{d0,d∗0 }, sk2 6= 1.

6

 skn(1 + k)(m− 1)δ0 + s
m−1kn+2m−2 max{δ0, δ∗0 }, sk2 = 1,

skn(1+k)
1−sk2 · δ0 + s

m−1kn+2m−2 max{δ0, δ∗0 }, sk2 6= 1.

Since k ∈ [0, 1), so kn → 0 as n→∞. Taking limit as n→∞ in (2.10) and (2.13), we get

lim
n→∞[rb1(gxn,gxn+p) + rb1(gyn,gyn+p)] = 0,

which implies that {gxn} and {gyn} are Cauchy sequences in g(X). Since g(X) is complete, then there exist
x,y ∈ X such that

lim
n→∞gxn = gx and lim

n→∞gyn = gy.

It follows from (2.1) and (2.4) that

rb1(gxn+1, F(x,y)) + rb1(gyn+1, F(y, x))
= rb1(F(xn,yn), F(x,y)) + rb1(F(yn, xn), F(y, x))
6 k1[rb2(gxn,gx) + rb2(gyn,gy)] + k2[rb2(gxn, F(xn,yn)) + rb2(gyn, F(yn, xn))]
+ k3[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]

= k1[rb2(gxn,gx) + rb2(gyn,gy)] + k2[rb2(gxn,gxn+1) + rb2(gyn,gyn+1)]

+ k3[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
6 k1[rb1(gxn,gx) + rb1(gyn,gy)] + k2[rb1(gxn,gxn+1) + rb1(gyn,gyn+1)]

+ k3[rb1(gx, F(x,y)) + rb1(gy, F(y, x))]
= k1[rb1(gxn,gx) + rb1(gyn,gy)] + k2δn + k3[rb1(gx, F(x,y)) + rb1(gy, F(y, x))]
6 k1[rb1(gxn,gx) + rb1(gyn,gy)] + k2k

nδ0 + k3[rb1(gx, F(x,y)) + rb1(gy, F(y, x))].

(2.14)

Applying (Rb3), (2.14), and (2.4) we have

rb1(gx, F(x,y)) + rb1(gy, F(y, x)) 6 s[rb1(gx,gxn) + rb1(gxn,gxn+1) + rb1(gxn+1, F(x,y))]
+ s[rb1(gy,gyn) + rb1(gyn,gyn+1) + rb1(gyn+1, F(y, x))]

= s[rb1(gx,gxn) + rb1(gy,gyn)] + sδn
+ s[rb1(gxn+1, F(x,y)) + rb1(gyn+1, F(y, x))]

6 s(1 + k1)[rb1(gxn,gx) + rb1(gyn,gy)] + s(1 + k2)k
nδ0

+ sk3[rb1(gx, F(x,y)) + rb1(gy, F(y, x))].

(2.15)

By taking n→∞ in the above inequality (2.15), we have

rb1(gx, F(x,y)) + rb1(gy, F(y, x)) 6 sk3[rb1(gx, F(x,y)) + rb1(gy, F(y, x))]. (2.16)

By condition 0 6 sk3 < 1 and (2.16), we can easily obtain that

rb1(gx, F(x,y)) + rb1(gy, F(y, x)) = 0,
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which implies that
gx = F(x,y) and gy = F(y, x).

Therefore, we conclude that (x,y) is the coupled coincidence point of F and g.
Next, we show the uniqueness of the triple point of coincidence of F and g. Assume that (x∗,y∗) is

another tripled coincidence point of mappings F and g. By (2.1), we derive

rb1(gx,gx∗) + rb1(gy,gy∗) = rb1(F(x,y), F(x∗,y∗)) + rb1(F(y, x), F(y∗, x∗))
6 k1[rb2(gx,gx∗) + rb2(gy,gy∗)] + k2[rb2(gx, F(x,y))
+ rb2(gy, F(y, x))] + k3[rb2(gx

∗, F(x∗,y∗)) + rb2(gy
∗, F(y∗, x∗))]

= k1[rb2(gx,gx∗) + rb2(gy,gy∗)]
6 k1[rb1(gx,gx∗) + rb1(gy,gy∗)].

(2.17)

By virtue of 0 6 k1 6 k1 + k2 + k3 < 1 and (2.17), we deduce

rb1(gx,gx∗) + rb1(gy,gy∗) = 0.

This implies that gx = gx∗ and gy = gy∗. So that the couple point of coincidence of F and g is unique.
Next, we show that gx = gy. In fact, it follows from (2.1) that

rb1(gx,gy) + rb1(gy,gx) = rb1(F(x,y), F(y, x)) + rb1(F(y, x), F(x,y))
6 k1[rb2(gx,gy) + rb2(gy,gx)] + k2[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
+ k3[rb2(gy, F(y, x)) + rb2(gx, F(x,y))]

= k1[rb2(gx,gy) + rb2(gy,gx)]
6 k1[rb1(gx,gy) + rb1(gy,gx)].

By making use of 0 6 k1 6 k1 + k2 + k3 < 1 and (2.17), we deduce

rb1(gx,gy) + rb1(gy,gx) = 0.

This means that gx = gy.
Finally, if F and g are w-compatible, then we have g(F(x,y)) = F(gx,gy). Therefore, by taking u = gx,

we have u = gx = F(x,y) = gy = F(y, x), hence we have

gu = ggx = g(F(x,y)) = F(gx,gy) = F(u,u).

Consequently, (gu,gu) is a coupled point of coincidence of g and F, and by its uniqueness, we get gu = gx.
Thus, we obtain F(u,u) = gu = u. Therefore, (u,u) is the unique common coupled fixed point of g and
F. This completes the proof of Theorem 2.1.

Corollary 2.2. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1, and F : X×X→ X and g : X→ X be two mappings. Suppose that there exist k1,k2,
and k3 in [0, 1) with 0 6 2(k1 + k2 + k3) < 1 and 0 6 2sk3 < 1 such that the condition

rb1(F(x,y), F(u, v)) 6 k1[rb2(gx,gu) + rb2(gy,gv)] + k2[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
+ k3[rb2(gu, F(u, v)) + rb2(gv, F(v,u))]

(2.18)

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are
w-compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).
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Proof. It follows from (2.18) that

rb1(F(x,y), F(u, v)) 6 k1[rb2(gx,gu) + rb2(gy,gv)] + k2[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
+ k3[rb2(gu, F(u, v)) + rb2(gv, F(v,u))],

(2.19)

and

rb1(F(y, x), F(v,u)) 6 k1[rb2(gy,gv) + rb2(gx,gu)] + k2[rb2(gy, F(y, x)) + rb2(gx, F(x,y))]
+ k3[rb2(gv, F(v,u)) + rb2(gu, F(u, v))].

(2.20)

Combining (2.19) and (2.20), we have

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 2k1[rb2(gx,gu) + rb2(gy,gv)] + 2k2[rb2(gx, F(x,y))
+ rb2(gy, F(y, z))] + 2k3[rb2(gu, F(u, v)) + rb2(gv, F(v,u))].

By Theorem 2.1, we can get the conclusion.

In Theorem 2.1, if we take rb1(x,y) = rb2(x,y) = rb(x,y) for all x,y ∈ X, then we get the following
corollary.

Corollary 2.3. Let (X, rb) be a rb-complete rectangular b-metric space with coefficient s > 1, F : X×X → X and
g : X → X be two mappings. Suppose that there exist k1,k2, and k3 in [0, 1) with 0 6 k1 + k2 + k3 < 1 and
0 6 sk3 < 1 such that the condition

rb(F(x,y), F(u, v)) + rb(F(y, x), F(v,u))
6 k1[rb(gx,gu) + rb(gy,gv)] + k2[rb(gx, F(x,y)) + rb(gy, F(y, x))] + k3[rb(gu, F(u, v)) + rb(gv, F(v,u))]

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X), then F and g have a coupled coincidence point (x,y) ∈
X× X, satisfying that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are w-compatible, then F and g have a
unique common coupled fixed point of the form (u,u), which satisfies that u = gu = F(u,u).

Corollary 2.4. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1, and F : X× X → X and g : X → X be two mappings. Suppose that there exist
ai ∈ [0, 1) (i = 1, 2, 3, · · · , 6) with 0 6 a1 + a2 + a3 + · · · + a6 < 1 and 0 6 s(a5 + a6) < 1 such that the
condition

rb1(F(x,y), F(u, v)) 6 a1rb2(gx,gu) + a2rb2(gy,gv) + a3rb2(gx, F(x,y)) + a4rb2(gy, F(y, x))
+ a5rb2(gu, F(u, v)) + a6rb2(gv, F(v,u))

(2.21)

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are
w-compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).

Proof. Given (x,y), (u, v) ∈ X×X, it follows from (2.21) that

rb1(F(x,y), F(u, v)) 6 a1rb2(gx,gu) + a2rb2(gy,gv) + a3rb2(gx, F(x,y)) + a4rb2(gy, F(y, x))
+ a5rb2(gu, F(u, v)) + a6rb2(gv, F(v,u))

(2.22)

and

rb1(F(y, x), F(v,u)) 6 a1rb2(gy,gv) + a2rb2(gx,gu) + a3rb2(gy, F(y, x)) + a4rb2(gx, F(x,y))
+ a5rb2(gv, F(v,u)) + a6rb2(gu, F(u, v)).

(2.23)
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Combining (2.22) and (2.23), we have

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 (a1 + a2)[rb2(gx,gu) + rb2(gy,gv)]
+ (a3 + a4)[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]
+ (a5 + a6)[rb2(gu, F(u, v)) + rb2(gv, F(v,u))].

Therefore, the result follows from Theorem 2.1.

Remark 2.5. If we take rb1(x,y) = rb2(x,y) = rb(x,y) for all x,y ∈ X, where rb is a rectangular b-metric
on X, then Corollary 2.4 will be reduced to a new result.

The following corollary can be obtained from Theorem 2.1 immediately.

Corollary 2.6. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
and F : X×X→ X and g : X→ X be two mappings. Suppose that there exists k ∈ [0, 1) such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(gx,gu) + rb2(gy,gv)]

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are
w-compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).

Corollary 2.7. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
and F : X×X→ X and g : X→ X be two mappings. Suppose that there exists k ∈ [0, 1) such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(gx, F(x,y)) + rb2(gy, F(y, x))]

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are
w-compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).

Corollary 2.8. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1, and F : X× X → X and g : X → X be two mappings. Suppose that there exists
k ∈ [0, 1) with 0 6 sk < 1 such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(gu, F(u, v)) + rb2(gv, F(v,u))]

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is rb1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are
w-compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).

Let g = IX (the identity mapping) in Theorem 2.1 and Corollaries 2.2–2.4, 2.6, 2.7. Then we have the
following results.

Corollary 2.9. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1 and F : X× X → X be a mapping. Suppose that there exist k1,k2, and k3 in [0, 1)
with 0 6 k1 + k2 + k3 < 1 and 0 6 sk3 < 1 such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k1[rb2(x,u) + rb2(y, v)] + k2[rb2(x, F(x,y))
+ rb2(y, F(y, x))] + k3[rb2(u, F(u, v)) + rb2(v, F(v,u))]

holds for all (x,y), (u, v) ∈ X×X. If X is rb1-complete, then F has a unique coupled fixed point of the form (u,u),
which satisfies that u = F(u,u).
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Corollary 2.10. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1 and F : X× X → X be a mapping. Suppose that there exist k1,k2, and k3 in [0, 1)
with 0 6 2(k1 + k2 + k3) < 1 and 0 6 2sk3 < 1 such that the condition

rb1(F(x,y), F(u, v)) 6 k1[rb2(x,u) + rb2(y, v)] + k2[rb2(x, F(x,y)) + rb2(y, F(y, x))]
+ k3[rb2(u, F(u, v)) + rb2(v, F(v,u))]

holds for all (x,y), (u, v) ∈ X×X. If g(X) is rb1-complete, then F and g have a coupled coincidence point (x,y) ∈
X×X, which satisfies that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are w-compatible, then F and g have
a unique common coupled fixed point of the form (u,u), which satisfies that u = gu = F(u,u).

Corollary 2.11. Let (X, rb) be a rb-complete rectangular b-metric space with coefficient s > 1, and F : X×X→ X

be a mapping. Suppose that there exist k1,k2, and k3 in [0, 1) with 0 6 k1 + k2 + k3 < 1 and 0 6 sk3 < 1 such
that the condition

rb(F(x,y), F(u, v)) + rb(F(y, x), F(v,u)) 6 k1[rb(x,u) + rb(y, v)] + k2[rb(x, F(x,y)) + rb(y, F(y, x))]
+ k3[rb(u, F(u, v)) + rb(v, F(v,u))]

holds for all (x,y), (u, v) ∈ X× X. Then F has a unique coupled fixed point of the form (u,u), which satisfies that
u = gu = F(u,u).

Corollary 2.12. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1 and F : X × X → X be a mapping. Suppose that there exist ai ∈ [0, 1) (i =
1, 2, 3, · · · , 6) with 0 6 a1 + a2 + a3 + · · ·+ a6 < 1 and 0 6 s(a5 + a6) < 1 such that the condition

rb1(F(x,y), F(u, v)) 6 a1rb2(x,u) + a2rb2(y, v) + a3rb2(x, F(x,y)) + a4rb2(y, F(y, x))
+ a5rb2(u, F(u, v)) + a6rb2(v, F(v,u))

holds for all (x,y), (u, v) ∈ X×X. If (X, rb1) is complete, then F has a unique coupled fixed point of the form (u,u),
which satisfies that u = gu = F(u,u).

Corollary 2.13. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
and F : X×X→ X be a mapping. Suppose that there exists k ∈ [0, 1) such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(x,u) + rb2(y, v)]

holds for all (x,y), (u, v) ∈ X×X. If (X, rb1) is complete, then F has a unique coupled fixed point of the form (u,u),
which satisfies that u = gu = F(u,u).

Corollary 2.14. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
and F : X×X→ X be a mapping. Suppose that there exists k ∈ [0, 1) such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(x, F(x,y)) + rb2(y, F(y, x))]

holds for all (x,y), (u, v) ∈ X×X. If (X, rb1) is complete, then F has a unique coupled fixed point of the form (u,u),
which satisfies that u = gu = F(u,u).

Corollary 2.15. Let rb1 and rb2 be two rectangular b-metrics on X such that rb2(x,y) 6 rb1(x,y) for all x,y ∈ X,
(X, rb1) with coefficient s > 1, and F : X× X → X and g : X → X be two mappings. Suppose that there exists
k ∈ [0, 1) with 0 6 sk < 1 such that the condition

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6 k[rb2(u, F(u, v)) + rb2(v, F(v,u))]

holds for all (x,y), (u, v) ∈ X×X. If (X, rb1) is complete, then F has a unique coupled fixed point of the form (u,u),
which satisfies that u = gu = F(u,u).
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It follows by taking coefficient s = 1 (for the space X) in Theorem 2.1, then we have the following
corollary.

Corollary 2.16. Let X be a nonempty set and r1, r2 are two rectangular metrics in X such that r2(x,y) 6 r1(x,y),
for all x,y ∈ X. Suppose that F : X× X → X and g : X → X are two mappings, and there exist k1,k2, and k3 in
[0, 1) with 0 6 k1 + k2 + k3 < 1 such that the condition

r1(F(x,y), F(u, v)) + r1(F(y, x), F(v,u))
6 k1[r2(gx,gu) + r2(gy,gv)] + k2[r2(gx, F(x,y)) + r2(gy, F(y, x))] + k3[r2(gu, F(u, v)) + r2(gv, F(v,u))]

holds for all (x,y), (u, v) ∈ X× X. If F(X× X) ⊂ g(X) and g(X) is r1-complete, then F and g have a coupled
coincidence point (x,y) ∈ X× X, satisfying that gx = F(x,y) = gy = F(y, x). Moreover, if F and g are w-
compatible, then F and g have a unique common coupled fixed point of the form (u,u), which satisfies that u =
gu = F(u,u).

Remark 2.17. If we take coefficient s = 1 (for the space X) in Corollaries 2.2–2.4, 2.6–2.15, then several new
results can be obtained in two rectangular metric spaces.

3. Application to integral equations

Example 3.1. Let X = R and define d : X× X → R+ as rb(x,y) = |x− y|k, x,y ∈ X, where k > 1. Then
(X, rb) is a rectangular b-metric space with coefficient s = 3k−1. In fact, the conditions (Rb1) and (Rb2)
are clear. Next we show that (Rb3). From the convexity of function f(x) = xk for x > 0 and by Jensen
inequality we have

(a+ b+ c)k 6 3k−1 (ak + bk + ck
)

for nonnegative real numbers a,b, c. This means that

rb(x,y) = |x− y|k 6 (|x− z|+ |z−w|+ |w− y|)k 6 3k−1 (|x− z|k + |z−w|k + |w− y|k
)

= 3k−1[rb(x, z) + rb(z,w) + rb(w,y)],

which implies that (Rb3) holds, hence (X, rb) is a rectangular b-metric space with coefficient s = 3k−1.

Example 3.2. Let X = R and rb1, rb2 are two rectangular b-metrics in X such that

rb1(x,y) = (x− y)2, rb2(x,y) =
(x− y)2

2
, ∀ x,y ∈ X.

Define F : X×X→ X and g : X→ X respectively by

F(x,y) =
x− y

3
, gx = 2x, ∀ x,y ∈ X.

It is easy to see that F(X×X) ⊂ g(X), g(X) is rb1-complete, and F and g are w-compatible.
On the other hand, we have

rb1(F(x,y), F(u, v)) = (F(x,y) − F(u, v))2

=

(
x− y

3
−
u− v

3

)2

=

(
x− u

3
+
v− y

3

)2

6 2

((
x− u

3

)2

+

(
y− v

3

)2
)
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=
1
9

(
(2x− 2u)2

2
+

(2y− 2v)2

2

)
=

1
9

(
(gx− gu)2

2
+

(gy− gv)2

2

)
=

1
9
[rb2(gx,gu) + rb2(gy,gv)].

By similar arguments as above, we can show that

rb1(F(y, z), F(v,u)) 6
1
9
[rb2(gy,gv) + rb2(gx,gu)].

Combining the above two inequalities, we obtain

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6
2
9
[rb2(gx,gu) + rb2(gy,gv)].

Then by Corollary 2.6, F and g have a unique common coupled fixed point, in fact, (0, 0) is the unique
common coupled fixed point of mappings of F and g.

Next, we assume that X = C[a,b] is the set of all continuous functions. Define two rectangular b-
metrics respectively by

rb1(x,y) = max
t∈[a,b]

|x(t) − y(t)|k, rb2(x,y) =
max

t∈[a,b]
|x(t) − y(t)|k

2
, ∀x,y ∈ X, (k > 1).

Then the coefficient of two rectangular b-metrics is s = 3k−1. Consider the nonlinear integral equation set
as follows: {

x(r) = K(r) +
∫b
aG(r, t)[f(t, x(t)) + g(t,y(t))]dt,

y(r) = K(r) +
∫b
aG(r, t)[f(t,y(t)) + g(t, x(t))]dt.

(3.1)

Next, we will analyze (3.1) under the following conditions:

(i) f,g : [a,b]× R→ R are three continuous functions.
(ii) K : [a,b]→ R are continuous functions.

(iii) G : [a,b]× R→ [0,+∞) are continuous functions.
(iv) There exists p,q > 0 such that for all x,y ∈ R,{

|f(t, x(t)) − f(t,y(t))| 6 p|x− y|,
|g(t, x(t)) − g(t,y(t))| 6 q|x− y|.

(v)

max
r∈[a,b]

(∫b
a

|G(r, t)|dt

)k

<
1

2k+1Lk
, with L = max{p,q}.

Theorem 3.3. Under the conditions (i)-(v), the integral equation (3.1) has a unique common solution on [a,b].

Proof. Define F : X×X→ X and g : X→ X respectively by

F(x,y)(r) = K(r) +
∫b
a

G(r, t)[f(t, x(t)) + g(t,y(t))]dt,

gx = 2x,∀x ∈ X, t ∈ [a,b], x,y ∈ X,

rb1(F(x,y), F(u, v)) = max
r∈[a,b]

|F(x,y)(r) − F(u, v)(r)|k, ∀ x,y,u, v ∈ X,

rb2(F(x,y), F(u, v)) =
maxr∈[a,b] |F(x,y)(r) − F(u, v)(r)|k

2
, ∀ x,y,u, v ∈ X.
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It is easy to see that F(X×X) ⊂ g(X), g(X) is rb1-complete, and F and g are w-compatible.
On the other hand, from (iv) and (v), we have

|F(x,y)(r) − F(u, v)(r)|k

=

∣∣∣∣∣
∫b
a

G(r, t)[f(t, x(t)) − f(t,u(t))]dt+
∫b
a

G(r, t)[g(t,y(t)) − g(t, v(t))]dt

∣∣∣∣∣
k

6 2k−1

∣∣∣∣∣
∫b
a

G(r, t)[f(t, x(t)) − f(t,u(t))]dt

∣∣∣∣∣
k

+ 2k−1

∣∣∣∣∣
∫b
a

G(r, t)[g(t,y(t)) − g(t, v(t))]dt

∣∣∣∣∣
k

6 2k−1

∣∣∣∣∣
∫b
a

G(r, t)[f(t, x(t)) − f(t,u(t))]dt

∣∣∣∣∣
k

+

∣∣∣∣∣
∫b
a

G(r, t)[g(t,y(t)) − g(t, v(t))]dt

∣∣∣∣∣
k


6 2k−1

[
pk
(

max
t∈[a,b]

|x(t) − u(t)|

)k

+ qk
(

max
t∈[a,b]

|y(t) − v(t)|

)k
]
·

(∫b
a

G(r, t)dt

)k

6 2k−1Lk
[

max
t∈[a,b]

|x(t) − u(t)|k + max
t∈[a,b]

|y(t) − v(t)|k
]
· 1

2k+1Lk

6
1

2k+2

[
max

t∈[a,b]
|2x(t) − 2u(t)|k + max

t∈[a,b]
|2y(t) − 2v(t)|k

]
=

1
2k+1 [rb2(gx,gu) + rb2(gy,gv)].

It follows from the above inequality, we have

rb1(F(x,y), F(u, v)) = max
r∈[a,b]

|F(x,y)(r) − F(u, v)(r)|k 6
1

2k+1 [rb2(gx,gu) + rb2(gy,gv)]. (3.2)

By similar arguments as above,

rb1(F(y, x), F(v,u)) 6
1

2k+1 [rb2(gy,gv) + rb2(gx,gu)]. (3.3)

It follows from (3.2) and (3.3) that we have

rb1(F(x,y), F(u, v)) + rb1(F(y, x), F(v,u)) 6
1

2k
[rb2(gx,gu) + rb2(gy,gv)].

Consequently, all the conditions of Corollary 2.6 are satisfied. It follows from the result of Corollary 2.6
that F and g have a unique common coupled fixed point (u,u), satisfying F(u,u) = gu = u. So (u,u) is
the unique solution of integral equation (3.1).
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[16] B. K. Lahiri, P. Das, Fixed point of a Ljubomir Ćirić’s quasi-contraction mapping in a generalized metric space, Publ. Math.

Debrecen, 61 (2002), 589–594. 1
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