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Abstract

In this paper, we study the split equality feasibility problem and present two algorithms for solving the problem with special
structure. We prove the weak convergence of these algorithms under mild conditions. Especially, the selection of stepsize is only
dependent on the information of current iterative points, but independent from the prior knowledge of operator norms. These
algorithms provide new ideas for solving the split equality feasibility problem. Numerical results demonstrate the feasibility
and effectiveness of these algorithms. c©2017 All rights reserved.
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1. Introduction

Let H1, H2, and H3 be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖, and C and Q be
nonempty closed convex subsets of H1 and H2, respectively. Assume that A : H1 → H3 and B : H2 → H3
be two bounded linear operators. The split equality feasibility problem (SEFP) is to find

x ∈ C,y ∈ Q such that Ax = By, (1.1)

which allows asymmetric and partial relations between the variables x and y. The problem can be used
in many situations, for instance applications in decomposition methods for PDE’s, in game theory and in
intensity-modulated radiation therapy.

In recent years, the SEFP attracted many researchers to study its algorithms and applications. Espe-
cially, when SEFP (1.1) has at least one solution, it can be converted to the following fixed point equation
system {

x = PC(x− γA
∗(Ax−By)),

y = PQ(y+ γB
∗(Ax−By)), (1.2)
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where γ is a positive constant. According to (1.2), Byrne and Moudafi [2] proposed and proved the
convergence of the following projection gradient algorithm{

xk = PC(xk − γkA
∗(Axk −Byk)),

yk = PQ(yk + γkB
∗(Axk −Byk)),

where γk ∈ (ε, min( 1
λA

, 1
λB

)−ε), ε is a small enough positive constant, and λA, λB are the spectral radiuses
of A∗A and B∗B, respectively. Then, Moudifi [15] presented and studied the convergence of the following
alternating CQ-algorithm {

xk = PC(xk − γkA
∗(Axk −Byk)),

yk = PQ(yk + γkB
∗(Axk+1 −Byk)),

where it is needed that γk be positive no-decreasing sequence except for the above conditions. Further, a
lot of researchers studied the algorithms for solving SEFP (1.1) and proved their convergence, for details
see [6, 7, 15] and references therein.

Note that, by taking B = I in (1.1), the problem is converted to convex feasibility problem (CFP), that
is to find

x ∈ C such that Ax ∈ Q, (1.3)

which is originally introduced by Censor and Elfving [4] and has broad applications in many fields such
as image reconstruction problem [3, 13], approximation theory [10], control [12], and so on. About the
study of algorithm and theory for solving CFP (1.3), readers can see [17, 19–22], etc.. Recently, Dang
et al. [9] proposed two inertial accelerated algorithms to solve CFP (1.3) and proved their asymptotical
convergence under some conditions, for example, the selection of stepsize is dependent on the spectral
radius of A∗A.

Inspired by the related references, we study SEFP (1.1) and propose two algorithms for the special
structure of C and Q. We prove that the sequences generated by these algorithms weakly converge to
the solution of (1.1) under suitable conditions. Especially, the selection of stepsize is only determined by
the information of current iterative points, without the prior knowledge of operator norms. Numerical
results illustrate the feasibility and effectiveness of these algorithms. At the same time, these algorithms
provide new ideas for solving the split equality feasibility problem.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts and
lemmas. In Section 3, we present two algorithms, denoted by the relaxed inertial accelerated algorithm
and the modified relaxed inertial accelerated algorithm, and prove their convergence. In Section 4, we
demonstrate the feasibility and effectiveness of these algorithms through some numerical examples.

2. Preliminaries

In this section, we introduce some concepts and conclusions which are needed in the following. Let
H be a Hilbert space. A mapping T : H→ H is called contraction, if there exists a constant α ∈ (0, 1) such
that

‖Tx− Ty‖ 6 α‖x− y‖, ∀x,y ∈ H.

If α = 1, then T is called nonexpansive.
A mapping PC is said to be metric projection of H onto C if for every point x ∈ H, there exists a unique

nearest point in C denoted by PCx such that

‖x− PCx‖ 6 ‖x− y‖, ∀y ∈ C.

It is well-known that PC is a nonexpansive mapping and is characterized by the following properties

‖PCx− PCy‖2 6 〈x− y,PCx− PCy〉, ∀x,y ∈ H,
〈x− PCx,y− PCx〉 6 0, ∀x ∈ H,y ∈ C, (2.1)
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‖x− y‖2 > ‖x− PCx‖2 + ‖y− PCx‖2, ∀x ∈ H,y ∈ C,

and
‖(x− y) − (PCx− PCy)‖2 > ‖x− y‖2 − ‖PCx− PCy‖2, ∀x,y ∈ H.

Definition 2.1 ([8]). Let f : H→ R be appropriate convex. The subdifferential of f at x is defined as

∂f(x) = {ξ ∈ H|f(y) > f(x) + 〈ξ,y− x〉, ∀y ∈ H}.

Lemma 2.2 ([14]). Assume ϕk ∈ [0,∞) and δk ∈ [0,∞) satisfy

(a) ϕk+1 −ϕk 6 θk(ϕk −ϕk−1) + δk;

(b)
∞∑
k=1

δk <∞;

(c) {θk} ⊂ [0, θ], where θ ∈ [0, 1).

Then, the sequence {ϕk} is convergent with
∞∑
k=1

[ϕk+1 −ϕk]+ <∞, where t+ := max{t, 0} for any t ∈ R.

Lemma 2.3 ([5]). If x,y, z ∈ H, then

(a) ‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉;
(b) for any λ ∈ [0, 1],

‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2;

(c) for a,b, c ∈ [0, 1] with a+ b+ c = 1,

‖ax+ by+ cz‖2 = a‖x‖2 + b‖y‖2 + c‖z‖2 − ab‖x− y‖2 − ac‖x− z‖2 − bc‖y− z‖2.

3. Main results

In this section, we give the main results of this paper. First, we describe the algorithm for solving
SEFP (1.1).

Throughout the rest of this paper, we assume that C and Q are denoted as

C = {x ∈ H1|c(x) 6 0} (3.1)

and
Q = {y ∈ H2|q(y) 6 0}, (3.2)

where c : H1 → R and q : H2 → R are appropriate convex and C,Q are nonempty. We denote and assume

Γ = {(x,y)|x ∈ C,y ∈ Q such that Ax = By} 6= ∅,

where C,Q are defined as (3.1) and (3.2), respectively.
Furthermore, we assume that there exists at least one subgradient ξ ∈ ∂c(x) for any x ∈ H1 and one

subgradient η ∈ ∂q(y) for any y ∈ H2 such that they all can be calculated. And all ξ ∈ ∂c(x) for any
x ∈ H1 and all η ∈ ∂q(y) for any y ∈ H2 are bounded in any bounded subsets of H1 and H2, respectively.
Define two sets at point xk and yk, respectively,

Ck = {x ∈ H1|c(x
k) + 〈ξk, x− xk〉 6 0}, (3.3)

where ξk ∈ ∂c(xk), and
Qk = {y ∈ H2|q(y

k) + 〈ηk,y− yk〉 6 0}, (3.4)

where ηk ∈ ∂q(yk).
It is easy to see that the halfspaces Ck andQk contain C andQ, respectively, according to the definition

of subgradient. And the orthogonal projections onto Ck and Qk can be easily determined, for details see
[1, 11, 16].

Now we state the relaxed inertial accelerated algorithm.
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Algorithm 3.1.
Initialization: Take x0, x1 ∈ H1,y0,y1 ∈ H2 arbitrarily.
Iterative step: For k > 1, given the points xk, xk−1,yk,yk−1, the next iterative points xk+1,yk+1 are

generated by 
uk = xk + θk(x

k − xk−1),
vk = yk + θk(y

k − yk−1),
xk+1 = PCk(u

k − γkA
∗(Auk −Bvk)),

yk+1 = PQk(v
k + γkB

∗(Auk −Bvk)),

(3.5)

where θk ∈ [0, 1), γk is positive stepsize, and Ck,Qk are defined as (3.3) and (3.4), respectively.

As follows, we give the convergence theorem of Algorithm 3.1.

Theorem 3.2. For any k > 1, choose parameter θk ∈ [0, θ̄k] with θ̄k = min{θ, (max{k2‖xk − xk−1‖2,k2‖xk −
xk−1‖,k2‖yk − yk−1‖2,k2‖yk − yk−1‖})−1}, where θ ∈ [0, 1) and

γk ∈ (ε, min{δ, (1 − σ)
2‖Auk −Bvk‖2

‖A∗(Auk −Bvk)‖2 + ‖B∗(Auk −Bvk)‖2 }), (3.6)

where ε > 0 is small enough, σ ∈ (0, 1), and δ > ε. Then the sequence {(xk,yk)} generated by Algorithm 3.1
converges weakly to a solution (x,y) of (1.1).

Proof. If θk ≡ 0, the conclusion is true from [2].
Now, we assume that θk > 0 for some k ∈ N. Let (x∗,y∗) be the solution of (1.1). Since C ⊂ Ck,Q ⊂

Qk, then
x∗ = PC(x

∗) = PCk(x
∗), y∗ = PQ(y

∗) = PQk(y
∗).

Define two auxiliary real sequences ϕk = 1
2‖x

k − x∗‖2 and ψk = 1
2‖y

k − y∗‖2. According to the
nonexpansive property of the operators PC, PQ and (3.5), one has

ϕk+1 =
1
2
‖xk+1 − x∗‖2

=
1
2
‖PCk(u

k − γkA
∗(Auk −Bvk)) − PCk(x

∗)‖2

6
1
2
‖uk − γkA∗(Auk −Bvk) − x∗‖2

=
1
2
‖uk − x∗‖2 +

1
2
γ2
k‖A

∗(Auk −Bvk)‖2 − γk〈uk − x∗,A∗(Auk −Bvk)〉

=
1
2
‖uk − x∗‖2 +

1
2
γ2
k‖A

∗(Auk −Bvk)‖2 − γk〈Auk −Bvk,Auk −Bvk〉

− γk〈Bvk −Ax∗,Auk −Bvk〉

=
1
2
‖uk − x∗‖2 +

1
2
γ2
k‖A

∗(Auk −Bvk)‖2 − γk‖Auk −Bvk‖2 − γk〈Bvk −Ax∗,Auk −Bvk〉.

(3.7)

Furthermore,
1
2
‖uk − x∗‖2 =

1
2
‖xk + θk(xk − xk−1) − x∗‖2

=
1
2
‖xk − x∗‖2 + θk〈xk − x∗, xk − xk−1〉+

θ2
k

2
‖xk − xk−1‖2

(3.8)

and
1
2
‖xk − x∗‖2 =

1
2
‖xk − xk−1 + xk−1 − x∗‖2

=
1
2
‖xk−1 − x∗‖2 + 〈xk − xk−1, xk−1 − x∗〉+ 1

2
‖xk − xk−1‖2

=
1
2
‖xk−1 − x∗‖2 + 〈xk − xk−1, xk−1 − xk + xk − x∗〉+ 1

2
‖xk − xk−1‖2

=
1
2
‖xk−1 − x∗‖2 + 〈xk − xk−1, xk − x∗〉− 1

2
‖xk − xk−1‖2.

(3.9)
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Combining (3.8) with (3.9), we obtain

1
2
‖uk − x∗‖2 = ϕk + θk(ϕk −ϕk−1) +

θk + θ
2
k

2
‖xk − xk−1‖2. (3.10)

From (3.10) and (3.7), one has

ϕk+1 6 ϕk + θk(ϕk −ϕk−1) +
θk + θ

2
k

2
‖xk − xk−1‖2 +

1
2
γ2
k‖A∗(Auk −Bvk)‖2

− γk‖Auk −Bvk‖2 − γk〈Bvk −Ax∗,Auk −Bvk〉.
(3.11)

Analogous to the proof of (3.7)-(3.11), we can obtain

ψk+1 =
1
2
‖yk+1 − y∗‖2 6

1
2
‖vk + γkB∗(Auk −Bvk) − y∗‖2

=
1
2
‖vk − y∗‖2 +

1
2
γ2
k‖B∗(Auk −Bvk)‖2 + γk〈Auk −Bvk,Bvk −By∗〉,

(3.12)

1
2
‖vk − y∗‖2 =

1
2
‖yk + θk(yk − yk−1) − y∗‖2

=
1
2
‖yk − y∗‖2 + θk〈yk − y∗,yk − yk−1〉+

θ2
k

2
‖yk − yk−1‖2,

(3.13)

and

ψk =
1
2
‖yk − y∗‖2 =

1
2
‖yk − yk−1 + yk−1 − y∗‖2 = ψk−1 + 〈yk − yk−1,yk − y∗〉− 1

2
‖yk − yk−1‖2,

which implies that

〈yk − yk−1,yk − y∗〉 = ψk −ψk−1 +
1
2
‖yk − yk−1‖2. (3.14)

Combining (3.13) with (3.14), we have

1
2
‖vk − y∗‖2 = ψk + θk(ψk −ψk−1) +

θk + θ
2
k

2
‖yk − yk−1‖2. (3.15)

From (3.12) and (3.15), we obtain

ψk+1 6 ψk + θk(ψk −ψk−1) +
θk + θ

2
k

2
‖yk − yk−1‖2 +

1
2
γ2
k‖B∗(Auk −Bvk)‖2

+ γk〈Bvk −By∗,Auk −Bvk〉.
(3.16)

According to (3.11) and (3.16) as well as Ax∗ = By∗, one has

ϕk+1 +ψk+1 6 ϕk +ψk + θk(ϕk +ψk −ϕk−1 −ψk−1) +
θk + θ

2
k

2
(‖xk − xk−1‖2 + ‖yk − yk−1‖2)

+
1
2
γ2
k(‖A∗(Auk −Bvk)‖2 + ‖B∗(Auk −Bvk)‖2) − γk‖Auk −Bvk‖2.

(3.17)

From (3.6), we have

1
2
γ2
k(‖A∗(Auk −Bvk)‖2 + ‖B∗(Auk −Bvk)‖2) − γk‖Auk −Bvk‖2 6 −σγk‖Auk −Bvk‖2. (3.18)

According to the definition of θk, we know that

θ2
k 6 θk, θk‖xk − xk−1‖2 6

1
k2 , θk‖yk − yk−1‖2 6

1
k2 . (3.19)
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From (3.17)-(3.19), we can deduce that

(ϕk+1 +ψk+1) − (ϕk +ψk) 6 θk((ϕk +ψk) − (ϕk−1 +ψk−1)) + θk(‖xk − xk−1‖2 + ‖yk − yk−1‖2)

and ∞∑
k=1

θk(‖xk − xk−1‖2 + ‖yk − yk−1‖2) <∞. (3.20)

From Lemma 2.2, the sequence {ϕk +ψk} is convergent with

∞∑
k=1

[ϕk+1 +ψk+1 −ϕk −ψk]+ <∞, (3.21)

where [t]+ = max{t, 0} for any t ∈ R. Therefore, {xk} and {yk} are bounded, so are {uk} and {vk}. By (3.17),
(3.18), and θ2

k 6 θk < 1, we have ∞∑
k=1

‖Auk −Bvk‖ <∞.

Thus,
lim
k→∞ ‖Auk −Bvk‖ = 0. (3.22)

Next, we show that

lim
k→∞ ‖xk+1 − xk‖ = 0 and lim

k→∞ ‖yk+1 − yk‖ = 0.

In fact,

‖xk+1 − x∗‖2 = ‖(xk+1 − uk) + (uk − x∗)‖2

= ‖xk+1 − uk‖2 + ‖uk − x∗‖2 + 2〈xk+1 − uk,uk − x∗〉
= ‖xk+1 − uk‖2 + ‖uk − x∗‖2 + 2〈xk+1 − uk,uk − xk+1〉+ 2〈xk+1 − uk, xk+1 − x∗〉

and
‖xk+1 − uk‖2 = ‖uk − x∗‖2 − ‖xk+1 − x∗‖2 + 2〈xk+1 − uk, xk+1 − x∗〉. (3.23)

Combining (3.10), (3.23) with the definition of ϕk, we have

‖xk+1 − uk‖2 = ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + θk(‖xk − x∗‖2 − ‖xk−1 − x∗‖2)

+ (θk + θ
2
k)‖xk − xk−1‖2 + 2〈xk+1 − uk, xk+1 − x∗〉.

(3.24)

Similarly, we can lead to

‖yk+1 − vk‖2 = ‖yk − y∗‖2 − ‖yk+1 − y∗‖2 + θk(‖yk − y∗‖2 − ‖yk−1 − y∗‖2)

+ (θk + θ
2
k)‖yk − yk−1‖2 + 2〈yk+1 − vk,yk+1 − y∗〉.

(3.25)

By (3.24) and (3.25), one has

‖xk+1 − uk‖2 + ‖yk+1 − vk‖2 6 (‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk+1 − x∗‖2 − ‖yk+1 − y∗‖2)+

+ θk(‖xk − x∗‖2 + ‖yk − y∗‖2 − ‖xk−1 − x∗‖2 − ‖yk−1 − y∗‖2)+

+ 2θk(‖xk − xk−1‖2 + ‖yk − yk−1‖2) + 2〈xk+1 − uk, xk+1 − x∗〉
+ 2〈yk+1 − vk,yk+1 − y∗〉.

(3.26)
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On the other hand, from (3.5) and (2.1), we obtain

〈xk+1 − (uk − γkA
∗(Auk −Bvk)), xk+1 − x∗〉 6 0.

Therefore,

〈xk+1 − uk, xk+1 − x∗〉 6 γk〈Bvk −Auk,Axk+1 −Ax∗〉
6 γk‖Auk −Bvk‖‖Axk+1 −Ax∗‖
6 δ‖Auk −Bvk‖‖Axk+1 −Ax∗‖,

which, combining with (3.22), implies that

lim
k→∞〈xk+1 − uk, xk+1 − x∗〉 = 0. (3.27)

Likewise,
lim
k→∞〈yk+1 − vk,yk+1 − y∗〉 = 0. (3.28)

From (3.20), (3.21), (3.26), (3.27), and (3.28), we have

lim
k→∞ ‖xk+1 − uk‖2 + ‖yk+1 − vk‖2 = 0.

Hence
lim
k→∞ ‖xk+1 − uk‖ = 0 (3.29)

and
lim
k→∞ ‖yk+1 − vk‖ = 0.

According to the definition of θk, we have

lim
k→∞ θk‖xk − xk−1‖ = 0 (3.30)

and
lim
k→∞ θk‖yk − yk−1‖ = 0. (3.31)

It follows from (3.29), (3.30), and the triangle inequality

‖xk+1 − xk‖ 6 ‖xk+1 − uk‖+ ‖uk − xk‖ = ‖xk+1 − uk‖+ θk‖xk − xk−1‖,

one has
lim
k→∞ ‖xk+1 − xk‖ = 0. (3.32)

Analogous to the above proof, we can deduce

lim
k→∞ ‖yk+1 − yk‖ = 0.

Because {xk} and {yk} are bounded sequences, there exist some weakly convergent subsequences, say
{xki } ⊂ {xk} and {yki } ⊂ {yk} such that xki ⇀ x̄ and yki ⇀ ȳ. According to (3.5), (3.30), and (3.31), we know
that uki ⇀ x̄ and vki ⇀ ȳ. Furthermore, from (3.5), we have xki+1 ∈ Cki . Therefore, by the definition of
Cki , one has

c(xki) + 〈ξki , xki+1 − xki〉 6 0,

where ξki ∈ ∂c(xki). Thus,

c(xki) 6 −〈ξki , xki+1 − xki〉 6 ξ‖xki+1 − xki‖, (3.33)
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where ξ satisfies ‖ξk‖ 6 ξ for all k. By the lower semicontinuity of c(x), (3.32) and (3.33), we obtain

c(x̄) 6 lim inf
k→∞ c(xk) 6 lim

ki→∞ c(xki) 6 0,

that is, x̄ ∈ C.
Similarly, we can deduce that ȳ ∈ Q.
Now, we show that Ax̄ = Bȳ. In fact, the lower semicontinuity of the norm and (3.22) imply that

‖Ax̄−Bȳ‖ 6 lim inf
k→∞ ‖Auk −Bvk‖ 6 lim

ki→∞ ‖Auki −Bvki‖ = 0,

that is, Ax̄ = Bȳ. Hence (x̄, ȳ) ∈ Γ .
Finally, we prove the uniqueness of the weak cluster points of {xk} and {yk}. Assume that (x̂, ŷ) are

the other weak cluster points of {xk} and {yk}, respectively. Without loss of generality, we assume that
xk ⇀ x̄, yk ⇀ ȳ, and xk ⇀ x̂, yk ⇀ ŷ, as well as (x̄, ȳ) 6= (x̂, ŷ). Let Sk(x̄, ȳ) = ‖xk − x̄‖2 + ‖yk − ȳ‖2. Then

Sk(x̄, ȳ) = ‖xk − x̄‖2 + ‖yk − ȳ‖2

= ‖xk − x̂‖2 + ‖x̂− x̄‖2 + 2〈xk − x̂, x̂− x̄〉+ ‖yk − ŷ‖2 + ‖ŷ− ȳ‖2 + 2〈yk − ŷ, ŷ− ȳ〉
= Sk(x̂, ŷ) + ‖x̂− x̄‖2 + ‖ŷ− ȳ‖2 + 2〈xk − x̂, x̂− x̄〉+ 2〈yk − ŷ, ŷ− ȳ〉.

(3.34)

Taking limit on the two sides of (3.34) and according to xk ⇀ x̂, yk ⇀ ŷ, we have

S(x̄, ȳ) = S(x̂, ŷ) + ‖x̄− x̂‖2 + ‖ȳ− ŷ‖2. (3.35)

Reversing the role of (x̄, ȳ) and (x̂, ŷ), we have

S(x̂, ŷ) = S(x̄, ȳ) + ‖x̄− x̂‖2 + ‖ȳ− ŷ‖2. (3.36)

From (3.35) and (3.36), one has
‖x̄− x̂‖2 + ‖ȳ− ŷ‖2 = 0,

which implies that x̄ = x̂ and ȳ = ŷ. This completes the proof.

In the following, we modify Algorithm 3.1 and present a new algorithm, denoted by the modified
relaxed inertial accelerated algorithm.

Algorithm 3.3.
Initialization: Take x0, x1 ∈ H1,y0,y1 ∈ H2 arbitrarily.
Iterative step: For k > 1, given the points xk, xk−1,yk,yk−1, the next iterative points xk+1,yk+1 are

generated by 
uk = xk + θk(x

k − xk−1),
vk = yk + θk(y

k − yk−1),
xk+1 = (1 −αk)u

k +αkPCk(u
k − γkA

∗(Auk −Bvk)),
yk+1 = (1 −αk)v

k +αkPQk(v
k + γkB

∗(Auk −Bvk)),

where θk ∈ [0, 1), αk ∈ (0, 1), γk is positive stepsize, and Ck,Qk are defined as (3.3) and (3.4), respectively.

Now, we give the convergence theorem of Algorithm 3.3.

Theorem 3.4. For any k > 1, choose parameter θk ∈ [0, θ̄k] with θ̄k = min{θ, (max{k2‖xk − xk−1‖2,k2‖xk −
xk−1‖,k2‖yk − yk−1‖2,k2‖yk − yk−1‖})−1}, where θ ∈ [0, 1), 0 < inf

k>0
αk = α < 1, and

γk ∈ (ε, min{δ, (1 − σ)
2‖Auk −Bvk‖2

‖A∗(Auk −Bvk)‖2 + ‖B∗(Auk −Bvk)‖2 }),

where ε > 0 is small enough, σ ∈ (0, 1), and δ > ε. Then the sequence {(xk,yk)} generated by Algorithm 3.3
converges weakly to a solution (x,y) of (1.1).

Proof. Following the proof of Theorem 3.2 and combining with Lemma 2.3, we can easily complete the
proof, which is omitted here.
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4. Numerical examples

In this section, we verify the feasibility and efficiency of Algorithms 3.1 and 3.3 through two examples.
The whole codes are written in Matlab R2012a. All the numerical results are carried out on a personal
Lenovo Thinkpad computer with Intel(R) Core(TM) i7-6500U CPU 2.50GHz and RAM 8.00GB.

Example 4.1. Let

A =

 −2 −1 3
0 2 5
2 0 2

 , B =

 3 4 2
0 1 −5
4 2 0

 ,

C = {x ∈ R3|x2
2 + x

2
3 − 4 6 0}, and Q = {x ∈ R3|x3 − x

2
1 − 1 6 0}. Find x ∈ C,y ∈ Q such that Ax = By.

Example 4.2. Let

A =


2 −1 3 2 3
1 2 5 2 1
2 0 2 1 −2
2 −1 0 −3 5

 , B =


1 0 2 0
0 1 0 5
0 0 1 0
8 0 0 1

 ,

C = {x ∈ R5|x2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 − 0.25 6 0}, andQ = {x ∈ R4|x1 + x2 + x3 + x4 + 0.6 6 0}. Find x ∈ C,y ∈ Q

such that Ax = By.

In the experiments, we take θ = 0.2, σ = 0.8, θk = θ̄k, αk = 7
8 − 1

2k . And the stopping criterion
is ‖xk+1 − xk‖ 6 10−5. The calculation of projection and subdifferential depends on the following two
lemmas.

Lemma 4.3 ([11, 16]). For every k > 0, let xk ∈ Rn, Ck, and Qk be defined as in (3.3) and (3.4), respectively.
Then for any x ∈ Rn, we have

PCk(x) =

{
x−

c(xk)+〈ξk,x−xk〉
‖ξk‖2 ξk, if c(xk) + 〈ξk, x− xk〉 > 0,

x, otherwise,

and

PQk(y) =

{
y−

q(yk)+〈ηk,y−yk〉
‖ηk‖2 ηk, if q(yk) + 〈ηk,y− yk〉 > 0,

y, otherwise.

Lemma 4.4 ([18]). Suppose h : Rn → R is a finite convex function, then it is subdifferentiable everywhere and its
subdifferentials are uniformly bounded on any bounded subset of Rn.

In the following tables and figures, we denote the relaxed CQ algorithm, the relaxed inertial ac-
celerated algorithm, and the modified relaxed inertial accelerated algorithm by ”RCQA”, ”RIAA”, and
”MRIAA”, respectively. And we set ”k”, ”s”, and ”x∗” and ”y∗” to express the number of iteration, CPU
time in seconds, and the final solution, respectively. Init. denote the initial points. The numerical results
can be seen from Tables 1-3 and Figures 1-6.

From Tables 1-3, we can see that the iterative number and CPU time of the relaxed inertial accelerated
algorithm and the modified relaxed inertial accelerated algorithm are less than that of the relaxed CQ
algorithm.

Furthermore, for testing the stationary property of iterative number, we carry out 500 experiments for
different initial points which are presented randomly, such as

x0 = y0 = ones(3, 1), x1 = y1 = rand(3, 1),

x0 = y0 = ones(3, 1), x1 = y1 = rand(3, 1) ∗ 10,

separately in Example 4.1, the results can be found in Figures 1-3.
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Table 1: The numerical results of Example 4.1.
x0 = (1, 1, 1)T x0 = (−5, 2,−10)T

x1 = (0.7792, 0.9340, 0.1299)T x1 = (1.3607, 8.6929, 5.7970)T

Init. y0 = (1, 1, 1)T y0 = (100,−8, 300)T

y1 = (0.5688, 0.4694, 0.0119)T y1 = (5.4986, 1.4495, 8.5303)T

k = 63, s = 0.0159 k = 207, s = 0.0214
RCQA x∗ = (2.4932,−1.2767, 1.4645)T x∗ = (1.0411,−0.1930,−1.9907)T

y∗ = (2.5556,−1.1535,−1.1846)T y∗ = (1.3481,−3.6458, 1.3387)T

k = 37, s = 0.0129 k = 40, s = 0.0170
RIAA x∗ = (0.2831, 0.7101, 0.2565)T x∗ = (1.0510, 1.9279, 0.5260)T

y∗ = (0.3103,−0.0810,−0.5568)T y∗ = (1.1718,−0.7667,−1.4505)T

k = 31, s = 0.0095 k = 30, s = 0.0061
MRIAA x∗ = (0.3253, 0.7416, 0.3225)T x∗ = (0.9721, 1.9740, 0.3210)T

y∗ = (0.3511,−0.0545,−0.6300)T y∗ = (1.1075,−0.9220,−1.2950)T

Table 2: The numerical results of Example 4.2.
x0 = (1, 1, 1, 1, 1)T

x1 = (0.4184, 0.8680, 0.1086, 0.0128, 0.7041)T

Init. y0 = (1, 1, 1, 1)T

y1 = (0.0960, 0.8834, 0.7770, 0.6840)T

k = 179, s = 0.0146
RCQA x∗ = (−0.3061, 0.1304,−0.3008,−0.1866,−0.1184)T

y∗ = (−0.0459,−0.0039,−1.1637,−0.4074)T

k = 77, s = 0.0113
RIAA x∗ = (−0.1069, 0.3240,−0.1948, 0.1697,−0.0336)T

y∗ = (−0.1505,−0.0718,−0.3666,−0.0111)T

k = 65, s = 0.0102
MRIAA x∗ = (−0.1037, 0.3546,−0.2223, 0.2503,−0.0378)T

y∗ = (−0.1890,−0.0951,−0.3263, 0.0104)T

Table 3: The numerical results of Example 4.2.
x0 = (−5, 2,−10, 8,−6)T

x1 = (0.6003, 0.9131, 0.8051, 0.3314, 0.5863)T

Init. y0 = (100,−8, 300, 9)T

y1 = (0.6689, 0.0742, 0.5852, 0.4875)T

k = 275, s = 0.0535
RCQA x∗ = (−0.2204, 0.0519,−0.3540,−0.2448,−0.1162)T

y∗ = (−0.0707,−3.6222,−1.1612, 0.2260)T

k = 52, s = 0.0206
RIAA x∗ = (0.1269, 0.3275,−0.1253,−0.0213, 0.0681)T

y∗ = (0.0211,−0.6286,−0.1544, 0.1619)T

k = 50, s = 0.0040
MRIAA x∗ = (0.1201, 0.3676,−0.1231,−0.0071, 0.0702)T

y∗ = (0.0072,−0.6409,−0.1537, 0.1874)T
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Figure 1: The iterative number of RCQA for Example 4.1.
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Figure 2: The iterative number of RIAA for Example 4.1.
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Figure 3: The iterative number of MRIAA for Example 4.1.

In the same way, we also perform 500 experiments for different initial points which are randomly
presented in the following two cases

x0 = ones(5, 1),y0 = ones(4, 1), x1 = rand(5, 1),y1 = rand(4, 1),

x0 = ones(5, 1),y0 = ones(4, 1), x1 = rand(5, 1) ∗ 10,y1 = rand(4, 1),
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separately in Example 4.2, the Figures 4-6 illustrate the results.

0 100 200 300 400 500
100

150

200

250

300

350

400

450

500

N
um

be
r 

of
 it

er
at

io
n

Number of experiment
0 100 200 300 400 500

200

400

600

800

1000

1200

1400

1600

1800

2000

N
um

be
r 

of
 it

er
at

io
n

Number of experiment

Figure 4: The iterative number of RCQA for Example 4.2.

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

110

120

N
um

be
r 

of
 it

er
at

io
n

Number of experiment
0 100 200 300 400 500

30

40

50

60

70

80

90

100

110

120

130

N
um

be
r 

of
 it

er
at

io
n

Number of experiment

Figure 5: The iterative number of RIAA for Example 4.2.
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Figure 6: The iterative number of MRIAA for Example 4.2.

From Figures 1-6, we know that the iterative number of the three algorithms is stationary. Furthermore,
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we can see that the relaxed inertial accelerated algorithm and the modified relaxed inertial accelerated
algorithm are superior than the relaxed CQ algorithm from the aspect of iterative number.

Acknowledgment

This research is supported by the Natural Science Foundation of China (no. 11401438, 11571120),
Shandong Provincial Natural Science Foundation (no. ZR2013FL032), the Project of Shandong Province
Higher Educational Science and Technology Program (no. J14LI52).

References

[1] H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996),
367–426. 3

[2] C. L. Byrne, A. Moudafi, Extensions of the CQ Algorithm for the split feasibility and split equality problems (10th draft),
hal-00776640-version 1, (2012). 1, 3

[3] Y. Censor, Parallel application of block-iterative methods in medical imaging and radiation therapy, Math. Programming,
42 (1998), 307–325. 1

[4] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8
(1994), 221–239. 1

[5] S.-S. Chang, Some problems and results in the study of nonlinear analysis, Proceedings of the Second World Congress
of Nonlinear Analysts, Part 7, Athens, (1996), Nonlinear Anal., 30 (1997), 4197–4208. 2.3

[6] S.-S. Chang, L. Wang, L.-J. Qin, Split equality fixed point problem for quasi-pseudo-contractive mappings with applications,
Fixed Point Theory Appl., 2015 (2015), 12 pages. 1

[7] H.-T. Che, M.-X. Li, A simultaneous iterative method for split equality problems of two finite families of strictly pseudonon-
spreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., 2015 (2015), 14 pages. 1

[8] F. H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and
Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, (1983). 2.1

[9] Y.-Z. Dang, J. Sun, H.-L. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim.,
13 (2017), 1383–1394. 1

[10] F. Deutsch, The method of alternating orthogonal projections, Approximation theory, spline functions and applications,
Maratea, (1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 356 (1992), 105–121.
1

[11] M. Fukushima, A relaxed projection method for variational inequalities, Math. Programming, 35 (1986), 58–70. 3, 4.3
[12] Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, J. Convex Anal., 19 (2012), 1009–1015. 1
[13] G. T. Herman, Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press,

New York, (1980). 1
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