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Abstract
The work presented in this paper extends the idea of α-β-contractive mappings in the framework of b-metric spaces. Fixed

points are investigated for such kind of mappings. An example is given to show the superiority of our results. As applications
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1. Introduction

Metric spaces have been generalized according to requirement and their applicability to solve a par-
ticular problem. The problem of convergence of measurable functions with respect to measure leaded to
generalize the metric space in such a way that set considered in metric space is replaced with the space
and consequently the function ‘d’ of metric space is replaced with the functional ‘d’. The metric space de-
fined in the above is called b-metric space. In 1993, Czerwik introduced and proved contraction mapping
principle in b-metric space. Following this pioneer paper, several authors have devoted their attention to
research the properties of a b-metric space and have reported the existence and uniqueness of fixed points
of various operators in the setting of b-metric spaces. One can go through references [10, 18, 22–24] to
have a better understanding of advances in b-metric space.

A classical question in the theory of functional equations is the following:
“When is it true that a function which approximately satisfies a functional equation E must be close

to an exact solution of E?”
If the problem accepts a solution, we say that the equation E is stable.
The stability problem of functional equations, originated from a question of Ulam [33], in 1940, con-

cerns the stability of group homomorphisms. In 1941, Hyers [14] made an attempt to answer to the
question of Ulam for Banach spaces. Thereafter, this type of stability is called the Ulam-Hyers stability
and has attracted attention of several authors. Later on, many fixed point results were checked for the
stability of certain classes of functional equations. Bota et al. in [2, 3] Brzdek et al. in [4, 5], Cadariu [6],
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Lazar [18] and many other authors presented a wide range of stability problems in the context of various
metric spaces to generalize Ulam-Hyers stability.

The concept of well-posedness of a fixed point problems and limit shadowing property of fixed points
are generalized by various authors for single as well as multi-valued mappings. One can go through the
results of Blassi and Myjak [9] Reich and Zaslavski [25], Lahiri and Das [17], and Popa [20, 21].

In 2012, Samet et al. [28] introduced the notions of α-ψ-contractive and α-admissible self-mappings
and proved some fixed-point results for these mappings in complete metric spaces. In 2013, Bota et
al. [2] established the existence of fixed point theorems for α-ψ-contractive mapping of type-(b) in the
framework of b-metric spaces. They applied these results to prove the Ulam-Hyers stability for fixed
points. Recently, Felhi et al. [12] established the stability of Ulam-Hyers and well-posedness for fixed
point problems for α-λ-contractions on quasi b-metric spaces.

With this work we have two intentions. Firstly to introduce the notion of α-β-contraction in the
settings of b-metric spaces and proves fixed point results for these new classes of mappings. Secondly, to
verify Ulam-Hyres stability, well-posedness and limit shadowing of fixed points. Our efforts generalize
and extend the results of Sintunavarat for α-β-contraction mappings and Ulam-Hyres stability in metric
spaces.

2. Preliminaries

In this section, we will go through the prelims which would lead to understand the main results
clearly.

Definition 2.1 ([1, 8]). Let X be a (non-empty) space, and let s > 1 be a given real number. A functional
d : X×X→ [0,∞) is said to be a b-metric if the following conditions hold:

(1) d(x,y) = 0 if and only if x = y;
(2) d(x,y) = d(y, x);
(3) d(x, z) 6 s[d(x,y) + d(y, z)],

for all x, y, and z ∈ X.

If d satisfies all the above b-metric axioms then the pair (X,d) is called a b-metric or metric type space.

Definition 2.2 ([8]). Let (X,d) be a b-metric space.

(a) A sequence {xn} in X is called b-convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as
n→∞.

(b) {xn} in X is said to be b-Cauchy if and only if d(xn, xm)→ 0, as n,m→∞.
(c) The b-metric space (X,d) is called b-complete if every b-Cauchy sequence in X is b-convergent.

The following lemma is very useful to prove our main result.

Lemma 2.3 ([26]). Let (X,d) be a b-metric space and let {xn} be a sequence in X such that

lim
n→∞d(xn, xn+1) = 0.

If {xn} is not a b-Cauchy sequence, then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers
such that for the following four sequences

d(xm(k), xn(k)), d(xm(k), xn(k)+1), d(xm(k)+1, xn(k)), d(xm(k)+1, xn(k)+1),

the following hold:

ε 6 lim inf
k→∞ d(xm(k), xn(k)) 6 lim sup

k→∞ d(xm(k), xn(k)) 6 εs, (2.1)
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ε

s
6 lim inf

k→∞ d(xm(k), xn(k)+1) 6 lim sup
k→∞ d(xm(k), xn(k)+1) 6 εs

2,

ε

s
6 lim inf

k→∞ d(xm(k)+1, xn(k)) 6 lim sup
k→∞ d(xm(k)+1, xn(k)) 6 εs

2,

ε

s2 6 lim inf
k→∞ d(xm(k)+1, xn(k)+1) 6 lim sup

k→∞ d(xm(k)+1, xn(k)+1) 6 εs
3.

A new class of β functions is firstly introduced by Geraghty [13] in 1973. The definition is as follows.

Definition 2.4. Let B denote the class of real functions β : [0,+∞)→ [0, 1) satisfying the condition

β(tn)→ 1 implies tn → 0.

An example of a function in B may be given by β(t) = e−2t for t > 0 and β(0) ∈ [0, 1).

In order to generalize the Banach contraction principle, Geraghty proved in 1973 the very important
theorem stated as follows.

Theorem 2.5 ([13]). Let (X,d) be a complete metric space, and let F : X → X be a self-map. Suppose that there
exists β ∈ B such that

d(Fx, Fy) 6 β(d(x,y))d(x,y)

holds for all x,y ∈ X. Then F has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence {Fnx} converges
to z when n→∞.

In 2011, Dukic et al. introduced the Geraghty-type β functions in b-metric space as follows.

Definition 2.6 ([10]). Let (X,d) be a b-metric space with the given s > 1 we will consider the class of
functions Bs, where β ∈ Bs if β : [0,+∞)→ [0, 1

s) and has the property

β(tn)→
1
s

implies tn → 0.

An example of a function in Bs is given by β(t) = 1
se

−t for t > 0 and β(0) ∈ [0, 1
s).

In 2012, Samet et al. introduced the α-admissible self-mappings as follows.

Definition 2.7 ([28]). A self-mapping F : X → X defined on a nonempty set X is α-admissible if for all
x,y ∈ X, one has

α(x,y) > 1 ⇒ α(Fx, Fy) > 1,

where α : X×X→ [0,∞) is a given function under consideration.

Example 2.8. Let X = [0,∞) and assume F : X→ X and α : X×X→ [0,∞) by Fx =
√
x, for all x ∈ X,

α(x,y) =

{
ex−y, x > y,
0, x < y.

Then F is an α-admissible mapping.

Definition 2.9 ([30]). Let X be a nonempty set. Then the map α : X×X→ [0,∞) is called transitive if for
u, v,w ∈ X we have

α(u, v) > 1, α(v,w) > 1 ⇒ α(u,w) > 1.

In 2014, Sintunvarat defined the generalized α-β-contraction mapping in metric spaces as follows.
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Definition 2.10 ([30]). Let F be a self-mapping on a nonempty set X and there exist two functions α :
X×X→ [0,∞) and β ∈ B. We say that F is α-β-contraction mapping if the following condition holds:

[α(x,y) − 1 + δ∗]
d(Fx,Fy) 6 δβ(d(x,y))d(x,y)

for all x,y ∈ X, where 1 < δ 6 δ∗.

Now, we will introduce our notions in the context of b-metric space.

Definition 2.11. Let F be a self-mapping defined on b-metric space (X,d) with the given s > 1 and there
exist two functions α : X× X → [0,∞) and β ∈ Bs. We say that F is α-β(b)-contraction mapping if the
following condition holds:

[α(x,y) − 1 + δ]d(Fx,Fy) 6 δβ(d(x,y))d(x,y) (2.2)

for all x,y ∈ X, where 1 < δ.

3. Fixed point theorems

In this section, we give some theorems linking the above concepts. Our results generalize the results
of Sintunvarat [30] and many other related results.

In 2014, Sintunvarat proved the following fixed point theorem for generalized α-β-contraction map-
pings:

Theorem 3.1 ([30]). Let (X,d) be a complete metric space and F : X→ X be an α-β-contraction mapping satisfying
the following conditions:

(i) F is α-admissible;
(ii) α is transitive;

(iii) there exists x0 ∈ X such that α(x0, F(x0)) > 1;
(iv) F is continuous.

Then the fixed point problem of F has a solution, that is, there exists x∗ ∈ X such that x∗ = F(x∗).

Now, we will extend the above said theorem in the framework of b-metric spaces. Our theorem is as
follows.

Theorem 3.2. Let (X,d) be a complete b-metric space and F : X→ X be an α-β(b)-contraction mapping satisfying
the following conditions:

(i) F is α-admissible;
(ii) α is transitive;

(iii) there exists x0 ∈ X such that α(x0, F(x0)) > 1;
(iv) F is continuous.

Then F has a fixed point that is, there exists u ∈ X such that u = F(u).

Proof. From condition (iii), we can consider a point x0 ∈ X such that α(x0, F(x0)) > 1. Let us construct a
sequence {xn} in X such that xn = Fxn+1 for all n ∈ N.

Now if xn = xn+1 for any n ∈ N then xn is a fixed point of F from definition of {xn}.
Without loss of generality, we can suppose that xn 6= xn+1 for each n ∈ N.
Now, α-admissibility of F implies that α(x0, x1) = α(x0, F(x0)) > 1. Similarly,

α(x1, x2) = α(Fx0, Fx1) > 1.

By mathematical induction we can easily deduce,

α(xn−1, xn) > 1, ∀ n ∈ N. (3.1)
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Now, for each n ∈ N

δd(xn,xn+1) 6 δd(Fxn−1,Fxn) 6 [α(xn−1, xn) − 1 + δ]d(Fxn−1,Fxn)

6 δβ(d(xn−1,xn))d(xn−1,xn).

This implies that

d(xn, xn+1) 6 β(d(xn−1, xn))d(xn−1, xn) 6 d(xn−1, xn), ∀ n ∈ N. (3.2)

Consequently, the sequence {d(xn−1, xn)} comes out as strictly decreasing sequence and so d(xn−1, xn)→
r as n → ∞ for some r > 0. Next, we claim that r = 0. On contrary let us take r > 0. Proceeding the
limits as n→∞ in (3.2), we get that

r 6 lim
n→∞β(d(xn−1, xn))r,

which implies that

1
s
6 1 6 lim

n→∞β(d(xn−1, xn)).

Since β ∈ Bs, and by definition of beta functions in b-metric spaces we obtain that lim
n→∞d(xn−1, xn) = 0,

which is a contradiction. Therefore, r = 0 and thus

lim
n→∞d(xn−1, xn) = 0. (3.3)

Now, we prove that {xn} is a b-Cauchy sequence. Suppose to the contrary that {xn} is not a b-Cauchy
sequence. Then there exist ε > 0 and subsequence of integers np and mp with np > mp > 0 such that

d(xnp , xmp) > ε, ∀ p ∈ N. (3.4)

This means that

d(xmp , xnp−1) < ε.

From (3.4) and using the triangular inequality, we get

ε 6 d(xmp , xnp) 6 sd(xmp , xnp−1) + sd(xnp−1 , xnp),
ε

s
6

1
s
d(xmp , xnp) 6 d(xmp , xnp−1) + d(xnp−1 , xnp).

Proceeding the limit as p→∞, we get

ε

s
6

1
s

lim
p→∞d(xmp , xnp) 6 lim

p→∞d(xmp , xnp) 6 ε. (3.5)

Also, by (2.1) of Lemma 2.3 and (3.5), we have

ε

s
6 lim
p→∞ inf

1
s
d(xmp , xnp) 6 lim sup

p→∞
1
s
d(xmp , xnp) 6 ε

s

s
,

which in turns implies

lim
p→∞d(xmp , xnp) = ε. (3.6)
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Since α is transitive and np > mp we can deduce that

α(xmp , xnp) > 1.

Now, we have

δd(xmp ,xnp) 6 δ
sd(xmp ,xmp+1)

+sd(xmp+1 ,xnp+1)+sd(xnp+1 ,xnp)

6 δ
sd(xmp ,xmp+1)

+sd(Fxmp ,Fxnp)+sd(xnp+1 ,xnp)

6 δ
sd(xmp ,xmp+1)

+sd(xnp+1 ,xnp)δsd(Fxmp ,Fxnp)

6 δ
sd(xmp ,xmp+1)

+sd(xnp+1 ,xnp) × [α(xmp , xnp) − 1 + δ]sd(Fxmp ,Fxnp)

6 δ
sd(xmp ,xmp+1)

+sd(xnp+1 ,xnp)δsβ(d(xmp ,xnp))d(xmp ,xnp).

This implies that

d(xmp , xnp) 6 sd(xmp , xmp+1) + sd(xnp+1 , xnp) + sβ(d(xmp , xnp))d(xmp , xnp),

d(xmp , xnp) − sd(xmp , xmp+1) − sd(xnp+1 , xnp) 6 sβ(d(xmp , xnp))d(xmp , xnp),

(d(xmp , xnp) − sd(xmp , xmp+1) − sd(xnp+1 , xnp))/(sd(xmp , xnp)) 6 β(d(xmp , xnp)) <
1
s

.

Taking the limit as p→∞, and using (3.3) we get

1
s
6 lim
p→∞β(d(xmp , xnp)) <

1
s

.

That is,

lim
p→∞β(d(xmp , xnp)) =

1
s

.

Now, β ∈ Bs implies that limp→∞ d(xmp , xnp) = 0 which contradicts with (3.6). Therefore, {xn} is a
b-Cauchy sequence and b-completeness of X shows that {xn} b-converges to a point u ∈ X. From the
continuity of F, it follows that

xn+1 = Fxn → Fu as n→∞.

By the uniqueness of the limit, we get Fu = u, that is, u is a fixed point of F.

One of the most important advantages of α-admissible mappings is that we can prove the existence of
fixed points without the continuity of contraction mappings. Now, we will replace the continuity of F by
adding some another condition in hypothesis of Theorem 3.2.

Theorem 3.3. Let (X,d) be a complete b-metric space and F : X → X an α-β(b)-contraction mapping satisfying
the following conditions:

(i) F is α-admissible;
(ii) α is transitive;

(iii) there exists x0 ∈ X such that α(x0, F(x0)) > 1;
(iv) if {xn} is a sequence in X such that α(xn−1, xn) > 1 for all n ∈ N and xn → x ∈ X as n → ∞, then

α(xn, x) > 1 for all n ∈ N.

Then F has a fixed point, that is, there exists u ∈ X such that u = F(u).

Proof. We can deduce easily by the methodology used in the proof of Theorem 3.2 that {xn} is a Cauchy
sequence in the complete b-metric space (X,d). Therefore, there exists u ∈ X such that xn → u ∈ X as
n→∞.
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Also, from (3.1) and hypothesis (iv) implies that

α(xn,u) > 1, ∀ n ∈ N. (3.7)

Also, we obtain by using (2.2) and (3.7) that

δd(u,Fu) 6 δsd(u,xn+1)+sd(xn+1,Fu)

= δsd(u,xn+1)+sd(Fxn,Fu)

= δsd(u,xn+1)δsd(Fxn,Fu)

6 δsd(u,xn+1) × [α(xn,u) − 1 + δ]sd(Fxn,Fu)

6 δsd(u,xn+1)δsβ(d(xn,u))d(xn,u)

6 δsd(u,xn+1)+sβ(d(xn,u))d(xn,u), ∀ n ∈ N,

which in turns implies that

d(u, Fu) 6 sd(u, xn+1) + sβ(d(xn,u))d(xn,u)
< sd(u, xn+1) + sd(xn,u), ∀ n ∈ N.

Proceeding the limit as n→∞ in the above inequality, we get that d(u, Fu) = 0, that is Fu = u. Therefore,
the mapping F has a fixed point.

We will consider the following hypothesis in order to establish the uniqueness of fixed point:

(H) for all x,y ∈ X, there exists z ∈ X such that α(x, z) > 1 and α(y, z) > 1.

Theorem 3.4. Adding condition (H) to the hypotheses of Theorem 3.2 (resp., Theorem 3.3), we can prove the
uniqueness of the fixed point of F.

Proof. Suppose that u and v are two fixed points of F. From (H), there exists w ∈ X such that

α(u,w) > 1 and α(v,w) > 1. (3.8)

Since F is α-admissible and u and v are fixed points of F from (3.8), we get

α(u, Fnw) > 1 and α(v, Fnw) > 1 (3.9)

for all n ∈ N. Now, (3.9) and (2.2) imply that

δd(u,Fn+1w) = δd(Fu,FFnw)

6 [α(u, Fnw) − 1 + δ]d(Fu,FFnw)

6 δβ(d(u,Fnw))d(u,Fnw), ∀ n ∈ N.

Therefore, we get

d(u, Fn+1w) 6 β(d(u, Fnw))d(u, Fnw) (3.10)

<
1
s
d(u, Fnw), ∀ n ∈ N.

Next, we claim that lim
n→∞d(u, Fnw) = 0. On the contrary, let us assume that

0 < lim
n→∞d(u, Fnw) <∞. (3.11)
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Taking the limit as n→∞ in (3.10), we get

1
s
6 lim
n→∞β(d(u, Fnw)).

Now, β ∈ Bs, implies that lim
n→∞d(u, Fnw) = 0, which contradicts (3.11). Thus we get

lim
n→∞d(u, Fnw) = 0. (3.12)

Similarly we can conclude on the same lines

lim
n→∞d(v, Fnw) = 0. (3.13)

Using (3.12) and (3.13), the uniqueness of the limit gives us u = v. This finishes the proof.

Taking α(x,y) = 1 and δ = 1 in Theorem 3.4 we get the following variant of Geraghty-theorem.

Corollary 3.5. Let (X,d) be a complete b-metric space and F : X → X be self-mapping satisfying the following
condition:

d(Fx, Fy) 6 β(d(x,y))d(x,y)

for all x,y ∈ X and β ∈ Bs. Then F has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence {Fnx}

converges to z when n→∞.

The following lemma derived from the reference [15] is very useful to prove our next theorem.

Lemma 3.6 ([15]). Let {yn} be a sequence in b-metric space (X,d) such that

d(yn+1,yn) 6 λd(yn,yn−1)

for some λ, 0 < λ < 1
s , and each n = 1, 2, · · · . Then {yn} is a Cauchy sequence in X.

Theorem 3.7. Let (X,d) be a complete b-metric space and F : X → X is continuous and α-admissible map and α
is a transitive mapping. Suppose that there exists λ ∈ [0, 1

s) such that

[α(x,y) − 1 + δ]d(Fx,Fy) 6 δλM(x,y)

for all x,y ∈ X and 1 < δ where

M(x,y) = max
{
d(x,y),d(x, Fx),d(y, Fy),

d(x, Fy) + d(y, Fx)
2s

}
.

If there exists x0 ∈ X such that α(x0, Fx0) > 1, then F has a fixed point.

Proof. Consider x0 ∈ X such that α(x0, Fx0) > 1. Define a sequence {xn} in X such that xn = Fxn+1 for all
n ∈ N.

Now if xn = xn+1 for any n ∈ N then xn is a fixed point of F from definition of {xn}.
Without loss of generality, we can suppose that xn 6= xn+1 for each n ∈ N. Since, F is α-admissible

and α(x0, x1) = α(x0, F(x0)) > 1, similarly, α(x1, x2) = α(Fx0, Fx1) > 1. By induction we can easily deduce,

α(xn−1, xn) > 1, ∀ n ∈ N.

Now, for each n ∈ N

δd(xn+1,xn) 6 δd(Fxn,Fxn−1)
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6 [α(xn, xn−1) − 1 + δ]d(Fxn,Fxn−1)

6 δλM(xn,xn−1).

This implies that

d(xn+1, xn) 6 λM(xn, xn−1),

or

d(xn+1, xn) 6 λmax
{
d(xn, xn−1),d(xn, Fxn),d(xn−1, Fxn−1),

d(xn, Fxn−1) + d(xn−1, Fxn)
2s

}
6 λmax

{
d(xn, xn−1),d(xn, xn+1),d(xn−1, xn),

d(xn, xn) + d(xn−1, xn+1)

2s

}
6 λmax

{
d(xn, xn−1),

d(xn−1, xn) + d(xn, xn+1)

2

}
. (3.14)

Now, if

max
{
d(xn, xn−1),

d(xn−1, xn) + d(xn, xn+1)

2

}
=
d(xn−1, xn) + d(xn, xn+1)

2
,

then

d(xn, xn−1) <
d(xn−1, xn) + d(xn, xn+1)

2
< d(xn+1, xn).

Then (3.14) implies that

d(xn+1, xn) 6 λd(xn+1, xn),

which is impossible as λ < 1. Therefore, we deduce that

max
{
d(xn, xn−1),

d(xn−1, xn) + d(xn, xn+1)

2

}
= d(xn, xn−1),

which in turn implies that

d(xn+1, xn) 6 λd(xn, xn−1).

Using Lemma 3.6, we obtain that {xn} is a b-Cauchy sequence and b-completeness of X shows that {xn}
b-converges to a point u ∈ X. From the continuity of F, it follows that xn+1 = Fxn → Fu as n→∞.

By the uniqueness of the limit, we get Fu = u, that is, u is a fixed point of F.

Next, we consider an example that illustrates the above proved results.

Example 3.8. Let X = {0, 1, 3} be a b-metric space with metric d given by d(x,y) = (x− y)2 with s = 2.
Consider the mapping F : X → X defined by F(0) = 1, F(1) = 1, F(3) = 0. Let us take β ∈ Bs, as β(t) = 1

2
for t > 0 and β(0) ∈ [0, 1

2), and α : X×X→ [0,∞) by

α(x,y) =

{
1, when x,y > 0,
0, otherwise.

Then we can examine easily that

d(F0, F1) = d(1, 1) = 0, and β(d(0, 1))d(0, 1) =
1
2

,

d(F0, F3) = d(1, 0) = 1, and β(d(0, 3))d(0, 3) =
9
2

,
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d(F1, F3) = d(1, 0) = 1, and β(d(1, 3))d(1, 3) = 2.

Thus in all cases we get

[α(x,y) − 1 + δ]d(Fx,Fy) 6 δβ(d(x,y))d(x,y)

for all x,y ∈ X, where 1 < δ.
Also we can check that F is α-admissible and α is transitive mapping and satisfies all other axioms of

Theorem 3.4. Therefore, we conclude that F has a unique fixed point x = 1.

4. Applications

This section deals with applications of fixed point results discussed in previous section. First, we will
examine the problem of Ulam-Hyers stability through the fixed point theorems. And then we will discuss
the well-posedness and limit shadowing of fixed points.

4.1. Ulam-Hyers stability results through the fixed point problems
Definition 4.1. Let (X,d) be a metric space and F : X→ X an operator defined in X. Then, the fixed point
equation

x = F(x) (4.1)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ which is increasing,
continuous at 0 and ψ(0) = 0 such that for every ε > 0 and for each w∗ ∈ X an ε-solution of the fixed
point equation (4.1), that is, w∗ satisfies the inequality

d(w∗, F(w∗)) 6 ε. (4.2)

There exists a solution x∗ ∈ X of (4.1) such that

d(w∗, x∗) 6 ψ(ε).

If there exists c > 0 such that ψ(t) = c · t, for each t ∈ R+, then the fixed point equation (4.1) is said to be
Ulam-Hyers stable.

Theorem 4.2. Let (X,d) be a complete b-metric space with constant ε > 1. We assume that all the conditions of
Theorem 3.4 hold and suppose that there exists a strictly increasing and onto operator ξ : [0,∞)→ [0,∞) satisfying
ξ(r) := r− sβ(r) with β(0) = 0. Then if α(u, v) > 1 for all u, v which are ε-solutions of the fixed point equation
(4.1), then the fixed point problem of F is generalized Ulam-Hyers stable.

Proof. According to hypothesis, the operator F has a unique fixed point say, x∗. Let us claim that the fixed
point problem of F is generalized Ulam-Hyers stable. Let ε > 0 and w∗ ∈ X be a solution of (4.2), that is,

d(w∗, F(w∗)) 6 ε.

It is obvious that the fixed point x∗ of F satisfies inequality (4.2). From hypothesis, we get α(x∗,w∗) > 1.
Also we see that

δd(x
∗,w∗) = δd(F(x

∗),w∗)

6 δsd(F(x
∗),F(w∗))+sd(F(w∗),w∗)

= δsd(F(x
∗),F(w∗))δsd(F(w

∗),w∗)

6 δsd(F(w
∗),w∗) × [α(x∗,w∗) − 1 + δ]sd(F(x

∗),F(w∗))

6 δsd(F(w
∗),w∗)δsβ(d(x

∗,w∗))d(x∗,w∗))
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6 δsd(F(w
∗),w∗)+sβ(d(x∗,w∗))d(x∗,w∗)

6 δsε+sβ(d(x
∗,w∗))d(x∗,w∗).

Then we get that

d(x∗,w∗) 6 sε+ sβ(d(x∗,w∗))d(x∗,w∗),
d(x∗,w∗) − sβ(d(x∗,w∗))d(x∗,w∗) 6 sε.

Therefore

ξ(d(x∗,w∗)) 6 sε,

d(x∗,w∗) 6 ξ−1(sε).

Therefore, the fixed point problem of F is generalized Ulam-Hyers stable.

4.2. Well-posedness and limit shadowing results via the fixed point problems
Before proceeding towards the next applications, we first go through the following definitions.

Definition 4.3 ([9]). Let (X,d) be a metric space and F : X → X be an operator defined on X. Then the
well-posedness of fixed point problem of F exists if the following holds:

(i) F has a unique fixed point x∗ in X;
(ii) for any sequence {xn} in X such that lim

n→∞d(xn, F(xn)) = 0, one has lim
n→∞d(xn, x∗) = 0.

Definition 4.4. Let (X,d) be a metric space and F : X → X be an operator defined on X. We say that the
fixed point problem of F has the ”limit shadowing property” in X, if for any sequence {xn} in X satisfying
lim
n→∞d(xn, F(xn)) = 0, it follows that there exists z ∈ X such that

lim
n→∞d(Fn(z), xn) = 0.

Theorem 4.5. Let (X,d) be a complete b-metric space with constant ε > 1. Suppose that all the hypotheses of
Theorem 3.4 hold, assume that there exists a strictly increasing and onto operator ξ : [0,∞) → [0,∞) satisfying
ξ(r) := r− sβ(r) with β(0) = 0. Let us consider

(i) if α(x∗, xn) > 1 for all n ∈ N such that {xn} is sequence in X in which lim
n→∞d(xn, F(xn)) = 0 and x∗ is a

fixed point of F, then the fixed point problem of F is well-posed;
(ii) if α(x∗, xn) > 1 for all n ∈ N such that {xn} is sequence in X in which lim

n→∞d(xn, F(xn)) = 0 and x∗ is a
fixed point of F then the fixed point problem of F has the limit shadowing property in X.

Proof. From the proof of Theorem 3.4, we obtain that F has a unique fixed point and so let x∗ be a unique
fixed point of F. Let {xn} be sequence in X in which lim

n→∞d(xn, F(xn)) = 0.

From assumption, we get α(x∗, xn) > 1 for all n ∈ N.
Now, we obtain that

δd(x∗, xn) 6 δsd((x
∗),F(xn))+sd(F(xn),xn)

= δsd(F(x
∗),F(xn))+sd(F(xn),xn)

= δsd(F(x
∗),F(xn))δsd(F(xn),xn)

6 [α(x∗, xn) − 1 + δ]sd(F(x
∗),F(xn))δsd(F(xn),xn)

6 δsβ(d(x
∗,xn))d(x∗,xn)δsd(F(xn),xn)

6 δsβ(d(x
∗,xn))d(x∗,xn)+sd(F(xn),xn)
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for all n ∈ N. It follows that

d(x∗, xn) 6 sβ(d(x∗, xn))d(x∗, xn) + sd(F(xn), xn),
ξ(d(x∗, xn)) := d(x∗, xn) − sβ(d(x∗, xn))d(x∗, xn)

6 sd(F(xn), xn)→ 0 as n→∞,

which in turns implies that d(x∗, xn) → 0 as n → ∞ or xn → x∗ as n → ∞. Therefore, the fixed point
problem of F is well-posed.

Secondly, we prove that F has a limit shadowing under assumption (ii). Let {xn} be sequence in X in
which lim

n→∞d(xn, F(xn)) = 0 and x∗ is a fixed point of F. Similar to case (i), we get

d(x∗, xn)→ 0 as n→∞ .

Since x∗ is a fixed point of F we have

lim
n→∞d(xn, Fn(x∗)) = lim

n→∞d(xn, x∗) = 0.

Therefore, F has the limit shadowing property.

5. Conclusion

Concluding we can say that our results are novel and improved results while concerning the stability
and fixed point theorems in the context of b-metric space. Contraction mapping defined here is quiet
different one and relevant example supports the results very well. Application part of the article is very
interesting and justifies the validity of results.
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