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Abstract
In this paper, Lie group method is applied to investigate and solve some classes of nonlinear fractional differential equations.

In addition, we use the obtained symmetries to induce exact solutions for the equations under consideration. c©2017 All rights
reserved.
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1. Introduction

In the recent decades, many mathematicians have used the fractional differential equations to describe
several natural phenomena in different branches of science such as: fluid mechanics, physics, chemistry
and biology. Moreover, fractional differential equations can be used to investigate the process of these
branches of science in complex irregular conditions, see for example [29]. Although a large number of
mathematical physics methods have been developed to solve differential equations, the Lie group method
is still the most efficient approach to look for the exact and the explicit solutions of nonlinear partial
differential equations. It can be noted that some phenomena may depend on the previous time as well as
the current time. In such situations, the theory of derivatives and integrals of fractional order can be used
to model them, see [15, 21].

As the symmetry property is a natural phenomena, the equations that describe chemical, physical
or biological processes must possess the symmetry properties. By using ordinary or partial differential
equations, these processes can be described. The most common way to study the symmetry properties of
these equations is the group analysis method.

Recently, a considerable number of researchers have investigated the symmetry properties of different
types of equations using the Lie group analysis method. In [23], Wang and Xu investigated the symmetry
properties of the time fractional KdV equations using the Lie group analysis method. In [22], Wang
et al. studied the invariance properties of the time fractional fifth-order KdV equations using the Lie
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group analysis method. Huang and Zhdanov, in [13], determined the maximal symmetry group and
the corresponding optimal system of subgroups for the time fractional Harry-Dym equation using the
Lie group analysis method. Moreover, in [28], Zedan and Alshamrani considered the (2+1)-dimensional
higher-order Broer-Kaup System and used Lie symmetry analysis to determine the optimal systems for
subalgebras and their corresponding solutions. In [7], the number of independent variables of the time
fractional partial equations is reduced by using Lie analysis method. Furthermore, Wang and Xu in [24]
performed the Lie group analysis method on the nonlinear perturbed Burgers equation and also on the
nonlinear time fractional perturbed Burgers equation to construct the vector fields of these equations.

However, the interested reader can be also referred to the following relevant recent papers in the
area of linear and nonlinear fractional partial differential equations and their use to describe a series of
phenomena in applied sciences: [1–3, 5, 14, 16, 27, 30].

One can extend Lie groups and their infinitesimal generators to act on the space of independent
variables, state variables and their derivatives (the state variables) up to an arbitrary finite order. Despite
the fact that Lie symmetries were initially used to solve ordinary differential equations, they are also used
to reduce systems of differential equations and to find simpler equivalent systems.

In the last few years, the fractional differential equations were heavily used in mathematical modeling
of the processes of physics. It was not common to apply the symmetry properties for studying fractional
differential equations. In [10], Gazizov et al. used Lie continuous groups for symmetry analysis of the
fractional differential equations and suggested a formula for fractional derivatives.

In this paper, we use the Lie symmetry group method to investigate the following nonlinear system
of fractional differential equations [31]:

Dαu = u, 0 < α 6 1,

Dβv = 2u2, 0 < β 6 1,
Dγz = 3uv, 0 < γ 6 1,

(1.1)

where α,β, and γ are real constants. Here u, v, and z are functions of independent variable x, and Dαu is
a fractional derivative of u with respect to x, which can be of the following Riemann-Liouville type:

∂αu

∂xα
=

{
∂mu
∂xm , α = m ∈N,

1
Γ(m−α)

∂m

∂xm

∫t
0 (t− τ)m

−α−1u (τ, x)dτ, m− 1 < α < m, m ∈N,
(1.2)

see [8, 12].

2. Lie symmetry analysis for FPDs

In this section, brief details of Lie symmetry analysis for FPDs with one independent variable and
three dependent variables are presented. We consider a scalar time FPDEs of the following form:

∂αu(x)

∂xα
= F1(x,u, v, z,ux, vx, zx,uxx, · · · ), α > 0,

∂βv(x)

∂xβ
= F2(x,u, v, z,ux, vx, zx,uxx, · · · ), β > 0,

∂γz(x)

∂xγ
= F3(x,u, v, z,ux, vx, zx,uxx, · · · ), γ > 0,

(2.1)

where subscripts denote partial derivatives. Following [19, 20, 22], we assume that the above FPDE (2.1),
is invariant under a one parameter (ε). Cosidering Lie theory, the construction of the symmetry group is
equivalent to the determination of its infinitesimal transformations:

x̄ = x+ εξ(x,u, v, z) +O(ε2),



M. M. Alshamrani, H. A. Zedan, M. Abu-Nawas, J. Nonlinear Sci. Appl., 10 (2017), 4175–4180 4177

ū = u+ εη1(x,u, v, z) +O(ε2),

v̄ = v+ εη2(x,u, v, z) +O(ε2),

z̄ = z+ εη3(x,u, v, z) +O(ε2),
∂αū

∂x̄α
=
∂αu

∂xα
+ εζ0

α +O(ε2), (2.2)

∂βv̄

∂x̄β
=
∂βv

∂xβ
+ εζ0

β +O(ε2),

∂γz̄

∂x̄γ
=
∂αz

∂xα
+ εζ0

γ +O(ε
2),

∂ū

∂x̄
=
∂u

∂x
+ εζ1

1 +O(ε
2),

...

where ξ,η1,η2, and η3 are infinitesimal and ζ1
1, ζ0

α, ζ0
β, and ζ0

γ are extended infinitesimal of order 1,α,β,
and γ, respectively [9]. Infinitesimal generator takes the form:

X = ξ
∂

∂x
+ η1

∂

∂u
+ η2

∂

∂v
+ η3

∂

∂z
.

The following equation is the α-th extended infinitesimal related to Rieman-Liouville fractional time
derivative with (1.2):

ζ0
α = Dαx (η1) −αDx(ξ)D

α
xu−

∞∑
n=1

(
α

n+ 1

)
Dn+1
x (ξ)Iα−nx (u), (2.3)

see [10, 11]. Here the operator Dαx stands for the total fractional derivative operator [17]. The first term
Dαx (η1) in the right hand side of equation (2.3) can be rewritten as:

Dαx (η1) =
∂αη1

∂xα
+ η1u

∂αu

∂xα
− u

∂αη1u

∂xα
+ η1v

∂αv

∂xα
− v

∂αη1v

∂xα
+ η1z

∂αz

∂xα
− z

∂αη1z

∂xα

+

∞∑
n=1

(
α

n

)
∂nη1u

∂xn
Iα−nx (u) +

∞∑
n=1

(
α

n

)
∂nη1v

∂xn
Iα−nx (v) +

∞∑
n=1

(
α

n

)
∂nη1z

∂xn
Iα−nx (z) + µ1,

(2.4)

where

µ1 =

∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1
k!

xn−α

Γ(n+ 1 −α)

{
[−u]r

∂m

∂xm
(uk−r)

∂n−m+kη1

∂xn−m∂uk

+[−v]r
∂m

∂xm
(vk−r)

∂n−m+kη1

∂xn−m∂vk
+[−z]r

∂m

∂xm
(zk−r)

∂n−m+kη1

∂xn−m∂zk

}
.

Thus, the α-th extended infinitesimal given in (2.4) becomes

ζ0
α =

∂αη1

∂xα
+ (η1u −αDx(ξ))

∂αu

∂xα
− u

∂αη1u

∂xα
+ η1v

∂αv

∂xα

− v
∂αη1v

∂xα
+ η1z

∂αz

∂xα
− z

∂αη1z

∂xα
+ µ1

+

∞∑
n=1

[(
α

n

)
∂nη1u

∂xn
−

(
α

n+ 1

)
Dn+1
x (ξ)

]
Iα−nx (u)

+

∞∑
n=1

(
α

n

)
∂nη1v

∂xn
Iα−nx (v) +

∞∑
n=1

(
α

n

)
∂nη1z

∂xn
Iα−nx (z).

(2.5)

ζ0
β and ζ0

γ can be calculated in a similar way.
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3. Symmetry group analysis of the nonlinear system of fractional differential equations (1.1)

We complete this section in the light of references [4, 6, 18, 25, 26]. Lie theory allows us to assume
that the nonlinear system of fractional differential equations (1.1) is invariant under the one parameter
transformations (2.2). Hence, the transformed equation can be given as:

Dαu = u, 0 < α 6 1,

Dβv = 2u2, 0 < β 6 1,
Dγz = 3uv, 0 < γ 6 1,

provided u(x), v(x), and z(x) satisfy (1.1). Determining equation will take the form:

ζ0
α − η1 = 0, 0 < α 6 1,

ζ0
β − 4uη1 = 0, 0 < β 6 1,

ζ0
γ − 3vη1 − 3uη2 = 0, 0 < γ 6 1,

(3.1)

which depend on variables Iα−nx u, Iα−nx v, Iα−nx z, Iβ−nx u, Iβ−nx v, Iβ−nx z, Iγ−nx u, Iγ−nx v, and I
γ−n
x z

for n = 1, 2, . . . which are considered to be independent. The structure of (3.1) enables us to reduce it
to a system of infinitely many linear FDEs. By substituting the expressions for ζ0

α, ζ0
β, and ζ0

γ given in
(2.5) into (3.1) and equating various powers of derivatives of u, v, and z to zero, we get the following an
overdetermined system of linear equations:

ξu = ξv = ξz = 0,
η1u = η1vv = η1zz = η1xv = η1xz = 0,
η2u = η2vv = η2zz = η2xu = η2xz = 0,
η3u = η3vv = η3zz = η3xu = η3xv = 0,

∂αη1

∂xα
−
(
η1u −αξ́

)
(u) − u

∂αη1u
∂xα

− η1 = 0,

∂βη2

∂xβ
−
(
η2v −βξ́

) (
2u2)− u∂αηu

∂xα
− 4uη1 = 0,

∂γη3

∂xγ
−
(
η3z − γξ́

)
(3uv) − u

∂αηu

∂xα
− 3vη1 − 3uη2 = 0,(

α

n

)
∂nη1u

∂xn
−

(
α

n+ 1

)
Dn+1
x (ξ) = 0, n ∈N,(

β

n

)
∂nη2v

∂xn
−

(
β

n+ 1

)
Dn+1
x (ξ) = 0, n ∈N,(

γ

n

)
∂nη3z

∂xn
−

(
γ

n+ 1

)
Dn+1
x (ξ) = 0, n ∈N.

By solving this system, we conclude the following explicit form of infinitesimal:

ξ = C1, η1 = C2u, η2 = 2C2v, η3 = 3C2z,

where C1 and C2 are arbitrary constants. Hence the infinitesimal operator becomes

X = C1
∂

∂x
+C2u

∂

∂u
+ 2C2v

∂

∂v
+ 3C2z

∂

∂z
.

All the similarity variables associated with the Lie symmetries can be derived by solving the following
characteristic equation:

dx

C1
=
du

C2u
=

dv

2C2v
=

dz

3C2z
.
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The similarity functions associated with the infinitesimal generator X take the following form:

u = ek1xϕ1, v = e2k1xϕ2, z = e3k1xϕ3,

where k1 = C2
C1

is an arbitrary constant and

ϕ2 = 21−βk
−β
1 ϕ2

1 , ϕ3 = 21−β3−γk−(β+γ)
1 ϕ3

1.

Therefore, the solution for the nonlinear system of fractional differential equations (1.1) will take the
following form:

u = ϕ1e
k1x, v = 21−βk

−β
1 ϕ2

1e
2k1x, z = 21−β3−γk−(β+γ)

1 ϕ3
1e

3k1x,

where k1 = C2
C1

is an arbitrary constant.

4. Conclusion

The most common way to study the symmetry properties of ordinary or partial differential equations
is the group analysis method. In this study, it has been shown that the method of Lie group analysis can
be successfully extended to the investigation of symmetry properties of fractional differential equations
and can be effectively used for constructing exact solutions of these equations.
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