
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 4209–4221

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Global well-posedness of strong solution for the three dimensional dynamic
Cahn-Hilliard-Stokes model

Kelong Chenga,∗, Wenqiang Fengb

aSchool of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
bDepartment of Mathematics, University of Tennessee, Knoxville, Tennessee 37996, USA.

Communicated by S. S. Chang

Abstract

The global well-posedness analysis for the three dimensional dynamic Cahn-Hilliard-Stokes (CHS) model is provided
in this paper. In this model, the velocity vector is determined by the phase variable by both the Darcy law and the Stokes
equation. Based on the analysis of weak solutions to the CHS equation by the standard Galerkin method, we present a global
in time strong solution for the CHS model. Moreover, the existence and the uniqueness of the strong solution are also proven.
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1. Introduction

The Cahn-Hilliard equation [3] plays an important role in the mathematical study of the sponta-
neous separation of binary fluid, and has attracted much attention both analytically and numerically (see
[1, 2, 6–8, 10, 11, 16–18] and the references therein). Recently, the couplings of the Cahn-Hilliard equation
with other basic modeling equations also have been proposed in various situation to describe compli-
cated phenomena in fluid mechanics involving phase transition, such as the Cahn-Hilliard-Navier-Stokes
(CHNS) equation [5, 9, 13, 14, 19], the Cahn-Hilliard-Hele-Shaw (CHHS) [4, 12, 22–24] equation, and the
Cahn-Hilliard-Boussinesq (CHB) [26] equation.

The Cahn-Hilliard energy of a binary fluid with a constant mass density is given by

ECH(φ) =

∫
Ω

{
1
4
φ4 −

1
2
φ2 +

ε2

2

∣∣∣∇φ∣∣∣2}dx, (1.1)

where Ω ⊂ R3, φ : Ω → R is the concentration field, and ε is the interfacial thickness parameter.
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The phase equilibria are represented by the pure phase φ = ±1. For simplicity, we assume that Ω =
(0,Lx)× (0,Ly)× (0,Lz) and that ∂nφ = 0 on ∂Ω, the latter condition representing local thermodynamic
equilibrium on the boundary. In this paper, we discuss dynamic equations for the Cahn-Hilliard-Stokes
(CHS) model as follows,

∂tφ+u · ∇φ = ∆µ, (1.2)
∂tu−∆u+u+∇p = −γφ∇µ, (1.3)
∇ ·u = 0, (1.4)

where the chemical potential is defined as

µ := δφE = φ3 −φ− ε2∆φ,

and u is the advective velocity and p is the pressure. We assume free-slip boundary conditions for the
velocity field, namely u ·n = 0, ∂u·τ∂n = 0 and no-flux boundary condition for µ, ∂nµ = 0 on ∂Ω.

The total energy of dynamic equations for the CHS model is given by

E(φ,u) =
∫
Ω

{
1
4
φ4 −

1
2
φ2 +

ε2

2

∣∣∣∇φ∣∣∣2 + 1
2γ

∣∣∣u∣∣∣2}dx = ECH(φ) +
1

2γ
‖u‖2

L2 ,

with ECH(φ) given by (1.1). The system (1.2), (1.3), (1.4) is mass conservative and energy dissipative, and
the dissipation rate is readily found to be

dtE = −

∫
Ω

|∇µ|2dx −
1
γ

∫
Ω

(
|∇u|2 + |u|2

)
dx 6 0.

Although there exist a great deal of theoretical analysis and numerical methods investigating the Cahn-
Hilliard equation and the Stokes (or other variations) equation, respectively, it still brings some additional
technical difficulties for these new coupled systems in theoretical and numerical aspects. We now present
several results which are especially relevant to this paper. In [20], an initial-boundary value problem
for the Cahn-Hilliard-Hele-Shaw system that models tumor growth is studied. For large initial data
with finite energy, the authors proved global existence, uniqueness, higher order spatial regularity, and
Gevrey spatial regularity of strong solutions in 2-3D. Asymptotically in time, it is shown that the solution
converges to a constant state exponentially fast as time tends to infinity under certain assumptions. The
well-posedness of the Darcy-Cahn-Hilliard model for the Hele-Shaw flow as well as the basic regularity
of the weak solution can be found in [12]. In more detail, a convex splitting numerical scheme was
formulated, with a mixed finite element approximation in space. Such an approximate construction
assures an unconditional energy stability. As a result, using certain compactness arguments, the authors
obtained a weak convergence of the finite element numerical approximation to a global-in-time weak
solution. Furthermore, the CHHS solution with higher order regularities is discussed in [23] by more
advanced Littlewood-Paley theory, and global in time classical solutions were reported for the 3-D CHHS
system in [22], if the initial data is close to an energy minimizer or the Péclet number is sufficiently small.

In this paper, the global well-posedness analysis of the CHS equation is mainly accomplished by an
L∞ estimate of the velocity variable in terms of an L2 norm of −γφ∇µ, which comes from an application
of elliptic regularity and Hemlholtz projection to the Stokes equation (1.3). With the estimates for the
nonlinear terms, a uniform in time H2 estimate for the phase variable can be obtained. Consequently, a
standard Galerkin procedure would construct approximate solutions and the limit functions turns out to
be the unique strong solution of the CHS system.

The remainder of the paper is organized as follows. In Section 2, we review and analyze the weak
solution to the dynamic CHS equation. In Section 3, a global in time strong solution, with regularity of
L∞(0, T ;H2) ∩ L2(0, T ;H4) is established for the CHS system (1.2), (1.3), (1.4), with any H2 initial data for
φ. Furthermore, the existence and uniqueness of the strong solution are also proven.
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2. Global in time of the weak solution

2.1. Review of the weak solution
For any positive final time T , the functions (φ,u) with the following regularities

φ ∈ L∞(0, T ;H1)∩ L2(0, T ;H3), ∂tφ ∈ L1(0, T ;H−1)∩ L2(0, T ;H−3),

u = (u, v,w) ∈ L∞(0, T ;L2)∩ L2(0, T ;H1),

are called a weak solution for the dynamic CHS system (1.2), (1.3), (1.4), if

(∂tφ,ψ) − (uφ,∇ψ) = (µ,4ψ), ∀ψ ∈ H3(Ω),
∂tu−4u+u = −γPH(φ∇µ),

(2.1)

where µ = φ3 −φ− ε24φ and PH denotes the standard Helmholtz projection, which leads to PH∇p = 0.

Theorem 2.1. Let φ0 = φ(·, 0) ∈ H1(Ω). Then there exists at least one global weak solution for the dynamic CHS
equation (1.2), (1.3), (1.4), such that for any T > 0

‖φ‖L∞(0,T ;H1) 6 A1, ‖φ‖L2(0,T ;H3) 6 A2, ‖∂tφ‖L2(0,T ;H−3) 6 A3,

‖u‖L∞(0,T ;L2) 6 A4, ‖u‖L2(0,T ;H1) 6 A5,

where A1 and A4 are time independent and A2, A3, and A5 are time dependent constants.

Before we prove this theorem, we build some framework.

2.2. Construction of approximation solution and properties

To prove Theorem 2.1, we recall the following Galerkin procedure.
Let {Φj}j>1 ⊂ H2(Ω) be eigenfunctions of the Laplacian operator corresponding to the eigenvalues

−λj, j = 1, 2, · · · , with 0 < λ1 < λ2 < · · · , such that

−4Φj = λjΦj,
∂Φj

∂n
|∂Ω = 0.

Additionally, we choose
∥∥Φj∥∥ = 1 for j > 1. Obviously, {Φj}j>1 ⊂ C∞(Ω) defines a complete orthonormal

basis in L2(Ω).
Denote GM as the vector space spanned by {Φj}

M
j=1 and define PM as the standard projection from

L2(Ω) to GM:

PM =

M∑
j=1

f̂jΦj, for f =

∞∑
j=1

f̂jΦj, f̂j = (f,Φj). (2.2)

To seek a weak solution of the CHS equation (1.2), (1.3), (1.4), we find an approximate solution
{φM,uM} with φM ∈ GM, such that

∂tφM +PM(uM · ∇φM) = 4µM, (2.3)
∂tuM −4uM +uM = −γPH(φM∇µM), (2.4)
φM|t=0 = PMφ0, (2.5)

where µM = PM(φ3
M) −φM − ε24φM ∈ GM. Note that uM /∈ GM in general, since φM∇µM /∈ GM.

We also present the following results, which will be used in the analysis later in the paper. For brevity,
in the following, ‖ · ‖ denotes the L2-norm ‖ · ‖L2 .
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Lemma 2.2. The following estimates are valid.

‖PMf‖ 6 ‖f‖ , ∀f ∈ L2(Ω), M > 1, (2.6)

(PMf,gM) = (f,gM), ∀f ∈ L2(Ω), M > 1, gM ∈ GM, (2.7)
(∇Φi,∇Φj) = 0, for i 6= j, (2.8)
‖∇(PMf)‖ 6 ‖∇f‖ , for f smooth enough. (2.9)

Proof.

(1) Based on the eigenfunction expansion (2.2) and its projection, we apply the orthonormal property of
{Φj}

∞
j=1 and get

‖PMf‖2 =

M∑
j=1

|f̂j|
2 6 ‖f‖2 =

∞∑
j=1

|f̂j|
2,

so that (2.6) is proven.

(2) For gM ∈ GM, assume its eigenfunction expansion is gM =
∑M
j=1 ĝjΦj. In turn, the following

derivation could be made,

(f−PMf,gM) = (

∞∑
j=M+1

f̂jΦj,
M∑
j=1

ĝjΦj) = 0,

in which the last step comes from the orthogonal property of {Φj}∞j=1.

(3) Due to the homogeneous Neumann boundary condition, (2.8) is a direct consequence of integration
by parts,

(∇Φi,∇Φj) = −(Φi,∆Φj) = −λj(Φi,Φj) = 0, for i 6= j.

(4) The eigenfunction expansion (2.2) and its projection indicate that

∇(PMf) =
M∑
j=1

f̂j∇Φj, ∇f =
∞∑
j=1

f̂j∇Φj.

Hence, we apply the orthogonal property (2.8) for {∇Φj}∞j=1 and arrive at

‖∇(PMf)‖2 =

M∑
j=1

|f̂j|
2 ∥∥∇Φj∥∥2

6 ‖∇f‖2 =

∞∑
j=1

|f̂j|
2 ∥∥∇Φj∥∥2 ,

which in turn completes the proof of (2.9).

Moreover, a detailed calculation shows that the following formulas of integration by parts are also
valid.

(f,4gM) = −(∇f,∇gM), (f,42gM) = (4f,4gM), (2.10)

(4f,42gM) = −(∇4f,∇4gM),

for gM ∈ GM and f smooth enough.

2.3. Proof of Theorem 2.1
It is straightforward to obtain the local in time existence of the approximation solution, since the

Galerkin scheme (2.3) and (2.5) with the velocities determined by (2.4) is an initial value problem for a
system of ODEs. But to discuss the global in time of the weak solution, energy estimates are necessary.
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Proof of Theorem 2.1. Taking the inner product of (2.3) with µM = PM(φ3
M)−φM− ε24φM, by the above-

mentioned result (2.7) and the integration by parts formula (2.10), we have

(∂tφM,µM) + (uM · ∇φM,µM) + ‖∇µM‖2 = 0. (2.11)

For the first term, according to (2.7), (∂tφM,PM(φ3
M)) = (∂tφM,φ3

M) and a direct result can be derived
as follows,

(∂tφM,µM) = (∂tφM,PM(φ3
M) −φM − ε24φM)

= (∂tφM,φ3
M −φM − ε24φM)

=
d

dt
ECH(φM),

(2.12)

where ECH(φM) :=
∫
Ω

[ 1
4φ

4
M − 1

2φ
2
M + ε2

2 |∇φM|2
]
dx. For the second term,

(uM · ∇φM,µM) = (∇ · (uMφM),µM) = −(uMφM,∇µM)

= −(uM,φM∇µM) = −(uM,−
1
γ
(∂tuM −4uM +uM))

=
1
γ
(uM,∂tuM −4uM +uM)

=
1
γ
(
1
2
d

dt
‖uM‖2 + ‖∇uM‖2 + ‖uM‖2).

(2.13)

Substituting (2.12) and (2.13) into (2.11), we obtain the energy estimate

d

dt
E(φM) + ‖∇µM‖2 +

1
γ
(‖∇uM‖2 + ‖uM‖2) = 0,

in which E(φM) = ECH(φM) +
1

2γ
‖uM‖2.

As a result, this energy bound gives a uniform in time H1 bound for the approximate solution φM. In
turn, a global (in time) solution for (2.3), (2.4), (2.5) is assured, for any fixed M > 1.

Moreover, more detailed Sobolev analysis indicate the following bounds,

‖φM‖L∞(0,T ;H1) 6 A1, ‖φM‖L2(0,T ;H3) 6 A2, ‖∂tφM‖L2(0,T ;H−3) 6 A3,

‖uM‖L∞(0,T ;L2) 6 A4, ‖uM‖L2(0,T ;H1) 6 A5,

where the constant A1 and A4 are time independent, A2, A3 and A5 are time dependent. We leave to be
confirmed the details to interested readers.

Since these estimates are uniform inM, there exist subsequences φlM,ulM,∂tφlM and limit functions
φ ∈ L∞(0, T ;H1)∩ L2(0, T ;H3), ∂tφ ∈ L2(0, T ;H−3), u ∈ L∞(0, T ;L2)∩ L2(0, T ;H1) such that

φlM w−→ φ in L2(0, T ;H3), φlM w∗−→ φ in L∞(0, T ;H1),

ulM w−→ u in L2(0, T ;H1), ulM w−→ u in L∞(0, T ;L2),

∂tφlM w−→ ∂tφ in L2(0, T ;H−3).

Also, by applying an improvement of the Aubin compactness result in [21], we have

φlM → φ strongly in L2(0, T ;H2).

Now we may pass to the limit, showing that the limit function (φ,u) is indeed a weak solution in the
sense of (2.1). This completes the proof of Theorem 2.1.
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3. Global in time strong solution

The main results of this paper are the following global existence and uniqueness of solutions for the
CHS system.

Theorem 3.1. Let φ0 = φ(·, 0) ∈ H2(Ω). Then there exists a unique global (in time) strong solution for the
dynamic CHS equation (1.2), (1.3), (1.4), such that for any T > 0

‖φ‖L∞(0,T ;H2) 6 B1, ‖φ‖L2(0,T ;H4) 6 B2, ‖∂tφ‖L2(0,T ;L2) 6 B3,

‖u‖L∞(0,T ;H1) 6 B4, ‖u‖L2(0,T ;H2) 6 B5,
(3.1)

in which B1 and B4 are time independent and B2, B3, and B5 are time dependent constants.

To prove this result, two important inequalities must be introduced.

Lemma 3.2 (Elliptic regularity [15]). There is a constant C > 0, such that, for any ψ ∈ Hm+2(Ω),

‖ψ‖Hm+2 6 C(‖∆ψ‖Hm + ‖ψ‖L2),
‖ψ‖H2m 6 C(‖∆mψ‖L2 + ‖ψ‖L2),
‖ψ‖H2m+1 6 C(‖∇∆mψ‖L2 + ‖ψ‖L2).

Lemma 3.3 (Gagliardo-Nirenberg inequality [25]). Assume that u ∈ Lq(Rn),Dmu ∈ Lr(Rn), 1 6 q, r 6∞, 0 6 j 6 m. we have the estimate as follows

‖Dju‖Lp 6 C‖Dmu‖αLr‖u‖1−α
Lq ,

where C is a positive constant, 0 6 j
m 6 α 6 1,

1
p
=
j

n
+α(

1
r
−
m

n
) + (1 −α)

1
q

.

Prior estimates for φ ∈ L∞(0, T ;H2) ∩ L2(0, T ;H4) and for u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) are needed to
establish a global in time strong solution. In particular, the estimate for the nonlinear convection term is
vital in our proof.

3.1. Priori estimates for φ ∈ L∞(0, T ;H2)∩ L2(0, T ;H4) and u ∈ L∞(0, T ;H1)∩ L2(0, T ;H2)

Taking the inner product of (1.2) with 2∆2φ yields

d

dt
‖∆φ‖2 + 2ε2 ∥∥∆2φ

∥∥2
= 2

(
∆(φ3),∆2φ

)
− 2

(
∆φ,∆2φ

)
− 2

(
u · ∇φ,∆2φ

)
. (3.2)

The term associated with the concave diffusion can be treated in a straightforward way, with the help
of a Sobolev interpolation inequality,

− 2
(
∆φ,∆2φ

)
= 2 ‖∇∆φ‖2 6 C(‖∇φ‖

1
3 ·

∥∥∆2φ
∥∥ 2

3 )2 6 C ‖∇φ‖
2
3 ·

∥∥∆2φ
∥∥ 4

3 6 CA
2
3
1 ·

∥∥∆2φ
∥∥ 4

3 , (3.3)

in which the global in time H1 estimate (as shown in Theorem 2.1) was applied in the last step.
For the term associated with the cubic nonlinear part in (3.2), an application of Cauchy-Schwartz

inequality yields,
2
(
∆(φ3),∆2φ

)
6 2

∥∥∆(φ3)
∥∥ · ∥∥∆2φ

∥∥ . (3.4)

At the same time, it follows from the standard expansion

∆(φ3) = 3φ2∆φ+ 6φ |∇φ|2 ,



K. L. Cheng, W. Q. Feng, J. Nonlinear Sci. Appl., 10 (2017), 4209–4221 4215

that ∥∥∆(φ3)
∥∥ 6 3C ‖φ‖2

L6 · ‖∆φ‖L6 + 6C ‖φ‖L6 · ‖∇φ‖2
L6

6 C(‖φ‖2
H1 · ‖∆φ‖H1 + ‖φ‖H1 · ‖∇φ‖2

H1)

6 C(A2
1 · ‖∆φ‖H1 +A1 · ‖∇φ‖2

H1)

6 C(A2
1 · ‖∇φ‖

1
3 ·

∥∥∆2φ
∥∥ 2

3 +A1 · (‖∇φ‖
2
3 ·

∥∥∆2φ
∥∥ 1

3 )2)

6 CA
7
3
1

∥∥∆2φ
∥∥ 2

3 ,

in which the 3-D Sobolev embedding from H1 into L6 was repeatedly applied in the derivation. Its
combination with (3.4) results in

2
(
∆(φ3),∆2φ

)
6 CA

7
3
1

∥∥∆2φ
∥∥ 5

3 . (3.5)

For the term associated with the nonlinear convection, we also start with an application of Hölder
inequality,

− 2
(
u · ∇φ,∆2φ

)
6 2 ‖u‖L∞ · ‖∇φ‖ ·

∥∥∆2φ
∥∥ 6 2A1 ‖u‖L∞ ·

∥∥∆2φ
∥∥ . (3.6)

Meanwhile, a combination of the 3-D Sobolev embedding, interpolation inequality and elliptic regularity
shows that

‖u‖L∞ 6 Cδ ‖u‖
H

3
2 +δ 6 Cδ ‖u‖

1−2δ
4 · ‖u‖

3+2δ
4
H2 6 Cδ ‖u‖

1−2δ
4 · (‖u‖+ ‖∆u‖)

3+2δ
4

6 CδA
1−2δ

4
4 · (A4 + ‖∆u‖)

3+2δ
4 6 CδA4(1 + ‖∆u‖

3+2δ
4 ).

(3.7)

As a result, a combination of (3.2), (3.3), (3.5), (3.6) and (3.7) implies that

d

dt
‖∆φ‖2 + 2ε2 ∥∥∆2φ

∥∥2
6 C(A

2
3
1

∥∥∆2φ
∥∥ 4

3 +A
7
3
1

∥∥∆2φ
∥∥ 5

3 +A1A4(1 + ‖∆u‖
3+2δ

4 ) ·
∥∥∆2φ

∥∥). (3.8)

For (1.3), taking the inner product with −2∆u yields

d

dt
‖∇u‖2 + 2 ‖∆u‖2 + 2 ‖∇u‖2 = 2γ (∆u,φ∇µ) , (3.9)

in which the orthogonality between ∆u and ∇p comes from the incompressible property of ∆u.
For the nonlinear term appearing on the right hand side, a preliminary estimate indicates that

‖φ∇µ‖ 6 ‖φ‖L∞ ·
∥∥∇ (

φ3 −φ− ε2∆φ
)∥∥

6 ‖φ‖L∞
(∥∥∇(φ3)

∥∥+ ‖φ‖+ ε2 ‖∇∆φ‖
)

6 ‖φ‖L∞
(∥∥∇(φ3)

∥∥+A1 + ε
2 ‖∇∆φ‖

)
.

(3.10)

The term ‖φ‖L∞ can be bounded by

‖φ‖L∞ 6 C(‖φ‖
3
4
L6 ‖∇∆φ‖

1
4 + ‖φ‖L6) 6 C(‖φ‖

3
4
H1 ‖∇∆φ‖

1
4 + ‖φ‖H1)

6 C(‖φ‖
3
4
H1 (‖∇φ‖

1
3 ·

∥∥∆2φ
∥∥ 2

3 )
1
4 + ‖φ‖H1)

6 C(A
5
6
1 ·

∥∥∆2φ
∥∥ 1

6 +A1),

(3.11)

with the help of Gagliardo-Nirenberg inequality. The two other terms in ∇µ can be analyzed as∥∥∇(φ3)
∥∥ =

∥∥3φ2∇φ
∥∥ 6 3 ‖φ‖2

L6 · ‖∇φ‖L6 6 C ‖φ‖2
H1 · ‖∇φ‖H1

6 CA2
1 · ‖∇φ‖

2
3 ·

∥∥∆2φ
∥∥ 1

3 6 CA
8
3
1

∥∥∆2φ
∥∥ 1

3 , (3.12)

‖∇∆φ‖ 6 C ‖∇φ‖
1
3 ·

∥∥∆2φ
∥∥ 2

3 6 CA
1
3
1 ·

∥∥∆2φ
∥∥ 2

3 . (3.13)
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A substitution of (3.11), (3.12), (3.13) into (3.10) yields

‖φ∇µ‖ 6 C(A
5
6
1 ·

∥∥∆2φ
∥∥ 1

6 +A1)(A
8
3
1 ·

∥∥∆2φ
∥∥ 2

3 +A1) 6 CA
19
6

1 ·
∥∥∆2φ

∥∥ 5
6 +C(A1).

Going back to (3.9), we arrive at

d

dt
‖∇u‖2 + 2 ‖∆u‖2 + 2 ‖∇u‖2 = 2γ (∆u,φ∇µ) 6 Cγ(A

19
6

1 ·
∥∥∆2φ

∥∥ 5
6 +C(A1)) · ‖∆u‖ . (3.14)

Consequently, a combination of (3.8), and (3.14) implies that

d

dt
(‖∆φ‖2 + ‖∇u‖2) + 2ε2 ∥∥∆2φ

∥∥2
+ 2(‖∆u‖2 + ‖∇u‖2)

6 C
(
A

2
3
1

∥∥∆2φ
∥∥ 4

3 +A
7
3
1

∥∥∆2φ
∥∥ 5

3 +A1A4(1 + ‖∆u‖
3+2δ

4 ) ·
∥∥∆2φ

∥∥
+ (A

19
6

1 ·
∥∥∆2φ

∥∥ 5
6 +C(A1)) · ‖∆u‖

)
.

Since the power index sum for
∥∥∆2φ

∥∥ and ‖∆u‖ is less than 2 (in each term), the Young inequality
(ab 6 ap

p + bq

q with 1
p + 1

q = 1) can be applied to bound them:

CA
2
3
1

∥∥∆2φ
∥∥ 4

3 6 CεA
2
1 +

ε2

4

∥∥∆2φ
∥∥2

, (p = 3, q = 3
2),

CA
7
3
1

∥∥∆2φ
∥∥ 5

3 6 CεA
14
1 +

ε2

4

∥∥∆2φ
∥∥2

, (p = 6, q = 6
5),

CA1A4
∥∥∆2φ

∥∥ 6 CεA
2
1A

2
4 +

ε2

8

∥∥∆2φ
∥∥2

, (p = 2, q = 2),

CA1A4 ‖∆u‖
3+2δ

4 ·
∥∥∆2φ

∥∥ 6 Cε,A1,A4 +
ε2

8

∥∥∆2φ
∥∥2

+
1
4
‖∆u‖2 , (p = 2, q = 2),

CA
19
6

1

∥∥∆2φ
∥∥ 5

6 · ‖∆u‖ 6 Cε,A1 +
ε2

4

∥∥∆2φ
∥∥2

+
1
4
‖∆u‖2 , (p = 2, q = 2),

C(A1) · ‖∆u‖ 6 C(A1) +
1
4
‖∆u‖2 , (p = 2, q = 2).

Therefore,
d

dt

(
‖∆φ‖2 + ‖∇u‖2

)
+ ε2 ∥∥∆2φ

∥∥2
+ ‖∆u‖2 + ‖∇u‖2 6 CA1,A4,ε. (3.15)

Moreover, with an application of elliptic regularity,

C2 ‖∆φ‖2 6
∥∥∆2φ

∥∥2
, C2 ‖∇u‖2 6 ‖∆u‖2 ,

we get
d

dt

(
‖∆φ‖2 + ‖∇u‖2

)
+C2ε

2
(
‖∆φ‖2 + ‖∇u‖2

)
6 CA1,A4,ε.

This in turn gives an estimate containing an exponential decay for φ ∈ H2 and u ∈ H1:

‖∆φ(t)‖2 + ‖∇u(t)‖2 6 e−C2ε
2t
(
‖∆φ(0)‖2 + ‖∇u(0)‖2

)
+
CA1,A4,ε

C2ε2 := B∗1 .

Hence, a uniform in time H2 bound for φ is obtained by the elliptic regularity,

‖φ(t)‖H2 6 C(‖φ(t)‖+ ‖4φ(t)‖) 6 C(A1 + (B∗1)
1/2) := B1,
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in which clearly B1 is time independent, and

‖u‖H1 6 C(‖u‖+ ‖∇u‖) 6 C(A4 + (B∗1)
1/2) := B4,

where B4 is also time independent.
Based on (3.15), the following estimate can also be derived,∫T

0
(
∥∥∆2φ

∥∥2
+ ‖∆u‖2)dt 6

CA1,A4,εT + ‖∆φ(t = 0)‖2 + ‖∇u(t = 0)‖2

ε2 = B∗2 .

Consequently, due to the elliptic regularity ‖φ(t)‖H4 6 C(‖φ(t)‖+
∥∥42φ(t)

∥∥), an L2(0, T ;H4) estimate for
φ is available,

‖φ‖L2(0,T ;H4) 6 C(‖φ(t)‖L2(0,T ;L2) +
∥∥42φ(t)

∥∥
L2(0,T ;L2)

) 6 C(A2 + (B∗2)
1/2) := B2.

Also, by the elliptic regularity ‖u‖H2 6 C(‖u‖+ ‖4u‖), we can obtain the estimate for u,

‖u‖L2(0,T ;H2) 6 C(‖u‖L2(0,T ;L2) + ‖4u‖L2(0,T ;L2)) 6 C(A5 + (B∗2)
1/2) := B5.

Finally, from CHS equation (1.2), an L2(0, T ;L2) estimate for ∂tφ can be obtained

‖∂tφ‖L2(0,T ;L2) 6 C(A1 ‖u‖L2(0,T ;H2) +
∥∥4(φ3)

∥∥
L2(0,T ;L2 +B2) 6 C(A1B4 +B

3
1T +B2) := B3,

with a Sobolev analysis applied for 4(φ3) in the last step.

3.2. Existence of the strong solution
The proof of existence in Theorem 3.1. Since all these estimates are at hand, a global in time strong solution
for the CHS equation can be established by the standard Galerkin procedure. Taking the inner product
with (2.3) by 242φM, we have

d

dt
‖4φM‖2 + 2ε2 ∥∥42φM

∥∥2
= 2(4(PM(φ3

M)),42φM) − 2(4φM,42φM)

− 2(PM(u · ∇φ),42φM).
(3.16)

The prior analysis provided above can be applied to (3.16) in the same way, and we are able to get the
following bounds, uniform in M > 1,

‖φM‖L∞(0,T ;H2) 6 B1, ‖φM‖L2(0,T ;H4) 6 B2, ‖∂tφM‖L2(0,T ;L2) 6 B3,

‖uM‖L∞(0,T ;H1) 6 B4, ‖uM‖L2(0,T ;H2) 6 B5,

and details are left to interested readers.
As a result, the limit function (φ,u) is a strong solution to the CHS equation (1.2), (1.3), (1.4). Hence

the proof of existence in Theorem 3.1 is complete and the estimates (3.1) are available.

3.3. Uniqueness of the strong solution
Assume (φ1,u1) and (φ2,u2) are two strong solutions to (1.2), (1.3), (1.4), with the same initial data,

that is,

∂tφ1 +u1 · ∇φ1 = 4(φ3
1 −φ1 − ε

24φ1), (3.17)

∂tu1 −4u1 +u1 = −γPH(φ1∇(φ3
1 −φ1 − ε

24φ1)), (3.18)

∂tφ2 +u2 · ∇φ2 = 4(φ3
2 −φ2 − ε

24φ2), (3.19)

∂tu2 −4u2 +u2 = −γPH(φ2∇(φ3
2 −φ2 − ε

24φ2)), (3.20)

φ1|t=0 = φ2|t=0 = φ0 ∈ H2,
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in which (φi,ui), i = 1, 2 satisfy

‖φi‖L∞(0,T ;H2) 6 B1, ‖φi‖L2(0,T ;H4) 6 B2, ‖∂tφi‖L2(0,T ;L2) 6 B3,

‖ui‖L∞(0,T ;H1) 6 B4, ‖ui‖L2(0,T ;H2) 6 B5.

The difference functions are given by

φ̃ = φ1 −φ2, ũ = u1 −u2.

Subtracting (3.19)-(3.20) from (3.17)-(3.18), we get

∂tφ̃+u1 · ∇φ̃ = 4
(
(φ2

1 +φ1φ2 +φ
2
2)φ̃− φ̃− ε24φ̃

)
, (3.21)

∂tũ−4ũ+ ũ = −γPH(φ2∇((φ2
1 +φ1φ2 +φ

2
2)φ̃− φ̃− ε24φ̃)

+ φ̃∇(φ3
1 −φ1 − ε

242φ1)), (3.22)
φ̃|t=0 = 0.

We also introduce the following lemma to prove the uniqueness of the global in time strong solution.
For the details, see [5].

Lemma 3.4 ([5]). The following estimates are valid.∫
Ω

φ̃(t)dx = 0, ∀t > 0,∥∥φ̃∥∥ 6 C
∥∥∇φ̃∥∥ , (3.23)∥∥∇ (

(φ2
1 +φ1φ2 +φ2)φ̃

)∥∥ 6 CB2
1
∥∥∇φ̃∥∥ , (3.24)∫T

0
M2

1(t)dt 6 CB
2
5, M1(t) = ‖u1(t)‖L∞ ,∫T

0
M4

2(t)dt 6 B
2
1B

2
2, M2(t) = ‖∇4φ1(t)‖ ,∥∥φ̃∇(φ3

1 −φ1 − ε
24φ1)

∥∥ 6 CB1

∥∥∇φ̃∥∥+CM2(t)
∥∥∇φ̃∥∥3/4 ·

∥∥∇4φ̃∥∥1/4 , (3.25)

in which B1 and B4 are time independent and B2, B3, and B5 are time dependent constants.

Next, we present the following uniqueness analysis in Theorem 3.1.

The proof of the uniqueness in Theorem 3.1. Taking the inner product with (3.21) by −24φ̃, we get

d

dt

∥∥∇φ̃∥∥2
+2ε2 ∥∥∇4φ̃∥∥2

= −2(u1φ̃+ ũφ2,∇4φ̃) + 2
∥∥4φ̃∥∥2

+ 2(∇((φ2
1 +φ1φ2 +φ

2
2)φ̃),∇4φ̃).

(3.26)

The
∥∥4φ̃∥∥2 can be controlled with the help of Young inequality,

∥∥4φ̃∥∥2
= −(∇φ̃,∇4φ̃) 6

∥∥∇φ̃∥∥ · ∥∥∇4φ̃∥∥ 6 2ε−2 ∥∥∇φ̃∥∥2
+
ε2

8

∥∥∇4φ̃∥∥2 . (3.27)

According to the formula (3.24) in Lemma 3.4, the last nonlinear term in (3.26) can also be analyzed
by a similar method as follows,

(∇((φ2
1 +φ1φ2 +φ

2
2)φ̃),∇4φ̃) 6

∥∥∇((φ2
1 +φ1φ2 +φ

2
2)φ̃)

∥∥ · ∥∥∇4φ̃∥∥
6 CB2

1
∥∥∇φ̃∥∥ · ∥∥∇4φ̃∥∥

6 CB4
1ε

−2 ∥∥∇φ̃∥∥2
+
ε2

8

∥∥∇4φ̃∥∥2 .

(3.28)
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Considering the nonlinear terms associated with the velocity convection, we first discuss the simpler
one,

−(u1φ̃,∇4φ̃) 6 ‖u1‖L∞ ·
∥∥φ̃∥∥ · ∥∥∇4φ̃∥∥ = CM1(t)

∥∥φ̃∥∥ · ∥∥∇4φ̃∥∥
6 2CM2

1(t)ε
−2 ∥∥∇φ̃∥∥2

+
ε2

8

∥∥∇4φ̃∥∥2 .
(3.29)

On the other hand, for the other nonlinear term in the convection, from (3.22), we can rewrite the form
of φ2∇4φ̃ as follows,

φ2∇4φ̃ =
1
γε2 ((∂tũ−4ũ+ ũ) +NLE) +∇ϕ ′,

with
NLE = γφ2∇(φ̃(φ2

1 +φ1φ2 +φ
2
2) − φ̃) + φ̃∇(φ3

1 −φ1 − ε
24φ1).

Therefore we have the following estimate,

−(ũφ2,∇4φ̃) = −(ũ,φ2∇4φ̃) = −
1
γε2 ((ũ,∂tũ−4ũ+ ũ) + (ũ,NLE)),

= −
1
γε2 (

1
2
d

dt
‖ũ‖2 + ‖∇ũ‖2 + ‖ũ‖2) −

1
γε2 (ũ,NLE)

6 −
1
γε2 (

1
2
d

dt
‖ũ‖2 + ‖∇ũ‖2 + ‖ũ‖2) +

1
γε2 ‖ũ‖ · ‖NLE‖

6 −
1
γε2 (

1
2
d

dt
‖ũ‖2 + ‖∇ũ‖2 + ‖ũ‖2) +

1
2γε2 (‖ũ‖

2 + ‖NLE‖2),

in which (ũ,∇ϕ ′) vanishes because of the property of the Helmholtz projection PH.
With formulas (3.23) and (3.25) from Lemma 3.4, the term ‖NLE‖ can also be derived,

‖NLE‖ 6
∥∥φ2∇(φ̃(φ2

1 +φ1φ2 +φ
2
2))

∥∥+
∥∥φ̃∇(φ3

1 −φ1 − ε
24φ1)

∥∥+
∥∥φ2∇φ̃

∥∥
6 CB1

∥∥∇φ̃∥∥+CM2(t)
∥∥∇φ̃∥∥3/4 ∥∥∇4φ̃∥∥1/4

+ ‖φ2‖L∞ ·
∥∥∇φ̃∥∥

6 CB1

∥∥∇φ̃∥∥+CM2(t)
∥∥∇φ̃∥∥3/4 ∥∥∇4φ̃∥∥1/4 ,

which yields

‖NLE‖2 6 CB1

∥∥∇φ̃∥∥2
+CM2(t)

∥∥∇φ̃∥∥3/2 ∥∥∇4φ̃∥∥1/2

6 CB1

∥∥∇φ̃∥∥2
+Cγ,εM

4/3
2 (t)

∥∥∇φ̃∥∥2
+
ε2

4

∥∥∇4φ̃∥∥2

6 (CB1 +Cγ,εM
4/3
2 (t))

∥∥∇φ̃∥∥2
+
γε2

4

∥∥∇4φ̃∥∥2 .

(3.30)

Consequently, a combination of (3.26), (3.27), (3.28), (3.29) and (3.30) leads to

d

dt

∥∥∇φ̃∥∥2
+

1
γε2

d

dt
‖ũ‖2 + ε2 ∥∥∇4φ̃∥∥2

6 4ε−2 ∥∥∇φ̃∥∥2
+ 2B4

1ε
−2 ∥∥∇φ̃∥∥2

+ 4M2
1(t)ε

−2 ∥∥∇φ̃∥∥2

+ (CB1 +Cγ,εM
4/3
2 (t))

∥∥∇φ̃∥∥2
−

1
γε2 ‖ũ‖

2 .

(3.31)

We denote D(t,γ, ε) = 4ε−2 + 2B4
1ε

−2 + 4M2
1(t)ε

−2 + (CB1 +Cγ,εM
4/3
2 (t)), and obtain the integrability of

the coefficient, ∫T
0
D(t,γ, ε)dt =

∫T
0

4ε−2 + 2B4
1ε

−2 + 4M2
1(t)ε

−2 + (CB1 +Cγ,εM
4/3
2 (t))dt

6 CB1,εT +CB1,εB
2
5 +Cγ,ε

∫T
0
(M4

2(t) + 1)dt

6 CB1,εT +CB1,εB
2
5 +Cγ,εB

2
1B

2
2 := ET .
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Furthermore, the inequality (3.31) can be rewritten as

d

dt

∥∥∇φ̃∥∥2
+

1
γε2

d

dt
‖ũ‖2 6 D(t,γ, ε)(

∥∥∇φ̃∥∥2
+ ‖ũ‖2). (3.32)

Therefore, an application of the Gronwall-Bellman inequality to (3.32) implies that

∥∥∇φ̃(t)∥∥2
+

1
γε2 ‖ũ(t)‖

2 6 exp (ET )(
∥∥∇φ̃(0)∥∥2

+
1
γε2 ‖ũ(0)‖

2) = 0,

with the trivial initial data applied in the last step. By the inequality
∥∥φ̃∥∥ 6 C

∥∥∇φ̃∥∥, the uniqueness of
the strong solution (φ,u) is assured. The proof of the uniqueness in Theorem 3.1 is complete.

Remark 3.5. Similarly, the techniques proposed in this paper can be applied to analyze the higher order
derivatives of the solution of the dynamic CHS equation in the same fashion, (for example, the initial
function φ0 = φ(·, 0) ∈ Hm(Ω), (m > 3)), and the details are skipped for brevity.
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