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Abstract
This paper considers the optimal harvesting of a stochastic delay predator-prey model with Lévy jumps. The traditional

optimal harvesting problem of this type of model is difficult because it is difficult to get the explicit solutions of the model or
to solve the corresponding delay Fokker-Planck equation of the model. In this paper, we use an ergodic method to study this
problem, and establish the sufficient and necessary conditions for the existence of an optimal harvesting strategy of the model.
In addition, we gain the explicit forms of the optimal harvesting effort and the maximum of the cost function. One can see that
the ergodic method used in this paper can avoid solving both the model and the corresponding delay Fokker-Planck equation.
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1. Introduction

Optimal harvesting problem is one of the most important and interesting topics in mathematical bi-
ology. Under the classical catch-per-unit-effort (CPUE) harvesting hypothesis, Clark [6] established the
optimal harvesting strategy for a deterministic logistic model. From then on, optimal harvesting prob-
lems have attract more and more attention. Many deterministic population models with harvesting have
been proposed and studied. However, population models are inevitably affected by various stochastic
perturbations. Thus in recent years, stochastic population models with harvesting have received great
attention [5, 11, 32]. For example, Beddington and May [5] considered the optimal harvesting problem
of a stochastic logistic model by solving the corresponding Fokker-Planck equation of the model. Then
the results in [5] was extended to a general stochastic logistic model [11]. Zou et al. [32] investigated the
optimal harvesting problem of a stochastic Gompertz model by using the explicit solution of the model.

On the other hand, the natural world is full of time delay. Several authors have pointed out that time
delay should not be neglected (see, e.g. [21–25]). In addition, the models in [5, 11, 32] only considered
the white noises. However, population models in the natural world are inevitably affected by severe and
sudden environmental perturbations, such as earthquakes, epidemics, and so on. For example, Tangshan
earthquake in China, Three Mile Island nuclear accident in USA, Fukushima Daiichi nuclear disaster in
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Japan, and others. These sudden environmental perturbations cause jumps in population models, which
can not be described by white noises. Several authors have suggested that one may use Lévy jumps
to describe these phenomena [2, 16, 33, 34]. Moreover, predator-prey is a common phenomenon in the
natural world [26]. Therefore, it is important to study the optimal harvesting problem of stochastic delay
predator-prey model with Lévy jumps and harvesting. To the best of our knowledge, no results of this
aspect have been reported. Motivated by these, in this paper, we consider the following stochastic delay
predator-prey model with Lévy jumps and harvesting:

dy1(t) = y1(t
−)

[
r1 − h1 − c11y1(t

−) − c12y2(t
− − τ1)

]
dt+ σ1y1(t

−)dB1(t)

+

∫
Y

y1(t
−)γ1(u)Ñ(dt,du),

dy2(t) = y2(t
−)

[
− r2 − h2 + c21y1(t

− − τ2) − c22y2(t
−)

]
dt+ σ2y2(t

−)dB2(t)

+

∫
Y

y2(t
−)γ2(u)Ñ(dt,du),

(1.1)

with initial data
y(θ) = (y1(θ),y2(θ))

T = (ϕ1(θ),ϕ2(θ))
T ∈ Υ,

where y1(t) is the size of the prey population at time t; y2(t) is the size of the predator population at
time t; yi(t−) denotes the left limit of yi(t), i = 1, 2; r1 > 0 stands for the intrinsic growth rate of the
prey population; r2 > 0 stands for the death rate of the predator population; hi > 0 is the harvesting
effort of the ith species, i = 1, 2; cii > 0 denotes the intra-specific competition coefficient of the species
i; c12 > 0 is the capture rate; c21 > 0 represents the efficiency of food conversion; σ2

i represents the
intensity of the white noise, τi > 0 represents the delay, i = 1, 2; B(t) = (B1(t),B2(t))

T is a standard
Brownian motion defined on a complete probability space (Ω,F, {Ft}t>0, P); τ = max{τ1, τ2}, Υ is the
family of all bounded and continuous functions from [−τ, 0] to R2

+ = {y = (y1,y2)
T ∈ R2|yi > 0, i = 1, 2};

Ñ(dt,du) = N(dt,du) − λ(du)dt; and N is a Poisson counting measure with characteristic measure λ on
a measurable subset Y of (0,∞) with λ(Y) <∞.

The main purpose of this paper is to gain the optimal harvesting effort h∗ = (h∗1 ,h∗2)
T such that

(a) expectation of sustainable yield (ESY)

Y(h) = lim
t→∞

2∑
i=1

E(hiyi(t))

is maximum;
(b) both y1 and y2 are persistent.

There are two traditional approaches to study the optimal harvesting problems of stochastic population
model. One is to solve the corresponding Fokker-Planck equation [5, 11], the other is to use the explicit
solution of the model [32]. However, for most stochastic delay population models, it is difficult to get the
explicit solutions of the model or to solve the corresponding delay Fokker-Planck equation. In this paper,
we use an ergodic method to study this problem, and establish the sufficient and necessary conditions for
the existence of an optimal harvesting policy of the model. It is easy to see that the ergodic method can
avoid solving both the model and the corresponding delay Fokker-Planck equation.

2. Main results

As a standing assumption, in this paper, we assume that N, B1, and B2 are independent. We also
assume the following.

Assumption 2.1. There exists a constant k > 0 such that

1 + γi(u) > 0, u ∈ Y,
∫

Y

ln2(1 + γi(u))λ(du) 6 k, i = 1, 2.

Biologically, this assumption means that the intensity of the Lévy jumps is not too large.



M. Deng, J. Nonlinear Sci. Appl., 10 (2017), 4222–4230 4224

For simplicity, let us define the following symbols:

g(t) = t−1
∫t

0
g(s)ds, C =

[
c11 c12
−c21 c22

]
,

b1 = r1 − h1 − 0.5σ2
1 −

∫
Y

(
γ1(u) − ln(1 + γ1(u))

)
λ(du),

b2 = r2 + h2 + 0.5σ2
2 +

∫
Y

(
γ2(u) − ln(1 + γ2(u))

)
λ(du),

Λ = c11c22 + c12c21, Λ1 = b1c22 + b2c12, Λ2 = b1c21 − b2c11.

Firstly, let us present several lemmas.

Lemma 2.2 ([13]). Under Assumption 2.1, for any initial value ϕ(θ) ∈ Υ, model (1.1) has a unique global solution
y(t) = (y1(t),y2(t))

T on t > −τ and the solution will remain in R2
+ a.s. (almost surely). Moreover,

(A) if b1 < 0 then both the prey y1 and the predator y2 go to extinction almost surely (a.s.), i.e., limt→∞ yi(t) =
0 a.s., i = 1, 2;

(B) if b1 > 0 and Λ2 < 0, then the predator goes to extinction a.s. and the prey is persistent in the mean a.s., i.e.,

lim
t→∞y1(t) =

b1

c11
, a.s.;

(C) if Λ2 > 0, then both the prey and the predator are persistent in the mean a.s., i.e.,

lim
t→∞y1(t) =

Λ1

Λ
, lim

t→∞y2(t) =
Λ2

Λ
, a.s.. (2.1)

Remark 2.3. Similar to the proof of Theorem 1 in [13], one can easily show that

(D) if b1 = 0, then both the prey and the predator are non-persistent, i.e.,

lim
t→∞ t−1

∫t
0
yi(s)ds = 0, a.s., i = 1, 2;

(E) if Λ2 = 0, then

lim
t→∞ t−1

∫t
0
y1(s)ds =

b1

c11
, lim

t→∞ t−1
∫t

0
y2(s)ds = 0, a.s..

By (A)-(E), it is obvious that both the prey and the predator are persistent if and only if Λ2 > 0.

Lemma 2.4. For all p > 0, there exists a positive constant K(p) such that lim sup
t→∞ Ey

p
i (t) 6 K(p), i = 1, 2.

Proof. The proof is similar to that of [10] and we omit it.

Lemma 2.5. If c11 > c21 and c22 > c12, then system (1.1) is stable in distribution, that is to say, there exists a
unique probability measure ν(·) such that for any ϕ(θ) ∈ Υ, the transition probability p(t,ϕ, ·) of y(t) weakly
converges to ν(·) as t→∞.

Proof. Let (y1(t;ϕ),y2(t;ϕ))T and (y1(t;φ),y2(t;φ))T be any two solutions of system (1.1) with initial
data ϕ(θ) ∈ Υ and φ(θ) ∈ Υ, respectively. Define

W(t) =

2∑
i=1

∣∣∣∣ lnyi(t;ϕ) − lnyi(t;φ)
∣∣∣∣+ c12

∫t
t−τ1

∣∣∣∣y2(s;ϕ) − y2(s;φ)
∣∣∣∣ds+ c21

∫t
t−τ2

∣∣∣∣y1(s;ϕ) − y1(s;φ)
∣∣∣∣ds.
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By virtue of Itô’s formula, we obtain

dW(t) = sgn
(
y1(t;ϕ) − y1(t;φ)

)[
− c11(y1(t;ϕ) − y1(t;φ)) − c12(y2(t− τ1;ϕ) − y2(t− τ1;φ))

]
dt

+ sgn
(
y2(t;ϕ) − y2(t;φ)

)[
c21(y1(t− τ2;ϕ) − y1(t− τ2;φ)) − c22(y2(t;ϕ) − y2(t;φ))

]
dt

+

2∑
i=1

2∑
j=1,j6=i

cij

∣∣∣∣yj(t;ϕ) − yj(t;φ)∣∣∣∣dt− 2∑
i=1

2∑
j=1,j6=i

cij

∣∣∣∣yj(t− τi;ϕ) − yj(t− τi;φ)∣∣∣∣dt
6 −

2∑
i=1

cii|yi(t;ϕ) − yi(t;φ)|dt+
2∑
i=1

2∑
j=1,j6=i

cij

∣∣∣∣yj(t− τi;ϕ) − yj(t− τi;φ)∣∣∣∣dt
+

2∑
i=1

2∑
j=1,j6=i

cij

∣∣∣∣yj(t;ϕ) − yj(t;φ)∣∣∣∣dt− 2∑
i=1

2∑
j=1,j6=i

cij

∣∣∣∣yj(t− τi;ϕ) − yj(t− τi;φ)∣∣∣∣dt
= −[c11 − c21]

∣∣∣∣y1(t;ϕ) − y1(t;φ)
∣∣∣∣dt− [c22 − c12]

∣∣∣∣y2(t;ϕ) − y2(t;φ)
∣∣∣∣dt.

Thereby,

E(W(t)) 6W(0) − [c11 − c21]

∫t
0

E

∣∣∣∣y1(s;ϕ) − y1(s;φ)
∣∣∣∣ds− [c22 − c12]

∫t
0

E

∣∣∣∣y2(s;ϕ) − y2(s;φ)
∣∣∣∣ds.

By W(t) > 0, one can obtain that

[c11 − c21]

∫t
0

E

∣∣∣∣y1(s;ϕ) − y1(s;φ)
∣∣∣∣ds+ [c22 − c12]

∫t
0

E

∣∣∣∣y2(s;ϕ) − y2(s;φ)
∣∣∣∣ds 6W(0) <∞.

Hence,

E

∣∣∣∣yi(t;ϕ) − yi(t;φ)∣∣∣∣ ∈ L1[0,∞), i = 1, 2.

On the other hand, by the first equation in system (1.1), we get

E(y1(t)) = y1(0) +
∫t

0

[
(r1 − h1)E(y1(s)) − c11E(y2

1(s)) − c12E(y1(s)y2(s− τ1))

]
ds.

Thereby, E(y1(t)) is continuously differentiable. Furthermore, in view of Lemma 2.4, we have

dE(y1(t))

dt
6 (r1 − h1)E(y1(t)) 6 K̃,

where K̃ > 0 is a constant. Consequently, E(y1(t)) is uniformly continuous. Analogously, we get that
E(y2(t)) is also uniformly continuous. It then follows from Barbalat’s conclusion [3] that

lim
t→∞E

∣∣∣∣yi(t;ϕ) − yi(t;φ)∣∣∣∣ = 0, i = 1, 2. (2.2)

Let P(t,ϕ,A) be the probability of event y(t;ϕ) ∈ A with initial data ϕ(θ) ∈ Υ. By Lemma 2.4 and
Chebyshev’s inequality, we get that the family of {p(t,ϕ,dx)} is tight ([12, 14, 15]). Denote by P(Υ) all the
probability measures on Υ. For all P1,P2 ∈ P, define

dF(P1,P2) = sup
f∈F

∣∣∣∣ ∫
R2

+

f(x)P1(dx) −

∫
R2

+

f(x)P2(dx)

∣∣∣∣,
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where

F =

{
f : Υ→ R

∣∣∣∣|f(x) − f(z)| 6 ‖x− z‖, |f(·)| 6 1
}

.

For arbitrary f ∈ F and t, s > 0,∣∣∣∣Ef(y(t+ s;ϕ)) − Ef(y(t;ϕ))
∣∣∣∣ = ∣∣∣∣E[E

(
f(y(t+ s;ϕ))|Fs

)]
− Ef(y(t;ϕ))

∣∣∣∣
=

∣∣∣∣ ∫
R2

+

Ef(y(t; ξ))p(s,ϕ,dξ) − Ef(y(t;ϕ))
∣∣∣∣

6
∫

R2
+

∣∣∣∣Ef(y(t; ξ)) − Ef(y(t;ϕ))
∣∣∣∣p(s,ϕ,dξ).

By (2.2), one can see that there exists a random time T such that for t > T ,

sup
f∈F

∣∣∣∣Ef(y(t; ξ)) − Ef(y(t;ϕ))
∣∣∣∣ 6 ε.

Namely, ∣∣∣∣Ef(y(t+ s;ϕ)) − Ef(y(t;ϕ))
∣∣∣∣ 6 ε.

It then follows from the arbitrariness of f that

sup
f∈F

∣∣∣∣Ef(y(t+ s;ϕ)) − Ef(y(t;ϕ))
∣∣∣∣ 6 ε.

Hence,
dF(p(t+ s,ϕ, ·),p(t,ϕ, ·)) 6 ε, ∀t > T , s > 0.

That is to say, {p(t, ρ, ·) : t > 0} is Cauchy in P, where ρ ≡ (0.1, 0.1)T . Then there is a unique ν(·) ∈ P(Υ)
such that

lim
t→+∞dF(p(t, ρ, ·),ν(·)) = 0.

By (2.2),
lim
t→+∞dF(p(t,ϕ, ·),p(t, ρ, ·)) = 0.

Hence

lim
t→+∞dF(p(t,ϕ, ·),ν(·)) 6 lim

t→+∞dF(p(t,ϕ, ·),p(t, ρ, ·)) + lim
t→+∞dF(p(t, ρ, ·),ν(·)) = 0,

then the required assertion follows.

Our main result is the following theorem.

Theorem 2.6. For system (1.1), let Assumption 2.1, c11 > c21, and c22 > c12 hold. Denote

η = (η1,η2)
T = [C(C−1)T + I]−1B, (2.3)

where

B =

(
r1 − 0.5σ2

1 −

∫
Y

(
γ1(u) − ln(1 + γ1(u))

)
λ(du),−r2 − 0.5σ2

2 −

∫
Y

(
γ2(u) − ln(1 + γ2(u))

)
λ(du)

)T
and I is the unit matrix.

(i) If Λ2|hi=ηi,i=1,2 > 0, C−1 + (C−1)T is positive semi-definite, and ηi > 0, i = 1, 2, then the optimal
harvesting effort is h∗ = η = [C(C−1)T + I]−1B and the maximum of ESY is

Y(h∗) = ηTC−1(B− η). (2.4)

(ii) If the conditions in (i) do not hold, then the optimal harvesting policy does not exist.
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Proof. Let H = {h = (h1,h2)
T ∈ R2|Λ2 > 0,hi > 0, i = 1, 2}. It is easy to check that for every h ∈ H, (2.1)

holds; and if the optimal harvesting effort h∗ exists, then h∗ ∈ H.

(i) Notice that η ∈ H, then H is not an empty set. By (2.1), one can observe that for all h ∈ H,

lim
t→∞ t−1

∫t
0
hTy(s)ds =

2∑
i=1

hi lim
t→∞ t−1

∫t
0
yi(s)ds = h

TC−1(B− h). (2.5)

By virtue of Lemma 2.5, one can find that system (1.1) has a unique invariant measure ν(·). It then follows
from Corollary 3.4.3 in [7] that ν(·) is strong mixing. In view of Theorem 3.2.6 in [7], one can obtain that
ν(·) is ergodic. By (3.3.2) in [7], we have

lim
t→∞ t−1

∫t
0
hTy(s)ds =

∫
R2

+

hTyν(dy). (2.6)

Let ϑ(y) be the stationary probability density of system (1.1), then we have

Y(h) = lim
t→∞

2∑
i=1

E(hiyi(t)) = lim
t→∞E(hTy(t)) =

∫
R2

+

hTyϑ(y)dy. (2.7)

Since the invariant measure of system (1.1) is unique, then by virtue of the one-to-one correspondence
between ϑ(y) and its corresponding invariant measure ([7]), one gets that∫

R2
+

hTyϑ(y)dy =

∫
R2

+

hTyν(dy). (2.8)

In view of (2.5), (2.6), (2.7), and (2.8), we can obtain

Y(h) = hTC−1(B− h). (2.9)

Let η = (η1,η2)
T be the unique solution of the following equation

0 =
dY(h)

dh
=
d(hT )

dh
C−1(B− h) +

d

dh
[(B− h)T (C−1)T ]h = C−1B− [C−1 + (C−1)T ]h. (2.10)

Therefore, η = [C(C−1)T + I]−1B. The Hessian matrix is

d

dhT

(
dY(h)

dh

)
=

(
d

dh

((
dY(h)

dh

)T))T
=

(
d

dh

(
BT (C−1)T − hT [C−1 + (C−1)T ]

))T
= −C−1 − (C−1)T .

Note that for all h, C−1 +(C−1)T is positive semi-definite, hence η is a global maximum [4]. It then follows
from the uniqueness of η that if Λ2|hi=ηi,i=1,2 > 0 and ηi > 0, i = 1, 2, then the optimal harvesting effort
is h∗ = η and the maximum of ESY is (2.4).

(ii) First of all, we prove that if Λ2|hi=ηi,i=1,2 < 0, or η1 < 0, or η2 < 0, then the optimal harvesting
policy does not exist. Assume that the optimal harvesting effort exists and is denoted as h̃∗ = (h̃∗1 , h̃∗2)

T .
Therefore h̃∗ ∈ H. That is to say,

Λ2|hi=h̃∗i ,i=1,2 > 0, h̃∗i > 0, i = 1, 2.

Meanwhile, since h̃∗ is the optimal harvesting effort, then h̃∗ should be the unique solution of Eq. (2.10).
Nevertheless, η = (η1,η2)

T is also the solution of Eq. (2.10). Thereby, ηi = h̃∗i > 0 and

Λ2|hi=ηi,i=1,2 = Λ2|hi=h̃∗i ,i=1,2 > 0,

which gives the contradiction.
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Now we are in the position to prove that if Λ2|hi=ηi,i=1,2 > 0, η1 > 0, η2 > 0, and C−1 + (C−1)T is
not positive semi-definite, then the optimal harvesting policy does not exist. Since η1 > 0, η2 > 0 and
Λ2|hi=ηi,i=1,2 > 0, then H is not an empty set. Consequently, (2.9) holds. Let (δij)2×2 = C−1 + (C−1)T .
Then we have

δ11 = 2c22/Λ.

It is easy to see that δ11 > 0. Consequently, C−1 + (C−1)T is not negative semi-definite. Hence C−1 +
(C−1)T is indefinite. Therefore Y(h) in (2.9) has no extreme points ([4]). This completes the proof.

3. Examples and numerical simulations

In this section we will introduce some examples and work out some numerical simulations to illustrate
the theoretical results.

First of all, we choose r1 = 0.69, r2 = 0.02, c11 = 0.39 > c21 = 0.36, c22 = 0.51 > c12 = 0.09, σ2
1 = σ2

2 =
0.1, Y = [0,+∞), λ(Y) = 1, γ1(u) = γ2(u) ≡ 0.3504, τ1 = 10, τ2 = 12, φ1(θ) = 0.3 + 0.05 sin θ, φ2(θ) =
0.2 + 0.03 sin θ, θ ∈ [−12, 0]. Clearly, C−1 + (C−1)T is positive definite. It then follows from (2.3) that
η = (η1,η2)

T = (0.2745, 0.1173)T . It is easy to check that ηi > 0 and Λ2|hi=ηi, i=1,2 = 0.0210 > 0. By
Theorem 2.6, one can see that

h∗1 = η1 = 0.2745, h∗2 = η2 = 0.1173, Y(h∗) = ηTC−1(B− η) = 0.2270.

See Fig. 1, which is the curve of E
[
hTy(t)

]
= E

[
h1y1(t) + h2y2(t)

]
. Red line is with h1 = h∗1 =

0.2745, h2 = h∗2 = 0.1173, green line is with h1 = 0.4, h2 = 0.05, and blue line is with h1 = 0.12, h2 = 0.3.
By Fig. 1, we can see that when h = h∗ (red line), the expectation of sustainable yield is maximum and
Y(h∗) = 0.2270.

Now we choose r1 = 0.3, r2 = 0.02, c11 = 0.39 > c21 = 0.36, c22 = 0.51 > c12 = 0.09, σ2
1 = σ2

2 =
0.1, Y = [0,+∞), λ(Y) = 1, γ1(u) = γ2(u) ≡ 0.3504. Thereby C−1 + (C−1)T is positive definite. According
to (2.3), η = (η1,η2)

T = (0.1123,−0.0066)T . Clearly, η2 < 0. It then follows from (ii) in Theorem 2.6 that
the optimal harvesting policy does not exist.

Finally, we choose r1 = 0.69, r2 = 0.2, c11 = 0.39 > c21 = 0.36, c22 = 0.51 > c12 = 0.09, σ2
1 = σ2

2 =
0.1, Y = [0,+∞), λ(Y) = 1, γ1(u) = γ2(u) ≡ 0.3504. By virtue of (2.3), η = (η1,η2)

T = (0.3183, 0.0121)T .
Compute that Λ2|hi=ηi, i=1,2 = −0.0239 < 0. By virtue of (ii) in Theorem 2.6, one can obtain that the
optimal harvesting policy does not exist.
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Figure 1: E
[
hTy(t)

]
of (1.1) for r1 = 0.69, r2 = 0.02, c11 = 0.39 > c21 = 0.36, c22 = 0.51 > c12 = 0.09, σ2

1 = σ2
2 = 0.1, Y = [0,+∞),

λ(Y) = 1, γ1(u) = γ2(u) ≡ 0.3504, τ1 = 10, τ2 = 12, φ1(θ) = 0.3 + 0.05 sin θ, φ2(θ) = 0.2 + 0.03 sin θ, θ ∈ [−12, 0]. Red line is
with h1 = h∗1 = 0.2745, h2 = h∗2 = 0.1173, green line is with h1 = 0.4, h2 = 0.05 and blue line is with h1 = 0.12, h2 = 0.3.
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4. Conclusions

In this paper, we consider the optimal harvesting problem of a stochastic predator-prey population
model with delay and Lévy jumps. Under Assumptions 2.1, c11 > c21 and c22 > c12, we establish sufficient
and necessary conditions for the existence of an optimal control of system (1.1). Moreover, the explicit
forms of the optimal harvesting effort and the maximum of the cost function are obtained. The method
used in this paper is the ergodic method, which can avoid solving both the model and the corresponding
delay Fokker-Planck equation. The results clearly imply that the optimal harvesting policy has close
relationships with white noises and Lévy jumps.

5. Further research

Some interesting problems deserve further investigation. In model (1.1), we suppose that species 2
cannot survive in the absence of species 1, i.e., r2 > 0. If this assumption is not true, we can not obtain the
critical values between persistence and extinction for y1 and y2, and hence can not establish the optimal
harvesting policy in this case. We leave this problem for further investigation. In addition, one could
consider some more realistic but more complex systems, for example, time-varying delays (see, e.g., [23]),
regime switching (see, e.g., [9, 20, 31]), fractional models (see, e.g. [27, 28]), or reaction diffusion ([1]). Also
it is interesting to study non-automatous models, competitive models, food-chain models or mutualism
models [8, 10, 17–19, 26, 29, 30].
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