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Abstract
In this paper, we consider a new parallel algorithm combining viscosity approximation methods to approximate the

multiple-set split common fixed point problem governed by demicontractive mappings, and get the generated sequence con-
verges strongly to a solution of this problem. The results obtained in this paper generalize and improve the recent ones an-
nounced by many others. c©2017 All rights reserved.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. The convex feasibility problem
(CFP) is formulated as follows.

If ∩ni=1 Ci 6= ∅, find a point x∗ ∈ ∩ni=1Ci,

where n > 1 is an integer, and each Ci is a nonempty closed convex subset of H. It has been proved
that the CFP has received so much attention due to its extensive applications in many applied disciplines
as diverse as approximation theory, image recovery and signal processing, and so on. A complete and
exhaustive study on algorithms and applications for solving the CFP can be found in [3, 5, 12, 13]. As a
special case of the CFP, the split feasibility problem can be stated as follows.

The split feasibility problem (SFP) in finite-dimensional Hilbert spaces was first introduced by Censor
and Elfving [2]. The SFP is to find

x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of the Hilbert spaces H1 and H2, respectively, A :
H1 → H2 is a bounded linear operator. It has been found that the SFP (1.1) can be used in many areas such
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as image restoration, computer tomograph, and radiation therapy treatment planning. Some methods
have been proposed to solve split feasibility problems; see, for instance, [1, 17, 18, 19].

Note that if the SFP (1.1) is consistent, it is no hard to see that x∗ solves the SFP (1.1) if and only if it
solves the fixed point equation

x∗ = PC(I− γA
∗(I− PQ)A)x

∗,

where PC and PQ are the metric projections from H1 onto C and from H2 onto Q, respectively, γ is a
positive constant and A∗ denotes the adjoint of A (see [15, Proposition 3.2] for the details). This implies
that the SFP (1.1) can be solved by using fixed point algorithms.

In 2013, Moudafi and Al-Shemas [11] introduced the following new split feasibility problem, which
is called the split equality fixed point problem (SEFP). Let H1,H2,H3 be real Hilbert spaces, let A : H1 →
H3,B : H2 → H3 be two bounded linear operators, let U : H1 → H1 and T : H2 → H2 be two firmly
quasi-nonexpansive mappings. The SEFP in [11] is to

find x∗ ∈ F(U), y∗ ∈ F(T) such that Ax∗ = By∗. (1.2)

The interest is to cover many situations, for instance, in decomposition methods for PDF’s, applications
in game theory and in intensity-modulated radiation therapy (IMRT).

For solving the SEFP (1.2), Moudafi and Al-Shemas [11] introduced the following simultaneous itera-
tive method: {

xk+1 = U(xk − γkA
∗(Axk −Byk)),

yk+1 = T(yk + γkB
∗(Axk −Byk))

for firmly quasi-nonexpansive mappings U and T , where γk ∈ (ε, 2
λA+λB

−ε), λA, λB stand for the spectral
radiuses of A∗A and B∗B, respectively.

In 2016, Zhao and Wang [21] proposed the following viscosity iterative algorithm for solving the SEFP
(1.2): 

uk = xk − γkA
∗(Axk −Byk),

xk+1 = αkf1(xk) + (1 −αk)((1 −wk)uk +wkU(uk)),
vk = yk + γkB

∗(Axk −Byk),
yk+1 = αkf2(yk) + (1 −αk)((1 −wk)vk +wkT(vk)),

(1.3)

where f1 : H1 → H1 and f2 : H2 → H2 are two contractions, U : H1 → H1 and T : H2 → H2 are
quasi-nonexpansive. They proved a strong convergence result of the algorithm (1.3) in Hilbert spaces.

Recently, the multiple-set split equality common fixed-point problem (MSECFP) of quasi-nonexpansive
mappings studied by Zhao and Wang [20] is to

find x∗ ∈ ∩pi=1F(Ui), y
∗ ∈ ∩qj=1F(Tj) such that Ax∗ = By∗, (1.4)

where p,q > 1 are integers. They introduced two mixed cyclic and parallel iterative algorithms for
solving the MSECFP (1.4) of quasi-nonexpansive mappings and proved the weak convergence of these
two algorithms.

Inspired and motivated by the works mentioned above, we consider a new viscosity iterative algo-
rithm for the MSECFP (1.4) of demicontractive mappings which are generalization of quasi-nonexpansive
mappings in Hilbert spaces. Under some mild assumptions we obtain some strong convergence results
for solving the MSECFP (1.4) and the SEFP (1.2).

2. Preliminaries

Throughout this paper, we always assume that H1,H2,H3 are real Hilbert spaces and let N and R

be the set of positive integers and real numbers, respectively. We use → and ⇀ to denote strong and
weak convergence, respectively, and F(T) denotes the set of the fixed points of a mapping T . We use
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ωw(xk) = {x : ∃ xkj ⇀ x} to stand for the weak ω-limit set of {xk} and use Γ to stand for the solution set
of the MSECFP (1.4).

Let C be a nonempty closed convex subset of a Hilbert spaceH. The metric (or nearest point) projection
PC from H onto C is defined as follows: Given x ∈ H, the unique point PCx ∈ C satisfies the property

‖x− PCx‖ = inf
y∈C
‖x− y‖.

It is well-known [14] that PC is a nonexpansive mapping and is characterized by the inequality

PCx ∈ C, 〈x− PCx,y− PCx〉 6 0, ∀ y ∈ C. (2.1)

Definition 2.1. Let H be a real Hilbert space. A mapping T : H→ H is said to be

(i) Lipschitzian, if there exists a constant ρ > 0 such that

‖Tx− Ty‖ 6 ρ‖x− y‖, ∀ x,y ∈ H,

especially, if ρ ∈ (0, 1), T is said to be a contraction with constant ρ;

(ii) nonexpansive, if ‖Tx− Ty‖ 6 ‖x− y‖, for all x,y ∈ H;

(iii) quasi-nonexpansive, if F(T) 6= ∅ and ‖Tx− q‖ 6 ‖x− q‖, for all x ∈ H,q ∈ F(T);

(iv) firmly nonexpansive, if

‖Tx− Ty‖2 6 ‖x− y‖2 − ‖(I− T)x− (I− T)y‖2, ∀ x,y ∈ H,

or equivalently,
‖Tx− Ty‖2 6 〈x− y, Tx− Ty〉, ∀ x,y ∈ H;

(v) µ-demicontractive, if F(T) 6= ∅ and there exists a constant µ ∈ (−∞, 1) such that

‖Tx− q‖2 6 ‖x− q‖2 + µ‖x− Tx‖2, ∀ x ∈ H,q ∈ F(T).

Remark 2.2. Notice that every 0-demicontractive mapping is exactly quasi-nonexpansive. In particular, we
say that it is quasi-strictly pseudo-contractive [9] if 0 6 µ < 1. Moreover, if µ 6 0, every µ-demicontractive
mapping becomes quasi-nonexpansive. Therefore, it is sufficient to only take µ ∈ (0, 1) in (v) of Definition
2.1 in Hilbert spaces.

It is worth noting that the class of demicontractive mappings is more general than the class of quasi-
nonexpansive mappings and the class of firmly quasi-nonexpansive mappings.

Definition 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping F : C→ H

is said to be

(i) monotone, if 〈Fx− Fy, x− y〉 > 0, for all x,y ∈ C;

(ii) strictly monotone, if 〈Fx− Fy, x− y〉 > 0, for all x,y ∈ C, x 6= y;

(iii) η-strongly monotone, if there exists a constant η > 0 such that

〈Fx− Fy, x− y〉 > η‖x− y‖2, ∀ x,y ∈ C.

Definition 2.4. Let H be a real Hilbert space. An operator T : H→ H is called demiclosed at origin, if for
any sequence {xk} which converges weakly to x, and if the sequence {Txk} converges strongly to 0, then
Tx = 0.
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As a special case of the demicloseness principle on uniformly convex Banach spaces given by [6], we
know that if C is a nonempty closed convex subset of a Hilbert space H, and T : C→ H is a nonexpansive
mapping, then the mapping I− T is demiclosed on C. Now the following question is naturally raised:
If T : C → H is quasi-nonexpansive, is I− T still demiclosed on C? The answer is negative even at 0 as
follows.

Example 2.5. The mapping T : [0, 1]→ [0, 1] is defined by

Tx =

{
x
5 , x ∈ [0, 1

2 ],
x sinπx, x ∈ ( 1

2 , 1].

Then T is a quasi-nonexpansive mapping, but I− T is not demiclosed at 0.

In fact, F(T) = {0}. For any x ∈ [0, 1
2 ], we have

|Tx− 0| =
∣∣x
5
− 0
∣∣ 6 |x− 0|,

and for any x ∈ ( 1
2 , 1], we have

|Tx− 0| = |x sinπx− 0| 6 |x− 0|.

Thus T is quasi-nonexpansive. Taking {xn} ⊂ ( 1
2 , 1] and xn → 1

2(n→∞), we have

|(I− T)xn| = |xn[1 − sinπxn]|→ 0(n→∞).

But T 1
2 = 1

10 6=
1
2 , i.e., (I− T) 1

2 6= 0, so I− T is not demiclosed at 0.

Lemma 2.6 ([10]). Let T be a µ-demicontractive self-mapping on H with F(T) 6= ∅ and set Tα = (1−α)I+αT for
α ∈ [0, 1]. Then, Tα is quasi-nonexpansive provided that α ∈ [0, 1 − µ] and

‖Tαx− q‖2 6 ‖x− q‖2 −α(1 − µ−α)‖x− Tx‖2, x ∈ H, q ∈ F(T).

Lemma 2.7 ([9, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space H. Let T : C → C be
a self-mapping of C. If T is a µ-demicontractive mapping (which is also called µ-quasi-strict pseudo-contraction in
[9]), then the fixed point set F(T) is closed and convex.

Lemma 2.8 ([7]). Assume {sk} is a sequence of nonnegative real numbers such that{
sk+1 6 (1 − λk)sk + λkδk,
sk+1 6 sk − ηk + µk,

where {λk} is a sequence in (0, 1), {ηk} is a sequence of nonnegative real numbers and {δk} and {µk} are two
sequences in R such that

(i)
∑∞
k=1 λk =∞;

(ii) limk→∞ µk = 0;

(iii) liml→∞ ηkl = 0 implies lim supl→∞ δkl 6 0 for any subsequence {kl} ⊂ {k}.

Then limk→∞ sk = 0.

Lemma 2.9 ([8]). Let X and Y be Banach spaces, A be a continuous linear operator from X to Y. Then A is weakly
continuous.

Lemma 2.10 ([16, Proposition 2.7]). Let H be a real Hilbert space. Suppose that F : H→ H is κ-Lipschitzian and
η-strongly monotone over a closed convex set C ⊂ H. Then, the following VIP(F,C)

〈v− u∗, F(u∗)〉 > 0, ∀ v ∈ C,

has its unique solution u∗ ∈ C.
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3. Main results

In this section, we introduce a new parallel algorithm combining viscosity approximation methods for
the MSECFP (1.4) of demicontractive mappings and prove strong convergence of the algorithm.

Algorithm 3.1. Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1, ρ2 ∈ [0, 1) and
{tk} ⊂ [0, 1]. Let x0 ∈ H1, y0 ∈ H2 be arbitrary and p,q > 1 be integers. Let {αik} ⊂ [0, 1] (0 6 i 6 p)

and {β
j
k} ⊂ [0, 1] (0 6 j 6 q) such that

∑p
i=0 α

i
k = 1 and

∑q
j=0 β

j
k = 1. Assume that the k-th iterate

xk ∈ H1, yk ∈ H2 has been constructed, then we calculate (k+ 1)-th iterate (xk+1, yk+1) via the formula
uk = xk − γkA

∗(Axk −Byk),
xk+1 = tkf1(xk) + (1 − tk)(α

0
kuk +

∑p
i=1 α

i
kUi(uk)),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = tkf2(yk) + (1 − tk)(β
0
kvk +

∑q
j=1 β

j
kTj(vk)).

(3.1)

Put H∗ = H1 ×H2. Define the inner product of H∗ as follows:

〈(x1,y1), (x2,y2)〉 = 〈x1, x2〉+ 〈y1,y2〉, ∀ (x1,y1), (x2,y2) ∈ H∗.

It is easy to see that H∗ is also a real Hilbert space and

‖(x,y)‖ = (‖x‖2 + ‖y‖2)
1
2 , ∀ (x,y) ∈ H∗.

Lemma 3.2. Given two bounded linear operators A : H1 → H3,B : H2 → H3, let Ui : H1 → H1 (1 6 i 6 p) and
Tj : H2 → H2 (1 6 j 6 q) be τi-demicontractive and θj-demicontractive, respectively. Assume that the solution set
Γ of (1.4) is nonempty. Then Γ is a nonempty closed convex set.

Proof. By Lemma 2.7 we have F(Ti) (1 6 i 6 p) and F(Uj) (1 6 j 6 q) are both closed convex subsets, and
since A and B are both linear, it is easy to see that Γ is a closed convex subset in H∗.

Theorem 3.3. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear operators A : H1 → H3,B : H2 →
H3, let Ui : H1 → H1 (1 6 i 6 p) and Tj : H2 → H2 (1 6 j 6 q) be τi-demicontractive and θj-demicontractive,
respectively. Suppose that I−Ui (1 6 i 6 p), I− Tj (1 6 j 6 q) are demiclosed at origin and the solution set Γ of
the MSECFP (1.4) is nonempty. Assume that the following conditions are satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ tk = 0 and
∑∞
k=0 tk =∞;

(iii) lim infk→∞ α0
k > τ, lim infk→∞ β0

k > µ;

(iv) lim infk→∞ αik > 0 (1 6 i 6 p), lim infk→∞ βjk > 0 (1 6 j 6 q);

(v) γk ∈ (ε, 2
λA+λB

− ε),

where τ = max16i6p τi, µ = max16j6q θj, λA, λB stand for the spectral radiuses of A∗A and B∗B, respec-
tively and ε > 0 is small enough. Then the sequence {(xk,yk)} generated by Algorithm 3.1 converges strongly to
(x∗,y∗) ∈ Γ which is the unique solution of the following variational inequality problem (VIP)

〈((I− f1)x
∗, (I− f2)y

∗), (x,y) − (x∗,y∗)〉 > 0, ∀ (x,y) ∈ Γ . (3.2)

Proof. We divide the proof into several steps.

Step 1. The VIP (3.2) has a unique solution (x∗,y∗) ∈ Γ .
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By Lemma 3.2, we know that Γ is a nonempty closed convex subset in H∗. Let F : Γ ⊂ H∗ → H∗ be defined
by

F(x,y) = ((I− f1)x, (I− f2)y), ∀ (x,y) ∈ Γ .

Putting ρ = max{ρ1, ρ2}, then from the condition (i) we have ρ ∈ [0, 1√
2
). For any (x1,y1), (x2,y2) ∈ Γ , since

f1 and f2 are two contractions, we have

〈F(x1,y1)−F(x2,y2), (x1,y1) − (x2,y2)〉
= 〈((I− f1)x1 − (I− f1)x2, (I− f2)y1 − (I− f2)y2), (x1 − x2,y1 − y2)〉
= 〈(I− f1)x1 − (I− f1)x2, x1 − x2〉+ 〈(I− f2)y1 − (I− f2)y2,y1 − y2〉
> ‖x1 − x2‖2 − ‖f1(x1) − f1(x2)‖‖x1 − x2‖
+ ‖y1 − y2‖2 − ‖f2(y1) − f2(y2)‖‖y1 − y2‖

> (1 − ρ)(‖x1 − x2‖2 + ‖y1 − y2‖2)

= (1 − ρ)‖(x1,y1) − (x2,y2)‖2,

which implies that F is (1 − ρ)-strongly monotone, and

‖F(x1,y1) − F(x2,y2)‖2 = ‖((I− f1)x1 − (I− f1)x2, (I− f2)y1 − (I− f2)y2)‖2

= ‖(I− f1)x1 − (I− f1)x2‖2 + ‖(I− f2)y1 − (I− f2)y2‖2

6 2(1 + ρ2
1)‖x1 − x2‖2 + 2(1 + ρ2

2)‖y1 − y2‖2

6 2(1 + ρ2)‖(x1,y1) − (x2,y2)‖2,

which implies that F is 2(1 + ρ2)-Lipschitzian. Therefore, it follows from Lemma 2.10 that the VIP (3.2)
has a unique solution (x∗,y∗) ∈ Γ .

Step 2. The sequences {xn} and {yn} are bounded.

Since (x∗,y∗) ∈ Γ , then x∗ ∈ ∩pi=1F(Ui), y
∗ ∈ ∩qj=1F(Tj) such that Ax∗ = By∗. By (3.1) and the definitions

of λA and λB, we have

‖uk − x∗‖2 = ‖xk − γkA∗(Axk −Byk) − x∗‖2

= ‖xk − x∗‖2 − 2γk〈xk − x∗,A∗(Axk −Byk)〉+ γ2
k‖A∗(Axk −Byk)‖2

= ‖xk − x∗‖2 − 2γk〈Axk −Ax∗,Axk −Byk〉
+ γ2

k〈A∗(Axk −Byk),A∗(Axk −Byk)〉
= ‖xk − x∗‖2 − 2γk〈Axk −Ax∗,Axk −Byk〉
+ γ2

k〈Axk −Byk,AA∗(Axk −Byk)〉
6 ‖xk − x∗‖2 − 2γk〈Axk −Ax∗,Axk −Byk〉+ γ2

kλA‖Axk −Byk‖2,

and

‖vk − y∗‖2 = ‖yk + γkB∗(Axk −Byk) − y∗‖2

= ‖yk − y∗‖2 + 2γk〈Byk −By∗,Axk −Byk〉+ γ2
k‖B∗(Axk −Byk)‖2

= ‖yk − y∗‖2 + 2γk〈Byk −By∗,Axk −Byk〉
+ γ2

k〈Axk −Byk,BB∗(Axk −Byk)〉
6 ‖yk − y∗‖2 + 2γk〈Byk −By∗,Axk −Byk〉+ γ2

kλB‖Axk −Byk‖2.
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By adding the above inequalities and Ax∗ = By∗, we have

‖uk − x∗‖2 + ‖vk − y∗‖2 6 ‖xk − x∗‖2 + ‖yk − y∗‖2 − γk[2 − (λA + λB)γk]‖Axk −Byk‖2. (3.3)

Taking ωik =
αik

1−α0
k

(1 6 i 6 p) and ω̃jk =
β
j
k

1−β0
k

(1 6 j 6 q), we have
∑p
i=1ω

i
k = 1 and

∑q
j=1 ω̃

j
k = 1 for

every k > 0. Put ũk = α0
kuk +

∑p
i=1 α

i
kUi(uk) and ṽk = β0

kvk +
∑q
j=1 β

j
kTj(vk). Then

ũk = α0
kuk + (1 −α0

k)

p∑
i=1

ωikUi(uk)

=

p∑
i=1

ωik(α
0
kuk + (1 −α0

k)Ui(uk)).

(3.4)

Using Lemma 2.6 for any i ∈ {1, 2, · · · ,p}, we have

‖α0
kuk + (1 −α0

k)Ui(uk) − x
∗‖2 6 ‖uk − x∗‖2 − (1 −α0

k)(α
0
k − τi)‖Ui(uk) − uk‖2

6 ‖uk − x∗‖2 − (1 −α0
k)(α

0
k − τ)‖Ui(uk) − uk‖2 (3.5)

for all sufficiently large k. Thus by (3.4), (3.5), the convexity of ‖ · ‖2 and the condition (iii) we obtain

‖ũk − x∗‖2 6
p∑
i=1

ωik‖α
0
kuk + (1 −α0

k)Ui(uk) − x
∗‖2

6
p∑
i=1

ωik(‖uk − x
∗‖2 − (1 −α0

k)(α
0
k − τ)‖Ui(uk) − uk‖

2)

= ‖uk − x∗‖2 − (1 −α0
k)(α

0
k − τ)

p∑
i=1

ωik‖Ui(uk) − uk‖
2

= ‖uk − x∗‖2 − (α0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖
2 (3.6)

6 ‖uk − x∗‖2 (3.7)

for all sufficiently large k. Similarly, we obtain

‖ṽk − y∗‖2 6 ‖vk − y∗‖2 − (β0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2 (3.8)

6 ‖vk − y∗‖2 (3.9)

for all sufficiently large k. It follows from (3.1) and (3.6) that

‖xk+1 − x
∗‖2 6 tk‖f1(xk) − x∗‖2 + (1 − tk)‖ũk − x∗‖2

6 tk[ρ1‖xk − x∗‖+ ‖f1(x∗) − x∗‖]2 + (1 − tk)(‖uk − x∗‖2

− (α0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖
2)

6 2tkρ2‖xk − x∗‖2 + 2tk‖f1(x∗) − x∗‖2 + (1 − tk)‖uk − x∗‖2

− (1 − tk)(α
0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖
2.

(3.10)

Similarly, we obtain

‖yk+1 − y
∗‖2 6 2tkρ2‖yk − y∗‖2 + 2tk‖f2(y

∗) − y∗‖2 + (1 − tk)‖vk − y∗‖2

− (1 − tk)(β
0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2.
(3.11)
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It follows from (3.3), (3.10) and (3.11) that

‖xk+1 − x
∗‖2 + ‖yk+1 − y

∗‖2 6 2tkρ2(‖xk − x∗‖2 + ‖yk − y∗‖2) + 2tk(‖f1(x
∗) − x∗‖2

+ ‖f2(y
∗) − y∗‖2) + (1 − tk)(‖uk − x∗‖2 + ‖vk − y∗‖2)

− (1 − tk)(α
0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖2

− (1 − tk)(β
0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2

6 [1 − tk(1 − 2ρ2)](‖xk − x∗‖2 + ‖yk − y∗‖2)

+ 2tk(‖f1(x
∗) − x∗‖2 + ‖f2(y

∗) − y∗‖2)

− (1 − tk)γk[2 − (λA + λB)γk]‖Axk −Byk‖2

− (1 − tk)(α
0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖2

− (1 − tk)(β
0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2.

Then setting sk = ‖xk − x∗‖2 + ‖yk − y∗‖2, we get

sk+1 6 [1 − tk(1 − 2ρ2)]sk + 2tk(‖f1(x
∗) − x∗‖2 + ‖f2(y

∗) − y∗‖2)

− (1 − tk)γk[2 − (λA + λB)γk]‖Axk −Byk‖2

− (1 − tk)(α
0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖2

− (1 − tk)(β
0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2

6 [1 − tk(1 − 2ρ2)]sk + tk(1 − 2ρ2)
2(‖f1(x

∗) − x∗‖2 + ‖f2(y
∗) − y∗‖2)

1 − 2ρ2 .

(3.12)

It follows from induction that

sk+1 6 max{s0,
2(‖f1(x

∗) − x∗‖2 + ‖f2(y
∗) − y∗‖2)

1 − 2ρ2 }, ∀ k > 0,

i.e., {sk} is bounded. So {xk} and {yk} are also bounded.

Step 3. The sequence {(xk,yk)} converges strongly to (x∗,y∗).

It follows from (3.1) and (3.7) that

‖xk+1 − x
∗‖2 = t2

k‖f1(xk) − x
∗‖2 + 2tk(1 − tk)〈f1(xk) − x

∗, ũk − x∗〉
+ (1 − tk)

2‖ũk − x∗‖2

6 t2
k‖f1(xk) − x

∗‖2 + tk(1 − tk)(‖f1(xk) − f1(x
∗)‖2 + ‖ũk − x∗‖2)

+ (1 − tk)
2‖ũk − x∗‖2 + 2tk(1 − tk)〈f1(x

∗) − x∗, ũk − x∗〉
6 t2

k‖f1(xk) − x
∗‖2 + tk(1 − tk)(ρ

2
1‖xk − x∗‖2 + ‖uk − x∗‖2)

+ (1 − tk)
2‖uk − x∗‖2 + 2tk(1 − tk)〈f1(x

∗) − x∗, ũk − x∗〉
6 tk(1 − tk)ρ

2‖xk − x∗‖2 + (1 − tk)‖uk − x∗‖2

+ t2
k‖f1(xk) − x

∗‖2 + 2tk(1 − tk)〈f1(x
∗) − x∗, ũk − x∗〉.

(3.13)
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Similarly we have

‖yk+1 − y
∗‖2 6 tk(1 − tk)ρ

2‖yk − y∗‖2 + (1 − tk)‖vk − y∗‖2 + t2
k‖f2(yk) − y

∗‖2

+ 2tk(1 − tk)〈f2(y
∗) − y∗, ṽk − y∗〉.

(3.14)

By (3.3), (3.13) and (3.14) we get

sk+1 6 tk(1 − tk)ρ
2(‖xk − x∗‖2 + ‖yk − y∗‖2)

+ (1 − tk)(‖uk − x∗‖2 + ‖vk − y∗‖2)

+ t2
k(‖f1(xk) − x

∗‖2 + ‖f2(yk) − y
∗‖2)

+ 2tk(1 − tk)(〈f1(x
∗) − x∗, ũk − x∗〉+ 〈f2(y

∗) − y∗, ṽk − y∗〉)
6 [1 − tk(1 − (1 − tk)ρ

2)]sk + t
2
k(‖f1(xk) − x

∗‖2 + ‖f2(yk) − y
∗‖2)

+ 2tk(1 − tk)(〈f1(x
∗) − x∗, ũk − x∗〉+ 〈f2(y

∗) − y∗, ṽk − y∗〉)
= (1 − λk)sk + λkδk,

(3.15)

where λk = tk(1 − (1 − tk)ρ
2),

δk =
tk(‖f1(xk) − x

∗‖2 + ‖f2(yk) − y
∗‖2)

1 − (1 − tk)ρ2

+
2(1 − tk)(〈f1(x

∗) − x∗, ũk − x∗〉+ 〈f2(y
∗) − y∗, ṽk − y∗〉)

1 − (1 − tk)ρ2 .

From (3.1), (3.6) and (3.8) we have

‖xk+1 − x
∗‖2 6 tk‖f1(xk) − x

∗‖2 + (1 − tk)‖ũk − x∗‖2

6 tk‖f1(xk) − x
∗‖2 + (1 − tk)(‖uk − x∗‖2

− (α0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖2),

and

‖yk+1 − x
∗‖2 6 tk‖f2(yk) − y

∗‖2 + (1 − tk)‖ṽk − y∗‖2

6 tk‖f2(yk) − y
∗‖2 + (1 − tk)(‖vk − y∗‖2

− (β0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2),

which together with (3.3) imply that

sk+1 6 ‖uk − x∗‖2 + ‖vk − y∗‖2 + tk(‖f1(xk) − x
∗‖2 + ‖f2(yk) − y

∗‖2)

− (1 − tk)((α
0
k − τ)

p∑
i=1

αik‖Ui(uk) − uk‖2

+ (β0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2)

6 sk + tk(‖f1(xk) − x
∗‖2 + ‖f2(yk) − y

∗‖2) − γk[2 − (λA + λB)γk]

× ‖Axk −Byk‖2 − (1 − tk)((α
0
k − τ)

×
p∑
i=1

αik‖Ui(uk) − uk‖2 + (β0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2)

6 sk − ηk + µk,

(3.16)
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where µk = tk(‖f1(xk) − x
∗‖2 + ‖f2(yk) − y

∗‖2),

ηk = γk[2 − (λA + λB)γk]‖Axk −Byk‖2 + (1 − tk)((α
0
k − τ)

×
p∑
i=1

αik‖Ui(uk) − uk‖2 + (β0
k − µ)

q∑
j=1

β
j
k‖Tj(vk) − vk‖

2).

It follows that
∑∞
k=0 λk and limk→∞ µk = 0 due to the condition (ii) and the boundedness of {xk} and

{yk}.
Next we show that liml→∞ ηkl = 0 implies that lim supl→∞ δkl 6 0 for any {kl} ⊂ {k}. Indeed, for any

{kl} ⊂ {k} and liml→∞ ηkl = 0, by the conditions (ii)-(v), for any i ∈ {1, 2, · · · ,p}, j ∈ {1, 2, · · · ,q} we have

lim
l→∞ ‖Axkl −Bykl‖ = lim

l→∞ ‖ukl −Ui(ukl)‖ = lim
l→∞ ‖vkl − Tj(vkl)‖ = 0. (3.17)

Then we have

lim
l→∞ ‖ukl − xkl‖ = lim

l→∞γkl‖A∗(Axkl −Bykl)‖ = 0, (3.18)

lim
l→∞ ‖vkl − ykl‖ = lim

l→∞γkl‖B∗(Axkl −Bykl)‖ = 0. (3.19)

For any (x̃, ỹ) ∈ ωw(xkl ,ykl), from (3.18) and (3.19) we have (x̃, ỹ) ∈ ωw(ukl , vkl). Due to the demi-
closedness of I−Ui (1 6 i 6 p) and I− Tj (1 6 j 6 q) at origin and (3.17) we get x̃ ∈ ∩pi=1F(Ui) and
ỹ ∈ ∩qj=1F(Tj). It follows from Lemma 2.9 that Ax̃− Bỹ ∈ ωw(Axkl − Bykl), which together with the
weakly lower semicontinuity of the norm and (3.17) implies

‖Ax̃−Bỹ‖ 6 lim inf
l→∞ ‖Axkl −Bykl‖ = 0.

Hence (x̃, ỹ) ∈ Γ , i.e., ωw(xkl ,ykl) ⊂ Γ . It is easy to see that limk→∞(1 − (1 − tk)ρ
2) = 1 − ρ2 and

limk→∞ tk(‖f1(xk) − x
∗‖2 + ‖f2(yk) − y

∗‖2) = 0. So finally we only need to prove

lim sup
l→∞ (〈f1(x

∗) − x∗, ũkl − x
∗〉+ 〈f2(y

∗) − y∗, ṽkl − y
∗〉) 6 0.

From (3.17)-(3.19), for any i ∈ {1, 2, · · · ,p}, j ∈ {1, 2, · · · ,q}, we have

lim
l→∞ ‖Ui(ukl) − xkl‖ = lim

l→∞ ‖Tj(vkl) − ykl‖ = 0,

furthermore, by (3.18) and (3.19) we obtain

lim sup
l→∞ (〈f1(x∗) − x∗, ũkl − x

∗〉+ 〈f2(y∗) − y∗, ṽkl − y
∗〉)

= lim sup
l→∞ (〈f1(x∗) − x∗,α0

kl
ukl +

p∑
i=1

αiklUi(ukl) − x
∗〉

+ 〈f2(y∗) − y∗,β0
kl
vkl +

q∑
j=1

β
j
kl
Tj(vkl) − y

∗〉)

6 lim sup
l→∞ (〈f1(x∗) − x∗,α0

kl
xkl +

p∑
i=1

αiklxkl − x
∗〉

+ 〈f2(y∗) − y∗,β0
kl
ykl +

q∑
j=1

β
j
kl
ykl − y

∗〉)

+ lim sup
l→∞ 〈f1(x∗) − x∗,α0

kl
(ukl − xkl) +

p∑
i=1

αikl(Ui(ukl) − xkl)〉

+ lim sup
l→∞ 〈f2(y∗) − y∗,β0

kl
(vkl − ykl) +

q∑
j=1

β
j
kl
(Tj(vkl) − ykl)〉

6 lim sup
l→∞ (〈f1(x∗) − x∗, xkl − x

∗〉+ 〈f2(y∗) − y∗,ykl − y
∗〉).

(3.20)
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By the boundedness of {(xkl ,ykl)} in H∗, there exists a point (p∗,q∗) ∈ H∗ and a subsequence {(xk ′l ,yk ′l)}
of {(xkl ,ykl)} in H∗ such that (xk ′l ,yk ′l) ⇀ (p∗,q∗) and

lim sup
l→∞ (〈f1(x

∗) − x∗, xkl − x
∗〉+ 〈f2(y

∗) − y∗,ykl − y
∗〉)

= lim
l→∞(〈f1(x

∗) − x∗, xk ′l − x
∗〉+ 〈f2(y

∗) − y∗,yk ′l − y
∗〉).

(3.21)

Then (p∗,q∗) ∈ ωw(xkl ,ykl). Similar to the proof of (x̃, ỹ) ∈ Γ , we have (p∗,q∗) ∈ Γ . Thus by (3.2), (3.20)
and (3.21) we obtain

lim sup
l→∞ (〈f1(x

∗) − x∗, ũkl − x
∗〉+ 〈f2(y

∗) − y∗, ṽkl − y
∗〉)

6 lim
l→∞(〈f1(x

∗) − x∗, xk ′l − x
∗〉+ 〈f2(y

∗) − y∗,yk ′l − y
∗〉)

= 〈f1(x
∗) − x∗,p∗ − x∗〉+ 〈f2(y

∗) − y∗,q∗ − y∗〉
= −〈(I− f1)x

∗ − (I− f2)y
∗, (p∗,q∗) − (x∗,y∗)〉 6 0,

i.e., lim supl→∞ δkl 6 0. Therefore it follows from Lemma 2.8 that limk→∞ sk = 0, that is

lim
k→∞(‖xk − x∗‖2 + ‖yk − y∗‖2) = 0,

which implies that {(xk,yk)} generated by Algorithm 3.1 converges strongly to (x∗,y∗) ∈ Γ which is the
unique solution of the VIP (3.2).

Take U1 = U2 = · · · = Up = U, T1 = T2 = · · · = Tq = T . Then Algorithm 3.1 reduces to the following
algorithm:

Algorithm 3.4. Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1, ρ2 ∈ [0, 1) and
{tk} ⊂ [0, 1]. Let x0 ∈ H1, y0 ∈ H2 be arbitrary. Let {αk} ⊂ [0, 1] and {βk} ⊂ [0, 1]. Assume that the k-th
iterate xk ∈ H1, yk ∈ H2 has been constructed, then we calculate (k+ 1)-th iterate (xk+1, yk+1) via the
formula 

uk = xk − γkA
∗(Axk −Byk),

xk+1 = tkf1(xk) + (1 − tk)(αkuk + (1 −αk)U(uk)),
vk = yk + γkB

∗(Axk −Byk),
yk+1 = tkf2(yk) + (1 − tk)(βkvk + (1 −βk)T(vk)).

By Theorem 3.3, we obtain the following result.

Corollary 3.5. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear operators A : H1 → H3,B : H2 →
H3, let U : H1 → H1 and T : H2 → H2 be τ-demicontractive and µ-demicontractive, respectively. Suppose that
I−U, I− T are demiclosed at origin and the solution set Γ of the SEFP (1.2) is nonempty. Assume that the following
conditions are satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ tk = 0 and
∑∞
k=0 tk =∞;

(iii) τ < lim infk→∞ αk 6 lim supk→∞ αk < 1;

(iv) µ < lim infk→∞ βk 6 lim supk→∞ βk < 1;

(v) γk ∈ (ε, 2
λA+λB

− ε),

where λA, λB stand for the spectral radiuses of A∗A and B∗B, respectively and ε > 0 is small enough.
Then the sequence {(xk,yk)} generated by Algorithm 3.4 converges strongly to a solution (x∗,y∗) of the SEFP (1.2)
which is the unique solution of the VIP (3.2).

If µ = τ = 0, since every 0-demicontractive mapping is quasi-nonexpansive, from Corollary 3.5 we
also have the following corollary.
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Corollary 3.6. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear operators A : H1 → H3,B : H2 →
H3, let U : H1 → H1 and T : H2 → H2 (1 6 j 6 q) be quasi-nonexpansive with the solution set Γ of the SEFP (1.2)
is nonempty. Suppose that I−U, I− T are demiclosed at origin. Assume that the following conditions are satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ tk = 0 and
∑∞
k=0 tk =∞;

(iii) 0 < lim infk→∞ αk 6 lim supk→∞ αk < 1;

(iv) 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1;

(v) γk ∈ (ε, 2
λA+λB

− ε),

where λA, λB stand for the spectral radiuses of A∗A and B∗B, respectively and ε > 0 is small enough. Then the
sequence {(xk,yk)} generated by Algorithm 3.4 converges strongly to a solution (x∗,y∗) of the SEFP (1.2) which is
the unique solution of the VIP (3.2).

Remark 3.7. Theorem 3.3 extends and develops [21, Theorem 3.2] from the following aspects:

(a) Two quasi-nonexpansive mappings U and T are extended to two finite family of demicontractive
mappings {Ui}

p
i=1 and {Tj}

q
j=1.

(b) The parameter sequence {ωk} be replaced by two different parameter sequences {αik} and {β
j
k}.

(c) The split equality fixed point problem is extended to the multiple-set split equality common fixed-
point problem.

(d) The authors did not give the proof of unique solution of the VIP (3.2) in [21], which leads to an
incomplete proof. In this paper we prove it (see Step 1 in the proof). And the VIP (3.2) in this paper
is also more general than that in [21].

Now first we shall give an example which satisfies all the conditions of the solution set Γ of the
MSECFP (1.4), the mappings {Ui}

p
i=1, and {Tj}

q
j=1 in Theorem 3.3.

Example 3.8. Let H1 = H2 = H3 = `2 and let i ∈ {1, 2, · · · ,p} and j ∈ {1, 2, · · · ,q} be arbitrarily fixed. Let
Ui, Tj : `2 → `2 be defined by Uix = −2ix and Tjx = −(2j+ 1)x for all x ∈ `2. Then it is easy to see that
∩pi=1F(Ui) = {0} = ∩qj=1F(Tj) and A0 = 0 = B0. Thus Γ = {(0, 0)} 6= ∅. Also Ui is τi-demicontractive and Tj
is θj-demicontractive, where τi = 2i−1

2i+1 and θj =
j
j+1 , then I−Ui and I− Tj are demiclosed at 0.

Indeed, for any i ∈ {1, 2, · · · ,p} and j ∈ {1, 2, · · · ,q}, similar to the proof of Example 2.5 in [4], we have
Ui is τi-demicontractive and Tj is θj-demicontractive. Meanwhile, I−Ui is obviously demiclosed at 0.
For, whenever {xn} is any sequence in `2 such that xn ⇀ x ∈ `2 and ‖xn −Uixn‖ → 0, we readily see that
x = 0 ∈ F(Ui). Also, I− Tj are demiclosed at 0.

Next we give an example which satisfies the conditions (iii)-(iv) in Theorem 3.3.

Example 3.9. For k > 0, we can take α0
k = τ+ 1−τ

p+1 +
1−τ

(p+2)(k+1) , α1
k = α2

k = · · · = αpk = 1−τ
p+1 −

1−τ
p(p+2)(k+1) ,

β0
k = µ+ 1−µ

q+1 + 1−µ
(q+2)(k+1) , β1

k = β2
k = · · · = βqk = 1−µ

q+1 − 1−µ
q(q+2)(k+1) .

4. Numerical examples

In this section, in order to demonstrate the effectiveness, realization and convergence of the algorithm
of Theorem 3.3, we consider the following example in (R, ‖ · ‖).
Example 4.1 (Numerical Example). Let H1 = H2 = H3 = R and p = q = 3. Let f1, f2 : R→ R be defined by
f1(x) = f2(x) =

1
2x. Let A,B : R→ R be defined by Ax = Bx = −x. For any i, j ∈ {1, 2, 3}, let Ui, Tj : R→ R

be defined by Uix = −2ix and Tjx = −(2j+ 1)x, respectively. Let the sequence {(xk,yk)} be generated
iteratively by (3.1), where α0

k = 6
7 , α1

k = α2
k = α3

k = 1
21 , β0

k = 7
8 , β1

k = β2
k = β3

k = 1
24 and tk = 1

k+2 for all
k > 0. Then, the sequence {(xk,yk)} converges strongly to (0,0).
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Solution: It is easy to see that ∩3
i=1F(Ui) = {0} = ∩3

j=1F(Tj) and A0 = 0 = B0. Thus Γ = {(0, 0)} 6= ∅. Also
Ui is τi-demicontractive and Tj is θj-demicontractive, where τi = 2i−1

2i+1 and θj =
j
j+1 , and I−Ui and I− Tj

are demiclosed at 0, i, j = 1, 2, 3. Then τ = 5
7 and µ = 3

4 . From the definition of A and B, λA = λB = 1, we
choose γk = γ = 1

2 . It can be observed that all the assumptions of Theorem 3.3 are satisfied.
Then the scheme (3.1) can be simplified as{

xk+1 = 2k+9
14(k+2)xk +

k+1
7(k+2)yk,

yk+1 = k+1
8(k+2)xk +

k+5
8(k+2)yk, k > 0.

(4.1)

Utilizing the scheme (4.1), we report the numerical results in Table 1 and Table 2. In addition, Figure 1
also demonstrates Theorem 3.3.

Table 1: The values of the sequences {xk} and {yk} with initial values x0 = 1, y0 = 1.

k xk
0–4 1.000000000000 0.392857142857 0.138605442177 0.045728559281 0.014446237679
5–9 0.004436210261 0.001336054152 0.000396689517 0.000116491267 0.000033907453

...
...

...
...

...
...

10–14 9.7979×10−6 2.8140×10−6 8.0400×10−7 2.2869×10−7 6.4795×10−8

...
...

...
...

...
...

21–25 8.7888×10−12 2.4428×10−12 6.7796×10−13 1.8789×10−13 5.2006×10−14

26–30 1.4377×10−14 3.9703×10−15 1.0952×10−16 3.0184×10−16 8.3111×10−17

k yk
0–4 1.000000000000 0.375000000000 0.126488095238 0.040663531037 0.012705562136
5–9 0.003887109325 0.001169434907 0.000347127548 0.000101931204 0.000029669088

...
...

...
...

...
...

10–14 8.5732×10−6 2.4622×10−6 7.0350×10−7 2.0010×10−7 5.6696×10−8

...
...

...
...

...
...

21–25 7.6902×10−12 2.1375×10−12 5.9322×10−13 1.6441×10−13 4.5505×10−14

26–30 1.2580×10−14 3.4740×10−15 9.5834×10−16 2.6411×10−16 7.2723×10−17
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(a) Initial values: x0 = 1, y0 = 1.
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(b) Initial values: x0 = 1, y0 = 2.

Figure 1: The convergence of {xk} and {yk}.
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Table 2: The values of the sequences {xk} and {yk} with initial values x0 = 1, y0 = 2.

k xk
0–4 1.000000000000 0.464285714286 0.187074829932 0.065988672255 0.021408939851
5–9 0.006632614002 0.002002531128 0.000594937394 0.000174731518 0.000050860910

...
...

...
...

...
...

10–14 1.4697×10−5 4.2210×10−6 1.2060×10−6 3.4303×10−7 9.7192×10−8

...
...

...
...

...
...

21–25 1.3183×10−11 3.6643×10−12 1.0169×10−12 2.8184×10−13 7.8009×10−14

26–30 2.1566×10−14 5.9554×10−15 1.6429×10−15 4.5277×10−16 1.2467×10−16

k yk
0–4 2.000000000000 0.687500000000 0.210565476190 0.063599463223 0.019318759870
5–9 0.005852365377 0.001755702460 0.000520788203 0.000152902189 0.000044503901

...
...

...
...

...
...

10–14 1.2860×10−5 3.6934×10−6 1.0552×10−5 3.0015×10−7 8.5043×10−8

...
...

...
...

...
...

21–25 1.1535×10−11 3.2062×10−12 8.8982×10−13 2.4661×10−13 6.8258×10−14

26–30 1.8870×10−14 5.2110×10−15 1.4375×10−15 3.9617×10−16 1.0908×10−16

5. Conclusion

In this work, we study the MSECFP (1.4) which is a generalization of the SEFP (1.2). In order to obtain
the strong convergence result, we introduce a new parallel algorithm combining viscosity approximation
methods for the MSECFP (1.4) of demicontractive mappings in Hilbert spaces. The results we obtained
mainly generalize and extend the ones in [21] from two quasi-nonexpansive mappings to two finite family
of demicontractive mappings and from the SEFP (1.2) to the MSECFP (1.4). Meanwhile, we give the
numerical example to demonstrate the effectiveness, realization and convergence of our algorithm. We
desire that the results presented here will be useful and valuable for researchers who study the branch of
split feasibility problems and related applications.
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