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Abstract

This paper deals with problem of a stochastic chemostat model with Monod-Haldane response function. Firstly, we
confirm the truth of the existence and uniqueness of the positive solution to the system. Then, we show the condition for
the microorganism to be extinct. Moreover, we investigate there is a stationary distribution of this stochastic system and finally,
we derive the expression for its invariant density. c©2017 All rights reserved.
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1. Introduction

The chemostat plays an important role in mathematical biology and theoretical ecology. A chemostat
is a bioreactor to which fresh medium is continuously added, while culture liquid containing left over
nutrients, metabolic end products and microorganisms are continuously removed at the same rate to keep
the culture volume constant [4, 17]. The theoretical investigation was initiated by Monod [16], Novick and
Szilard [17]. In the simple case, the chemostat with single species and single substrate was proposed in
[3].

In recent years, the Monod-Haldane type response function has been studied. A chemostat model
with Monod-Haldane response function can be expressed as the following equations:{

dS(t)
dt = D(S0 − S(t)) −

mS(t)x(t)
a+S(t)+KS(t)2 ,

dx(t)
dt = [

mS(t)
a+S(t)+KS(t)2 −D]x(t),

(1.1)

where S(t), x(t) stand for the concentrations of the nutrient and the microorganism at time t respectively.
S0 and D are positive constants, which respectively represent the original concentration of nutrient and
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the common washout rate. mS(t)x(t)
a+S(t)+KS(t)2 denotes the Monod-Haldane growth functional response, where

m > 0 is the maximal growth rate and a > 0 is called the Michaelis-Menten constant. Assume the term
KS(t)2 as an inhibitor and K is a half-saturation parameter.

System (1.1) has a trivial equilibrium point (S0, 0), it is a steady node when R0 := mS0

a+S0+K(S0)2 < D

and a saddle point when R0 > D. What is more, there are two interior equilibrium (S∗1 , x∗1), (S
∗
2 , x∗2) where

S∗1 ,S∗2 satisfy the equation
DKS2 + (D−m)S+Da = 0, D < m.

In addition, one of the two interior equilibriums is a steady nodal point and the other is a saddle
point. When the orbits tend to the steady nodal point, the microorganism is persistent. A certain amount
of microbial is removed from the chemostat constantly. For more details, we can refer to [2].

While, inevitably, the ecosystem dynamics is affected by environmental white noise which is an im-
portant component in real applications [7–13, 19]. We cannot ignore the difference that may happen. In
model (1.1), all parameters are affected by environmental noise and they always fluctuate around some
average values. In this paper, we only consider the case that the maximal growth rate m, which is one of
the crucial parameters to the continuous culture of microorganism, is perturbed by environmental white
noise with

m→ m+ σḂ(t),

where B(t) is for standard Brownian motion on the complete probability space, σ2 > 0 represents the
intensity of the white noise. Then the stochastic model is as follows{

dS(t) = [D(S0 − S(t)) −
mS(t)x(t)

a+S(t)+KS(t)2 ]dt−
σS(t)x(t)

a+S(t)+KS(t)2dB(t),

dx(t) = [
mS(t)

a+S(t)+KS(t)2 −D]x(t)dt+
σS(t)x(t)

a+S(t)+KS(t)2dB(t).
(1.2)

Since the model has a positive invariant set
{
(S, x) ∈ R2

+ : S+ x = S0
}

, we only have to study the
equation:

dx = [
m(S0 − x)

a+ (S0 − x) +K(S0 − x)2 −D]xdt+
σ(S0 − x)x

a+ (S0 − x) +K(S0 − x)2dBt, (1.3)

with the initial value x(0) = x0 ∈ (0,S0). In this paper, we will focus on the dynamical behavior of system
(1.3).

Throughout this paper, let (Ω, F ,P) be a complete probability space with a filtration {Ft}t>0 satisfying
the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets) and B(t)
be a scalar Brownian motion defined on the probability space.

In general, consider the d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), for t > t0, (1.4)

with initial value x(0) = x0 ∈ Rd. B(t) denotes an n-dimensional standard Brownian motion defined
on the complete probability space (Ω, F , {Ft}t>0 ,P). Denote by C2,1(Rd × [t0,∞]; R+) the family of all
nonnegative functions V(x, t) defined on Rd× [t0,∞] such that they are continuously twice differentiable
in x and once in t. The differential operator L of (1.4) is defined by [15]

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × [t0,∞]; R+), then

LV(x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2

trace[gT (x, t)Vxx(x, t)g(x, t)],

where Vt = ∂V
∂t , Vx = ( ∂V∂x1

, ..., ∂V∂xd ), Vxx = ( ∂2V
∂xi∂xj

)d×d. By Itô ′s formula [15, 18], if x(t) ∈ Rd, then

dV(x(t), t) = LV(x(t), t)dt+ Vx(x(t), t)g(x(t), t)dB(t).
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2. Existence and uniqueness of the global positive solution

To investigate the dynamics of stochastic chemostat model (1.3), the existence of a global positive
solution is required first of all. And if the system (1.2) has a unique global solution, so does the system
(1.3). Therefore, in the following, we will only need to show there is a unique global positive solution to
(1.2). However, the coefficients of (1.2) do not satisfy the linear growth condition, though coefficients of
(1.2) are locally Lipschitz continuous. As a result, the system only has a unique positive local solution for
any given initial value. The following theorem tells us this solution is global.

Theorem 2.1. For any initial value (S0, x0) ∈ R2
+, there is a unique solution (S(t), x(t)) of system (1.2) on t > 0,

and the solution will remain in R2
+ with probability one, namely, (S(t), x(t)) ∈ R2

+ for all t > 0 almost surely.

Proof. Since the coefficients of (1.2) are locally Lipschitz continuous, for any given initial value (S0, x0) ∈
R2

+, there exists a unique positive local solution (S(t), x(t)) on t ∈ [0, τe) a.s., where τe is the explosion
time [1, 15]. In order to prove this solution is global, it is sufficient to show τe =∞ almost surely.

Let n0 > 0 be sufficiently large such that S(0), x(0) all lie within the interval [ 1
n0

,n0]. For any integer
n > n0, define the stopping time:

τn = inf
{
t ∈ [0, τe) : min {S(t), x(t)} 6

1
n
or max {S(t), x(t)} > n

}
,

where throughout this paper, we set inf∅ = ∞ (as usual, ∅ denotes the empty set). Clearly, τn is
increasing as n → ∞. Set τ∞ = limn→∞ τn, whence τ∞ 6 τe a.s. It is easy to show that τ∞ = ∞ a.s.
implies τe =∞ a.s. and (S(t), x(t)) ∈ R2

+ a.s. for all t > 0. In other words, to complete the proof we only
need to show that τ∞ =∞ a.s.

If this statement is not true, there will exist a pair of constants T > 0 and ε ∈ (0, 1) such that

P {τ∞ 6 T } > ε.

Hence there is an integer n1 > n0 such that

P {τn 6 T } > ε, ∀ n > n1. (2.1)

In addition, the total biomass N(t) = S(t) + x(t) of the model (1.2) satisfies the following equation

dN(t) = D(S0 −N(t))dt.

By a simple calculation, it is easy to know that for all t < τe,

N(t) 6 max
{
S0 + x0,S0} := C. (2.2)

Define a function V : R2
+ → R+ by

V(S(t), x(t)) = − ln
S

C
− ln

x

C
.

Obviously, V is positive defined. By Itô ′s formula, we get

dV = [−
S0D

S
+ 2D+

m(x− S)

a+ S+KS2 +
σ2(S2 + x2)

2(a+ S+KS2)2 ]dt

+
σ(x− S)

a+ S+KS2dB(t)

:= LVdt+
σ(x− S)

a+ S+KS2dB(t),
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where L is the generating operator of system (1.2), and by using (2.2), we can obtain

LV 6 2D+
m(x− S)

a+ S+KS2 +
σ2(S2 + x2)

2(a+ S+KS2)2

6 2D+
mC

a
+
σ2C2

a2 := C0.

Therefore ∫τn∧T
0

dV(S(t), x(t)) 6
∫τn∧T

0
C0dt+

∫τn∧T
0

σ(x− S)

a+ S+KS2dB(t).

Taking the expectation of both sides yields

EV(S(τn ∧ T), x(τn ∧ T)) 6 V(S0, x0) +C0T . (2.3)

Set Ωn = τn 6 T for all n 6 n1, due to (2.1), we know P(Ωn) > ε. Note that for every ω ∈ Ωn, there is
at least one of S(τn,ω), x(τn,ω) equals either n or 1

n , and then

V(S(τn ∧ T), x(τn ∧ T)) > (− ln
1
nC

)∧ (− ln
n

C
).

It follows from (2.3) and (2.1) that

V(S(τ0), x(τ0)) +C0T > E[IΩn(V(S(τn), x(τn)))]

> ε[(− ln
1
nC

)∧ (− ln
n

C
)],

where IΩn is the indicator function of Ωn. Letting n→∞ leads to the contradiction

∞ > V(S0, x0) +C0T =∞.

Thus we must have τ∞ =∞ a.s. This completes the proof of Theorem 2.1.

Remark 2.2. If m 6 D, the microorganism must be washed out in chemostat, then we always assume
m > D in this paper.

3. Extinction

In this section, we will discuss the extinction for x(t). The following lemma is useful for our proof
which is a result in [5, 20].

Consider the one-dimensional time-homogeneous stochastic differential equation:

dX = b(X)dt+α(X)dB(t) with X(0) ∈ R+, (3.1)

satisfying the following conditions:

(1) α2(X) > 0 for any X ∈ I = (l, r) where −∞ 6 l < r 6∞;

(2) for any X ∈ I, there exists ε > 0 such that
∫X+ε
X−ε

1+|b(X)|
α2(X)

dx <∞.

Lemma 3.1 (See [5, 20]). Assume that (1) and (2) hold. Let X(t) be a weak solution of (3.1) in (l, r). For some
fixed constant c ∈ I, the scale function is defined as

q(x) =

∫x
c

e
−
∫v
c

2b(u)
α2(u)

du
dv.

If q(l+) > −∞ and q(r−) =∞ hold, then P(limt→∞ X(t) = l) = P(supt>0 X(t) < r) = 1.
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Theorem 3.2. If Rs0 := mS0

a+S0+K(S0)2 −
σ2(S0)2

2[a+S0+K(S0)2]2
< D, then for any initial value X(0) = x0 ∈ (0,S0), the

solution of (1.3), x(t), obeys
P( lim
t→∞ x(t) = 0) = 1,

that is, the microorganism will be extinct with probability 1.

Proof. Note

b(x) = [
m(S0 − x)

a+ (S0 − x) +K(S0 − x)2 −D]x,

α(x) =
σ(S0 − x)x

a+ (S0 − x) +K(S0 − x)2 , c ∈ (0,S0).

Compute that ∫x
c

2b(u)
α2(u)

du =

∫x
c

2 · [ m(S0 − u)

a+ (S0 − u) +K(S0 − u)2 −D]u

· [a+ (S0 − x) +K(S0 − x)2]2

σ2(S0 − u)2u2 du

=
2
σ2

∫x
c

{
[2DK2S0 −K(m− 2D)] −DK2 · u

+
mS0(a+ S0 +K(S0)2) −D(a+ S0 +K(S0)2)2

(S0)2 · 1
u

+
amS0 − 2aDS0 − a2D

(S0)2 · 1
S0 − u

−
a2D

S0 ·
1

(S0 − u)2

}
du

= −
2
σ2

{
amS0 − 2aDS0 − a2D

(S0)2 ln(S0 − x) +
a2D

S0(S0 − x)

−
mS0(a+ S0 +K(S0)2) −D(a+ S0 +K(S0)2)2

(S0)2 ln x

− [2DK2S0 −K(m− 2D)]x+
DK2

2
x2

}
+C0,

where C0 is a constant and clearly conditions (1) and (2) are satisfied. Then the scale function

q(x) =

∫x
c

e
−
∫v
c

2b(u)
α2(u)

du
dv

= e−C0

∫x
c

e(A−B)v+Ev2
vF−G(S0 − v)H−Ie

J

S0−vdv,
(3.2)

where A = 2km
σ2 , B =

4KD(KS0+1)
σ2 , E = DK2

σ2 , F =
2D(a+S0+K(S0)2)2

σ2(S0)2 , G =
2mS0(a+S0+K(S0)2)

σ2 , H = 2am
σ2S0 ,

I =
2aD(2S0+a)
σ2(S0)2 , J = 2a2D

σ2S0 are all constants.

Let w = 1
S0−v

and x→ (S0)−, by (3.2)

q((S0)−) > e−C0cF(S0)−GeEc
2+Ac−BS0

∫S0

c
(S0 − v)H−Ie

J

S0−vdv

> e−C0cF(S0)−GeEc
2+Ac−BS0

∫+∞
1

S0−c

wI−H−2e
Jw

S0 dw

> e−C0C1

∫+∞
1

S0−c

e
J

S0wdw =∞.

(3.3)
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Note that Rs0 < D implies F−G+ 1 > 0, when Rs0 < D, let x→ (0)+, we obtain

−q((0)+) 6 e−C0(S0)H(S0 − c)−Ie
J

S0−c
+Ac+Ec2

∫c
0
vF−Gdv

6 e−C0C2

∫c
0
vF−Gdv <∞,

that is, q((0)+) > −∞. By Lemma 3.1,

P( lim
t→+∞ x(t) = 0) = 1.

The proof is complete.

4. Persistence and stationary distribution

In this section, we will talk about the persistence and stationary distribution for the microorganism
x(t).

Definition 4.1 (See [14]). The microorganism modeled by (1.3) is said to be

(1) persistence in mean, if limt→∞ 1
t

∫t
0 x(s)ds > ζ for some constant ζ > 0;

(2) stochastic persistence in the chemostat, if for any ε ∈ (0, 1), there exist positive constants A1 = A1(ε)
and A2 = A2(ε) such that for any initial value x0 ∈ R+,

lim inf
t→∞ P(x(t) 6 A1) > 1 − ε and lim inf

t→∞ P(x(t) > A2) > 1 − ε.

Lemma 4.2 (See [6]). Assume b and α the coefficients of (3.1) are twice continuously differentiable with second
derivatives satisfying a Hölder condition, an invariant density exists if and only if the following two conditions hold

(1)
∫x0
−∞ exp(−

∫x
x0

2b(s)
α2(s)

ds)dx =
∫∞
x0

exp(−
∫x
x0

2b(s)
α2(s)

ds)dx =∞;

(2)
∫+∞
−∞ 1

α2(x)
exp(
∫x
x0

2b(s)
α2(s)

ds)dx <∞.

Furthermore, if an invariant density is twice continuously differentiable, then it satisfies the ordinary equation

L∗π = 0, that is
1
2
∂2

∂y2 (α
2(y)π) −

∂

∂y
(b(y)π) = 0.

The solution is given by

π(x) =
C

α2(x)
exp(
∫x
x0

2b(y)
α2(y)

dy),

where C is found from
∫
π(x)dx = 1.

Theorem 4.3. Let x(t) be the solution of system (1.3) with initial value x0 ∈ (0,S0). If Rs0 > D, the microorganism
x is stochastically persistent in the chemostat. The model (1.3) has a stationary distribution, denoted by π(x).

Proof. Note

b(x) = [
m(S0 − x)

a+ (S0 − x) +K(S0 − x)2 −D]x,

α(x) =
σ(S0 − x)x

a+ (S0 − x) +K(S0 − x)2 , c ∈ (0,S0).
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Let w = 1
S0−c

, compute that∫S0

0

1
α2(v)

e

∫v
c

2b(u)
α2(u)

du
dv =

eC0

σ2

{∫c
0
[a+ S0 − v+K(S0 − v)2]2

· e(B−A)v−Ev2− 1
S0−v vG−F−2(S0 − v)I−H−2dv

+

∫S0

c

[a+ S0 − v+K(S0 − v)2]2

· e(B−A)v−Ev2− 1
S0−v vG−F−2(S0 − v)I−H−2dv

}

6 C3

∫c
0
vG−F−2dv+C4

∫+∞
1

S0−c

e−Jwdw,

where C0,C3,C4 are all constants.
Under the condition Rs0 > D, we have∫S0

0

1
α2(v)

e

∫v
c

2b(u)
α2(u)

du
dv <∞. (4.1)

The conditions of Lemma 4.2 follow clearly from (3.3) and (4.1). Therefore, the microorganism x is
stochastically persistent in the chemostat. And the system (1.3) has a stationary distribution. In addition,
the invariant density is given by

π(x) = C[a+ S0 − x+K(S0 − x)2]2

· e(B−A)x−Ex2− 1
S0−xxG−F−2(S0 − x)I−H−2,

where C is a constant such that
∫S0

0 π(x)dx = 1.

Remark 4.4. If σ → 0, Rs0 → R0, then the properties of extinction and persistence for microorganism are
consistent with the result of deterministic chemostat model in [2].

5. Conclusion

In this paper, we introduce the stochastic perturbation into a chemostat model with a Monod-Haldane
response function. Firstly, we show that the system (1.3) has a unique global positive solution. Then
through calculation, we obtain the threshold Rs0 . Theorems 3.2 and 4.3 show that the microorganism will
be extinct if Rs0 < D, and the continuous culture of the microorganism is successful if Rs0 > D. Thus
we consider Rs0 as the threshold of extinction and persistence for the microorganism. Theorem 4.3 also
illustrates that the system (1.3) has a stationary distribution. Finally, we derive the expression for its
invariant density.
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