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Abstract

In this paper, we investigate the existence of multiple periodic solutions for two classes of nonlinear difference systems
involving (¢1, ¢)-Laplacian. First, by using an important critical point theorem due to B. Ricceri, we establish an existence the-
orem of three periodic solutions for the first nonlinear difference system with (¢1, ¢)-Laplacian and two parameters. Moreover,
for the second nonlinear difference system with (¢1, ¢2)-Laplacian, by using the Clark’s Theorem, we obtain a multiplicity result
of periodic solutions under a symmetric condition. Finally, two examples are given to verify our theorems. (©2017 All rights
reserved.
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1. Introduction and main results

Let R denote the real numbers, Z the integer numbers, and given a < b in Z. Let Z[a,b] = {a,a +
1,...,b}. Let T > 1 and N be fixed positive integers.

Firstly, in this paper, we are concerned with the existence of three periodic solutions for the following
nonlinear difference system:

HA [Pl(t — 1)1 (Auq(t— 1))} — pp3(t)ds(ur (1)) + Vi, W(t, u (t), un(t)) =0,

(1.1)
KA [pa(t = 1) 2 (Auta(t = 1)) | — mpa(t)baluz(t)) + oy W (1w (1), ua(t)) =0,

where p € R, pi : R = RY, ¢y, i = 1,2, 3,4 satisfy the following conditions:

(p) pi are T-periodic and minycz; 1y pi(t) >0,1=1,2,3,4;
(A1) ¢; : RN — RN are homeomorphisms such that ¢i(0) = 0, ¢; = V®;, with ©; € CHRN, [0, +))
strictly convex and @;(0) =0,1=1,2,3,4.
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Remark 1.1. Assumption (A1) is given in [11], where it is used to characterize the classical homeomor-
phism.

Over the past ten years, variational methods have been used extensively to investigate the existence
and multiplicity of solutions for difference systems (for example, see [1-6, 9, 11, 12, 19-22, 26-30]). In
[11, 12], Mawhin investigated the following nonlinear discrete systems with ¢-Laplacian:

Ad[Aun—1)] = Vi FiIn,um)]+h(n) (neZ), (1.2)

where ¢ = V@, and O strictly convex, is a homeomorphism of RN onto the ball B, ¢ RN or of B,
onto RN. The assumption about ¢ implies three cases: firstly, classical homeomorphism if ¢ : RN —
RN, for example, (0) = 0, d(x) = Ix|P~2x for some p > 1 and all x € RMN\{0}; secondly, bounded
homeomorphism if ¢ : RN — B, (a < +00), for example, ¢p(x) = ——=— € By for all x € RV; finally,

1+]x|?
: carm i b - N N __ x
singular homeomorphism if ¢ : B C R™ — R, for example, ¢(x) = Jine

reasonable assumptions, by using variational methods, Mawhin obtained some existence and multiplicity
results for system (1.2).

However, to the best of our knowledge, except for recent works in [3, 21, 29] which are made by
our first author and his cooperators, there are no people to investigate the existence and multiplicity of
solutions for system involving classical (¢1, ¢2)-Laplacian. In [21], Wang and Zhang investigated the
multiplicity of T-periodic solutions for the following nonlinear difference system:

for all x € B1. Under some

{ Adq (Aul(t—l)) = Vu]F(t,ul(t),uz(t)) +hi(t), (1.3)

Ads (Auy(t—1)) = Vi, F(t, ui (1), ua(t)) + ha(t),

where F: Z x RN x RN -5 R and ¢, m =1,2 satisfy the following condition:

(A) ¢i is a homeomrphism from RN onto Bq € RN(a € (0,4+00]), such that ¢;(0) =0, d; = VO;, with
®; € CH(RN, [0, +00]) strictly convex and ®;(0) =0, m =1,2.

Assumption (A) implies that ®;, i = 1,2 are the classical homeomorphisms or the bounded homeomor-

phisms. They investigated the case that F(t,x,x2) is periodic on r; components of variables xil), e ,x](\} )

and 1 components of variables ng)’ - ,xg ), where 1 <11 < N and 1 < < N. By using a critical point

theorem in [13] and a generalized saddle point theorem in [10], they obtained that system (1.3) has at least
11+ 12+ 1 geometrically distinct T-periodic solutions. Their results generalize those results corresponding
to classical homeomorphism and bounded homeomorphism in [12].

In [29], our first author and Wang investigated the existence of homoclinic solutions for the following
nonlinear difference systems involving classical (¢1, ¢2)-Laplacian:

(1.4)

{ A1 (Aug(t—1)) + Vi, V(£ ug (1), us(t))

(t),
Adr (Auz(t — 1)) + Vuz\/(t, ul(t),uz(t)) ,

f1
fa(t)
wheret € Z, um(t) € RN, m = 1,2, V(t,x1,x2) = —K(t,x1,%2) + W(t,x1,%2), KW : Z x RN x RN - R
and ¢, m = 1,2 satisfy assumption (A1). They first improved some inequalities in [7]. Then by using a
linking theorem in [18], some new existence results of homoclinic solutions for system (1.4) were obtained
when W has super p-linear growth and K has sub p-linear growth.
In [3], Deng et al. considered the existence of periodic solutions for the following (¢1, ¢2)-Laplacian
systems:
{ Adq (Aul(t — 1)) + VulF(t,uﬂt),uz(t)) =0,
Adr (Auz(t—1)) + Vi, F(t, ug (1), up(t)) =0.

By using the saddle point theorem, they obtained some existence results for system with classical (¢4, d2)-
Laplacian if F has (p, q)-sublinear growth, and some existence results for system with bounded (¢1, $2)-
Laplacian if F has sublinear growth. Moreover, by using the least action principle, they also obtained some
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existence results for system with classical or bounded (¢1, ¢2)-Laplacian if F has a growth like Lipschitz
condition.

Inspired by [11, 12, 17, 21, 29], in this paper, we are interested in the existence of three T-periodic
solutions for system (1.1). By using an important three critical point theorem established by Ricceri in
[17], we investigate the existence of three T-periodic solutions for system (1.1), as stated in the following.

We denote by C, the class of all functions F : Z x RN x RN — RN such that F(-, x1,x2) is T-periodic
in Z for all (x1,x2) € RN x RN and continuously differentiable in RN x RN for all t € Z[1, T]. Define

Er ={h:={h(t)hezh(t+T) =h(t),h(t) e RN, t € Z}

and let E = Et x Et1. Then E is finite-dimensional. On Et, we define

T T 1/
e, = (Z AR(1)? + ) Ih(t)|e> .
t=1 t=1

For u = (uy,up) € E, define
[ull = [waller + lluzlle,-

Define

N
I(w) =) [pa(t)@1(Aus(t)) + pa(t) Da(Aua(t)) + p3(t) D3(wr (1)) + pa(t) Pa(ua(t))],

T
W(u) = Z F(tl U (t)/ uZ(t))l

.
Mu)=-) Htw(t)w(), ueckE,

where F, G, H are functions belonging to €.

Theorem 1.2. Let F, G € C and suppose that (p), (A1) and the following conditions hold:
(A2) there exist positive constants ci (1=1,2,3,4), 0 > 1 such that

(di(x) —di(y),x—y) = cik—yl?, ¥Vx,yeRY,i=1,234,

where (-, -) stands for the usual product in RN;

(A3) limy|— 00 Pi(x) = +o00 and there exist positive constants 1 > 0, d; and my such that ®;(x) < dilx|' +my
forall x € RN, (i=1,2,3,4);

(A4) forall t € Z[1,T] and all A > 0, there exists Co(A) € R such that for all (x1,x2) € RN x RN,

F(t,x1,%2)

o Bl gt T AG(t, x1,%2) = F(t,x1,%2) + Co(A);
1 2

(A5) Y {_,G(t,0,0) =0.

Then for each v > 0, p > max{0, W*(I, ¥, ®,r)}, and compact interval [a,b] CJO, B(ul+ V¥, @, r)[, there exists a
number p > 0 with the following property: for every A € [a,b] and every H € C, there exists & > 0 such that,
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for each v € [0,3], system (1.1) has at least three T-periodic solutions in E whose norms are less than p, where
W=F—-AG++VvH,

pl(u) +¥(u) — o inf  (ul+VY)
B(LI+VY,0,1r)=  sup [ cor) ,
ue®1(]r,+ool) T— (D(u)
Y(u)—y+r

u*(I,W,d),r):inf{ uelk, O(u) <, I(u) <nr},

N — I(w)

vy =inf(W(u) + ®(u)), nr= inf I(u).
E ued-1(r)

Inspired by [17], we have the following corollary:

Corollary 1.3. Suppose that (p), (A1)-(A3) and (A5) hold. If
(A4)" there exists s > 1 such that for every t € Z[1,T],

F(t,x1, % . F(t,x1,%
(t,x1,x2) = 400 lim M < +o0, and

G(t,x1,%2)
m T Lo , S S = +00,
Ix1 4 Ixal =00 [X1]Y =+ [x2| x|+ Ixal =00 [X1]S + [x2]

m _— =
[x1l+Ixal =00 [X1[5 4 [x2*
then the conclusion of Theorem 1.2 holds.

Moreover, in this paper, we are also concerned with the multiplicity of T-periodic solutions for the
following nonlinear difference system:

{ A(vit—1)d1(Au(t—1))) —va(t)pallur (t)) + Vi, F(t, wr (t), un(t)) =
A (v2(t =12 (Auz(t —1))) —va(t)palfuz(t)]) + Vi, F(t, ua (1), un(t))

where vy; : R — R satisfy the following conditions:

0/
0 (1.5)

7

(v) vi are T-periodic and minicz; 17vi(t) >0,1=1,2,3,4,
and ¢, 1 =1,2,3,4 satisfy the assumption (A1) and the following condition:
(¢p) there exist positive constants p > 1,q > 1, ai, by, 1 =1,2,3,4 such that
ailx|9 < Oi(x) <bix|9,1=1,3, VxeRN
and
ailxP < @i(x) < bixP,i=2,4, VxeRN.

Moreover, F: Z x RN x RN — R, (t,x1,x2) — F(t,x1,x2) is T-periodic in t for all (xq,%2) € RN x RN
and continuously differentiable in (x1,x2) for every t € Z[1, T].
When ®@i(x) = +[x[9, i = 1,3 and ®;i(x) = %lep, i = 2,4, system (1.5) can be seen as a discrete

analogue of the following (q, p)-Laplacian differential systems:
d (v1(t)hn (1)]9 2 (1))

dt
d (v2(t) o (1) P21 (1))
dt

—y3(t)ug (£)1972ug () + Vi, F(t, w1 (1), uz(t)) =0,
(1.6)

—va(ua (1) P2un(t) + Vi, F(t, ug (1), ua(t)) = 0.

Recently, by using variational methods, system (1.6) has been investigated by some authors (for example,
see [8, 14, 15, 23, 24],) and some interesting results on the existence and multiplicity of solutions have
been obtained. However, to the best of our knowledge, there are no people to investigate the nonlinear
difference system (1.5). In this paper, inspired by [8, 14, 15, 19, 23, 24], we are interested in the existence
and multiplicity of T-periodic solutions for system (1.5). By using the Clark’s theorem, we obtain the
following theorem.
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Theorem 1.4. Suppose that (y), (b), and the following conditions hold:
(F0) there exist 1 € [0,q), az € [0,p), hi : Z[1,T] - R*",i=1,2and 1 : Z[1,T] — R* such that

F(t,x1,%2) < hy(t)Ixq|* +ho(t)[x2]*2 + 1(t);

(F1) F(t,0,0) =
(32) F(t, X1,—X2) =F(t,x1,%x2);
(F3) there exist constants 3; € (1, min{q,p}), M € (0,00),1=1,2and & € (0,1) such that

F(t,x1,%2) = Myl P14+ Malxa|P2, Vx| < 8, Ixa] < 6.

Then system (1.5) has at least 2NT distinct pairs of nonzero solutions.

2. Preliminaries

For h € E, set

, 1T>1.

T 1/T
IR+ = <Z |h(t)|r> and |||/ = _max Ih(t)
t=1

teZ[1,T]

Obviously, we have
Moo < [l < T [[h|oo. (2.1)

On E, define

T T 1/1
Ml = (Z IAh(t)ll+Z |h(t)|1> :

Note that Et is finite-dimensional. || - ||, is equivalent to || - ||+(r > 1) and || - ||g,). Hence, there exist
positive constants C; (i=1,---,6) such that
Call - ller <1+ lle < Call - s,
Call - ller <1+ llv < Call - [[es, (2.2)
Csll - lew <1~ llewy < Coll - lles- (2.3)

Lemma 2.1 ([21]). Let L: Z[1,T] x RN x RN x RN x RN — R, (t,x1,%2,Y1,Y2) — L(t,%x1,%2,Y1,Yz2) and
assume that L is continuously differentiable in (x1,x2,Y1,Y2) for all t € Z[1,T]. Then the functional ¢ : E — R
defined by

L(t,up(t), ua(t), Aug (t), Aus(t))

ME

o(u) = @(ug,up) =

t=1

is continuously differentiable on E and for u,v € E,

.
(@' (w),v) = (@' (u,u2), (v, v2)) = D [(Dx, L{t, wy (1), ua(t), Aug (1), Aus(t)), v (1))

DXZL(tr ug (t)/ U (t)/ Aul (t)r Auy (t) )IVZ(t))
ui (t), Aup(t)), Avp(t))] .

+
—

g
<
N
=
ot
£
=
5
=

>

Let

L(t,x1,%2,Y1,92) = wlp1 () @1 (y1) + p2(t) P2(y2) + p3(t)D3(x1) + pa(t) D4(x2)]
—F(t,x1,%2) + AG(t,x1,%x2) — VH(t, %1, %x2),

where F,G,H: Z[1,T] x RN x RN — RN are continuously differentiable in (x1,x2) € RN x RN for all
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t € Z[1,T]. Then

N
= [u(p1 (1) D1(Aus (1) + p2(t) P2 (Auz(t)) + pa(t) @3 (us (1)) + pa(t) Dy (uz(t)))
t=1

—F(t, w1 (1), uz(t) + AG(t, us (1), uz(t)) — vH(t, u (1), uz(t))] .

(2.4)

Obviously, when (A1) and (A2) hold, ¢ is continuously differentiable on E and for all 1, v € E, we have
(@'(w),v) = <<P'(u1 ), (vi,v2))
= Z rp1(t) (1 (Au(t)), Ave(t)) + pp2(t) (b2 (Auz(t)), Ava(t))
+up3( )(ds(ur(t)), vi(t)) + ppa(t) (da(ua(t)), va(t))]

-

=D (Vo Fltwa (1), wa (1), vi(1) + (Vi F(t, wi (), ua(t)), va(t))] (2.5)
t=1

+A ) [V, Gltu(t),ua(t), vi(t) + (Va, G (t, w (1), ua(t)), va(t))]

T
—v ) (Vi Htwi (), ua (), vi () + (Vau, Hit, u (t), ua (), va(t))] -

Lemma 2.2. If u € E is a solution of Euler equation @’(u) = 0, then w is a solution of system (1.1).

Proof. At first, for any u = (ug,u3),v = (v1,Vv2) € E, we can obtain the following two equalities:

(p1(t)d1(Auy(t)), Avi(t)), (2.6)

M-

_i <A[91(t— 11 (Auy (t— 1))},\)1(’()) =

,_,.
I
KR
-+
I
KR

(p2(t) p2(Auz(t)), Ava(t)). (2.7)

M -
M-

(A[pz(t— 1) 2 (Aup(t — 1))},\,2“)) —

,_,.
I
_
-
I
-

In fact, since u;(t) = ui(t+T) and vi(t) = v1(t+T) for all t € Z, then

T

=2 (a[pate=Den(aate=1) wo)

N
(p1 ()1 (A (1), v1(t)) + ) _(p1(t — 1)y (Auy (t — 1)), vy (1))

B

t=1 t=1
T T-1

== (p1()d1(Aur (1), vi(1)) + D (pr(t)b1(Aus(t)),vi(t+1)) + (p1(0) b1 (Aus(0)),v1(1))
I t—1

I
M-
ﬁ

p1(t)p1(Au (1)), Ave(t)) + (p1(0)d1(Aui(0)),vi(1)) — (p1(T) 1 (Aug(T)), v (T + 1))

,_,.
I
MR

I
ME

(p1(t)p1(Auy(t)), Avy(t)).

,_,.
I
_

Hence, (2.6) holds. Similarly, it is easy to get (2.7). Since @’(u) = 0, then for all v = (v1,0) € E, (2.5)implies
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that

.
D [ulpa(t)dr(Aua(t)), Avi () + wlps(t)bs(w (1)), vi (1))
i}
' T T
= > (Vi Flt,wi(t), (1)), va(t) =A ) (V, Glt, (1), ua(t)), va (1)) (2.8)

t t=1

1

.
+v ) (Va Htw (t), ua(t)), v (1)

t=1

Note that v is arbitrary. Then (2.6) and (2.8) imply that

RA p1(t— 1)1 (Aus (t—1))| = sps(t)a (1)) + Vi W(E ua (8], ua(t)) = 0.

Similarly, let vi = 0. We can obtain that
RA[pa(t = 1)a(Aua(t — 1)) | — Hps(ds(ua(t)) + Vi, W(E w (£), ua(t)) = 0. 0

To prove Theorem 1.2, we will use the following three critical points theorem due to Ricceri [17].

Theorem 2.3 ([17]). Let X be a reflexive real Banach space, 1 : X — R a sequentially weakly lower semicontinuous,
coercive, bounded on each bounded subset of X, C! functional whose derivative admits a continuous inverse on X*,

and ¥, ® : X — R two C! functionals with compact derivative. Assume also that the functional ¥ + A® is bounded
below for all A > 0 and that

L Y(x)
liminf —~ = —o0
xll=-+o0 1(x)
Then, for each v > supy, @, where M is the set of all global minima of 1, for each u > max{0, u*(I, ¥, ®, )}, and
for each compact interval [a,b] Cl0, B(pnl + ¥, @, r)[, there exists a number p > 0 with the following property: for

every A € [a,b] and every C! functional T : X — R with compact derivative, there exists & > 0 such that, for each
v € [0, ], the equation

ul’ (x) + W (%) + A0/ (x) +vIM'(x) =0

has at least three solutions in X whose norms are less than p, where

wl(x) +W¥(x)— o inf  (nl+VY)
B(uI+Y, @,7) = sup -cor]) ,
x€®1(]r,+00l) T—®(x)
W(x) —
wW(LY,@,r) = inf{(x)w xe X, 0x) <, I(x) < nr} ,
Ny —1(x)
y=inf(W(x)+D(x)), nr= inf I(x).
X x€D1(1)

3. Proof of Theorem 1.2

For the sake of convenience, we denote

pi = max pi(t), p; = min pi(t), i=1,2,34
teZ[1,T] teZ[1,T]

Proof of Theorem 1.2. We prove that ¢ defined by (2.4) satisfies all the assumptions of Theorem 2.3. Let
X = E. Then E is a reflexive and separable Banach space. Since all the vector topologies are equivalent in
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the finite dimensional Banach space E, then for any sequence {u™} C E, assume that
u™ s u*inEasn — oo,
that is,

T 1/0 T T 1/6
(Z AU (t) — Au( )Ie—i—Zu?(t)—uT(t)Ie) + (Z IAUR (t) — A ()]0 +Z|u;(t)—u;(t)|@>
t=1

t=1 t=1
= |[u™ —u*|| = 0, asn — oo,
which implies that nlg}r;o |Aul*(t) — Auj(t)| = 0 and T}E}r}w lul*(t) —ui(t) =0,i=1,2 for every t € Z[1,T].

Hence, it is easy to obtain that (A1) implies that I is continuous in E and then sequentially weakly lower
semicontinuous. Moreover, obviously, (A1) and Lemma 2.1 imply that I is a C! functional and

t)(d1(Aus(t)), Avq () + p2(t) (b2(Auz(t)), Avz(t))

l\/]—q

+ 3( )(3(u1(t)),vi(t)) + palt) (daluz(t)), v2(t))], foru,veE.
It follows from (A2) that

N
(VW) =T'(v),u=v) =) [pr(t)(d1(Aw(t) — d1(Avi(t)), Auy (t) — Avy(t))

t)(P2(Auz(t)) — d2(Ava(t)), Aun(t) — Avy(t))
3(t) (da(ur(t)) — ds(vi(t)), g (t) —vi(t))

)
+p4(1) (da (11 (1)) — da(va(t)), ua(t) —va(t))]
T
> Z [c1p7 1Ay (t) — Avy (1)[° + cops [Aun (1) — Avy(t)°
=1

+
0 O
N
S

+ c3p5 fur (t) —v1 (1) + capy Tua(t) —va(t)[°]

> min{cip;, c3p; Hwr —vil|E, +min{capy, capy Hl —vol|E,

. — — — - 0
> min{cip;,C20, ,€305 ,CaPy ) ([[ur —ville; + [[luz —v2lley)

2671

1 . -
= 501 min{c1p;, 205, C3p5 ,capy Hu—v||®, foru,veE.

So I’ is uniformly monotone in E. By (A1) and (A2), we have
(pi(x),x) = cilx|® forallx e RN, i=1,2,3,4. (3.1)
Hence, (3.1) implies that

T'w,w) 1
[[ul [[ul

+ p3(t) (P3(wa (1)), wr (1)) + pa(t) (Pa(uz(t)), uz(t))]

.
> Ipa(0)(d1(Aus (1), Aug (1) + p2 () (d2(Aua(t)), Aus(t))
t—1

;
Z Tl {Z [e1py 1AW (1) + c2p; |Aua(t )IG+C393Iul(t)|e+64p4luz(t)le}}
t=1

g, + lluallg,

waller + llualle,

> min{c1p; , 2P, ,C3P5 ,C4Py }
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(hwaller + luzlle)°
ualler + llualle

1 ) _ _ _ _
Z 561 min{c1p;, €20, ,C303 ,CaPy |

1 . _ _ _ _ _
= o7 Min{e1py, c2p;, caps , capy Hiuf

(I'(uw)w)

- = oo that is, I’ is coercive in E. Next, we show that I’ is also

for allu € E. So lim

luf|—o0
hemicontinuous in E. Assume that s — s*, s, s* € [0,1]. Note that

KT (w+sv), W) — (I'(w+s™), w)| < [T (w+sv) —T'(w+s*v)||||w]|

for all u,v,w € E. Then the continuity of I’ implies that (I'(u+ sv),w) — (I'(u+s*v),w) as s — s* for
all u,v,w € E. Hence, I’ is hemicontinuous in E. Thus by Theorem 26.A in [25], we know that I” admits a
continuous inverse in E.

Obviously, ¥, @, and T" are C! functionals. Next, we show that ¥/, ®/, and T’ are compact. Assume
that {u™} C E is bounded. Then there exists a constant D such that ||u™|| < D; and there exists a
subsequence, still denoted by {u,}, such that u™ — u* for some u* € E. Furthermore, u™ — u*. By the
continuity of ¥/, ®" and I/, it is clear that

V(™) —v¥' ()| —0 [0 u")—a' (u9)||—0 |[Iu™)-T/(u)]—0 asn— oco.
Hence, ¥/, ®’, and I’ are compact in E. It follows from (A4) that

-
YW +AD () = Y AG(t,u1(t), ua(t)) — F(t,ur(t), ua(t))] > TCo(A),
t=1

which shows that ¥ 4+ A® is bounded below for all A > 0. Moreover, (A4) implies that for any positive
constant D1, there exists a positive constant D,(D1), which depends on Dy, such that

F(t,x1,%2) = Dy (fx1|" + xal') — D2(Dy) (3.2)

for all (x1,x2) € RN x RN and t € Z[1, T]. Then (3.2), (A3), (2.2), and (2.3) imply that

T
e ~ 3 Fltu (1] ualt)
uHEoo m - HJﬁISoo T
l 2 01 (6)01 (A3 (1)) + 02 (1) Dl Aua(t)) -+ pa(t) (s (1)) + ()04 (1))
t=
]
—D1 Y ()t + ha(t)Y) + Da(Dy)T
< lim T t=1
ulzee 2 01 (1)1 (A3 (1)) + p2(1)DaAua(t)) + pa(t) (11 (1)) + ()04 uz (1))
t=
)
~D1 3 (s () + b))
t=
ul|—oo I 4
e 3| s (0] + ooy 1w (D + dpd (D} + dapy oD} + T map
t= i=
n H 1|i|m _ Dy (Dq)T
7 min(or 0,07, 03} 2 (@1Au(8) + Qa(Auift) + @y (1)) + sfuaft))
t=
< D CY(Jw L, + [usb)

[[wl|—=o0

T 4
max{dip;’, dapy, dspy, dapy H[will [, + Iuallfe, ;) + Z1 'Z1 mip;
t=11=
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—D1 Chyr (Jfualle, + [uzlle, )t

lull—o0 + + + + ! 1 L & +
max{dip;", d2p;, dapz , dapy Hllwllfe, ) + [v2llfe, ) + 2 2 mipy
t=1i=1

—D1 Chair ([[w[ley + [luaf[e,)!

[lw||—o00 LI
max{d1p;, d2p; , dapy, dapy HCilwill}, + Celluallt, ) + X 3 mipy
t=11=1

—D1Clstr (g + [Juzlle, )t

< lim 1
[ulj—o0 + + + +101 Ly +
max{dip;, d2p;, d3p; , dap, JCe([[wile; + [u2lle )+ > 2 mipy
t=11i=1
1 —D;C}

2T max{dip;, dapy, dap3, dapy }CL’

By arbitrariness of D1, we obtain that
Yu)

1m
[l —oo (1)

By (A1) and (A3), we know that @; reaches its unique minimum at 0, 1 = 1,2,3,4 (see [11]) and so I has
unique global minima 0. Then M = {0}. By (A5), we have sup,, ® = 0. Hence, by Theorem 2.3, the

conclusion of Theorem 1.2 holds.

O

Proof of Corollary 1.3. It follows from (A4)’ that there exist D3 > 0 and D4 > 0 such that for every t €

Z[1,T],
F(t,x1,%x2) < D3lx1|® + D3lxa|® + Dy

and for any D5 > Dj, there is a constant Dg(Ds), which depends on Ds, such that

G(t,x1,%2) = Dslx1]® 4+ Ds[x2|* + Dg(Ds5).

Obviously, for every A > 0, we can find a sufficiently large D5(A) such that AD5(A) > D3. Hence, we have

AG(t,x1,%2) = D3lxq|® + D3lx2|® +ADg(D5(A)) > F(t,x1,%2) — Dyg 4+ ADg(Ds(A)).
So (A4)" implies (A4).

4. Proof of Theorem 1.4

When the condition (y) holds, on Et, we define

T T 1/4
ullerg) = (Z Y1(t)|Awg (1)1 + ZYs(tNm(th)
t—1 t=1
and

T T 1/p
Il er,) = (Z Ya2(t)[Aup ()P + ZY4(1)|u2(t)|p> :
t=1 t=1

For u = (uy,uy) € E, define
[l (00) = lltlloo + (12| o

Moreover, it is clear that E is homeomorphic to R2NT. Then there is a basis of E denoted by {e1, ez, ..., eanT}-

For every u € E, there exists a unique point (Aq, A, ..., AoNT) € R2NT such that

2NT

u = E )\iei
i=1



X. Zhang, L. Wang, J. Nonlinear Sci. Appl., 10 (2017), 4381-4397 4391

and define

ONT 2

2
e = (2 4)

i=1

Set
Es = {U. €eE: HLLH(Z) = 5}

Since both E and Et are finite-dimensional spaces, then || - [|() is equivalent to || - ||2) on E, and both
Il lEr,q) and || - [[(e;,p) are equivalent to || - || on Et. Hence, there exist positive constants R; (i =

1,2,---,6) such that

Rill - l2) < I+ llioo) < Rafl - [(2), (4.1)
Rall “floo < I+ Il (Er,q) < Rall - oo, (4.2)
Rsll - lloo < I+ ll (€1, < Roll - [loo- (4.3)

In Lemma 2.1, let

L(t,x1,%2,Y1,Y2) = v1(t)@1(y1) +v2(t) D2(y2) +v3(t)D3(x1) + va(t) Pa(x2) — F(t,x1,%2),

where F: Z[1,T] x RN x RN — R is continuously differentiable in (x1,x2) € RN x RN forall t € Z[1,T].
Then

T T
=Y OO (Aw (D) + Y 2 02(Aus(t)
t=1 t=1
(4.4)
T T T
+) a(t)Pa(ur(t) + ) va(t)Pa(uz(t)) — ) Flt,up(t), up(t)).
t=1 t=1 t=1
And for all u,v € E, we have
<(p ( ) > <(p (ulruZ) (Vl,V2)>
T
= Z £)(d1(Aus(t)), Avy (1)) + v2(t) (P2 (Auz(t)), Ava(t))

+Y3( ) (b3 (g (t)), vi(t)) +valt) (Paluz(t)), va(t))]

T T
— > (Vu Flt,up(t), ua (), v (1) = ) (Vg F(t,w (1), ua(t)), va(t)).
t=1 t=1

Similar to the argument of Lemma 2.2, it is easy to obtain the following lemma.

Lemma 4.1. If u € E is a solution of Euler equation ¢’(u) = 0, then w is a solution of system (1.5).

Denote with 0 the zero element of X and with L the family of sets A C X\{0} such that A is closed in
X and symmetric with respect to 6, i.e. u € A implies —u € A.

Theorem 4.2 ([16, Theorem 9.1]). Let X be a real Banach space and @ be an even function belonging to C*(X,R)
with ¢(0) = 0, bounded from below and satisfying (PS) condition. Suppose that there is a set K € L such that K is
homeomorphic to (G — 1 dimension unit sphere) by an odd map and supy ¢ < 0. Then, ¢ has at least j distinct
pairs of nonzero critical points.
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Proof of Theorem 1.4. 1t follows from (&), (4.4), (2.1), (4.2), (4.3), and (F0) that

T T
ew) =) vit)01(Aui(t)) + ) va(t)D2(Aup(t))
t=1 t=1

ME

T T
+ ) Y3 @3(ur(t) + D va(t)Pa(ua(t)) —

t=1 t=1 t

F(t, w (1), uz(t))
1

T T
> a1 ) vit)Aw ()9 +a ) ya(t)Auy(t)P

=1 t=1
T T T
+a3 ) va(hu (b9 +as ) yaOh)P — > Ftu(t), uz(t)
t—1 t—1 t—1
.
> min{ay, az}|lu| ?ET,q) + min{ay, a4}||u2HFET/P) =) (R ()] + ha () (1)]°2 + 1(t)]
=1
T T T
> min{a, a3}R§ [w]|&, + min{az, ag}RE [[ual|R, — w3 Y ha(t) = [[w2ll2 Y ha(t) =) (1)
t=1 t—1 t—1

for all u € E. Since &1 € [0, q) and «; € [0, p), it is easy to see that
@(u) = 400, as [l (o) = [[W oo + [[112]lc0 — 00,

which implies that ¢ is bounded from below and any (PS) sequence {u,} is bounded. Hence ¢ satisfies
(PS) condition. Obviously, (F1) and (52) imply that ¢(0) = 0 and ¢ is even. Next, we prove that there
exists a set K C E such that K is homeomorphic to S*™T~! by an odd map, and sup, ¢ < 0. Note that
d < 1. For all u = (ug,up) € Es and r > 0, by (4.1) we have

MurPt g |8+ MarP2|ua|| 52

B1 B2
= MyrBIRET [ B pprBaRf2 || 22
oo 2 |l so
max{{31,B2} max{B1,B2)}
S [ oy
2 |l oo 2l
max{fR1,B2}
1—max{B1,B2} mij Biph BroB w uy
> 20 mAPTEY min{MTPIR)!, MprP2R 72} <' R ‘ - ) s
o o
1\ maxtP, B2}
_ ol-max{p1,B2} min{erﬁ’lel, MerZRSZ} (R2> ”uHr(noi);{ﬁlfﬁz}
1\ maxtB1, B2}
> pl—max{B1,B2} min{erﬁlRfll MQTBZRE'Z} (R2> R;nax{[sl,f,z}HuHr(I;X{BLBZ}
R16 max{ﬁlrﬁz}
2

Then for all u = (u,w) € Egand 0 < v < R%, by ($), (33), (2.1), (4.1)-(4.3), and (4.5) we have

T T
e(rw) =) (01 (rAw (1) + ) y2(t) Da(rAuy(t))
=1 =1
‘ T ‘ T T
+) va(t)0a(rug (1)) + ) va(t)Dylruz(t) — Y F(t, mus(t), Tua(t))

t=1 t=1 t=1
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T T

<b1 ) iOrAw ()9 412 ) ya(t)rAus ()P
t=1 t=1

T T T
+b3 ) va(t)ru (1) +bs Y va(t)rua ()P — D F(t,Tus (1), run(t))

t=1 t=1 =1
< max{by, bahr? [ || (g, ) + max{bz, balrP|[wa|[{e (4.6)
T T
—MrP Y g (1P = MarP2 Y (1))
t=1 t=1

max{by, barIRY [y + max(ba, by)rPRE [z, — Myr® [u | — MarP2 fus |
max{by, ba}r IR RS [[u[ ) +max{ba, ba}rPRERT ]|,
Ry 5 (B Ba)
%)
= max{by, b3}r9(R4R28)9 4+ max{by, by}rP (RgR25)P
R 5 max{B1,B2}
2R ) '

<
<

— 2m1r1{l\/l1rf51R(31 MzrﬁzRﬁz} (

— 2rr11r1{l\/l1rf‘2’1R(31 MQTBZRBZ} (

Since i € (1, min{q, p}), i = 1,2, then (4.6) implies that there exist sufficiently small ry € (0,1) and e > 0
such that @(rou) < —e for all u € E;. Set

2NT
B ={rou:uecEs} and SNT1= {(?\1,?\2,-~ Dont) ERINT Y N7 = 1}.
i=1

Then E’ € X and
P(u) <—e, VueE. (4.7)

Define the map ¥ : E)* — S*NT~1 by

ANT
(Z A €1> = —s(AL Ay Aan)

Then it is easy to see that { is an odd and homeomorphic map. Moreover, (4.7) implies that supr @ <
S

—e < 0. Therefore, by Theorem 4.2, we obtain that system (1.5) has at least 2NT distinct pairs of solutions
in E. 0

5. Examples

Example 5.1. We present an example to which Theorem 1.2 is applied and make an estimate for the
parameters in our result. Let T = 2 and N be fixed integer. Assume that ¢q(y) =y + \yl%y, $2(y) =
Y+ lyl7y, d3(y) = daly) = 2y, p; are 2—periodic and satisfy p; > 0 for all t € Z[1,2] (i = 1,2,3,4). Then

2 7
O (y) = UE 4 P @,(y) = ME 4 “J“ , O3(y) = Oyy) = [y Let

3
F(t,x1,%2) = bal® + Ixal?,
G(t,x1,%2) = bal* + Ixal*,
Tt .
H(t,x1,%2) = (cos? - +2) sin(jx1 % + xaf* +2),

WI(t,x1,%x2) = F(t,x1,%2) —AG(t, %1, %2) + VH(t, %1, X2).



X. Zhang, L. Wang, J. Nonlinear Sci. Appl., 10 (2017), 4381-4397 4394
Then
A (D [Aw ()3 A ()P |Au(t))?
oy lpl (| 1P | [Aus 1) > +oalt <| 2(0F , [Auatt)
t=1 3 2
2
+) e (OP + pa(V)uz ()],
t=1
2
W) =—) (P +he(t)P),
t=1
2
=Y (O +ha(0)F),
t=1
-
Z cos? 2) sin(Jug (£)12 + [ua (1) +2), ue k.
t=1
Take 8 =2 and 1 = % Hence,
(b1(x) = d1(y), x —y) = (x+ xx—y — [yPy, x —y) = (x—y,x—y) + (X —[ylFy, x—y)
>x—yf, VxyeRN
Similarly, we have
(b2(x) —d2(y),x—y) > x—yP, Vx,yeR".
So ¢1 and ¢, satisfy (A2). Moreover, it is obvious that ¢z and ¢4 also satisfy (A2).
It is easy to see that F, G € C, (A5) holds and ®; satisfy (A1) and (A3), i =1,2,3,4. Moreover,
F(t,x1,x2) : xal?+ ko
M T holt a3 4+ bol3
Ixal+Ixal oo X1V xalt  Ixal+Ixal =00 [xq]2 + [xo)2
and for all A > 0,
AG(t,x1,%2) : Albxal* + o)
im _— = = lim —— 3 .3 =t
xil+ixal—oo F(t,x1,%2)  Ixal+ixal—oo  [X1]° 4 [x2]
Hence, (A4) holds. By a simply computation, we have
2 27
. . 4 4 3 3
y = inf(¥(w) + O@w) =inf Y (u(OF +hua(OF — ha (0P — a(VF) ==, G

t=1
which is obtained when |u;(1)] = [uy(2)] = Jua(1)] = [up(2)| = %. Moreover, for r > 0, we have
q)_l(r) ={ueE: (D + (2 + (D + ) =1},

O] —o0,1) = {u € E:hw (D + hu (2)1* + o (D* + w2 (2)* < 1),
o' (r, +00D = {we E:hw (D + ) + (D + hwa(2)1 > 7.

Then
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2
+3 [os(Ohu (0P + palt )|uz(t)|2}} (5.2)
t=1 )
> inf, );[ 3O (0P + pa(uz (V)]

= min{ps(1), p3(2), p4(1), p4(2)}V/,

which can be obtained by using the Lagrange multiplier method. By (5.1), (5.2) and the fact that ®(0) =
I(0) = 0, we have

\_{I _
(LY, @,r) = inf{(u)y—i_T ue ko) < I(u) < m}
N —I(u)
\P(O)—y+r_£+r< %—i—r
S o —1(0) e min{ps(1), p3(2), p(1), p4(2)}/7
1
When w > sy o taysrmeray Ve have
inf  (ul+W)

®—1(]—o0,r])

=it wdy [ (AP 1A OR | (1A | Au

To(e & | 2 7 P2 2 : (5.3)

t=1

2 2
+ (s ()P + pa(t)uz(t)P] } =Y (P +ha(t)P) =0,
t=1

1
which is obtained when uy (1 w (1) =uy(2) = 0. When p > s () p3(r24) o2y We choose

) =w(2) =
ot up (1) = w1 (2) =uz(1) = up(2) = ulps(1) + p3(2) + pa(1) + p4(2)], then
hur (D + g (2)* + g (D + ua(2)1* = 4u*lp3(1) + p3(2) + pa(1) + pa(2)1*

4r(p3(1) + p3(2) + pa(1) + pa(2)]*
(min{p3(1), p3(2), p4(1), 4( Rk

27
+r 1
max{ & — 1}

min{p3(1),p3(2),p4(1),p4(2)}

(2
) =

>,

which implies that 1y € ®~!(]r, +oo[). Therefore, when p >
that up € ®1(Jr, +o00[) we have

, by (56.3) and the fact

ul(u) +¥(u) — o ](i]nf U(pLI +Y)
—1(]—o0o,r
Bul+V¥,0,1) = sup .
wed 1 (]r,+o0l) r—0(u)

ul(uw) +¥(u)

- Sup T—®(u)

ued®-1(]Ir,+ool)
ul(uo) +W(uo) 3u3[p3(1) + p3(2) + pall) + pa(2)1?

T—®(up)  4ptlps(1) + p3(2) + pall) + pa(2)* —

max{ Q;T,r%}
min{p3(1),p3(2),p4(1),p4

: 3 [p3(D+p3(2)+pa(D+ps(2))® . . :
compact interval [a, b] CJ0, T 1ps (1) 103 (2) + s (1) s (2T [, there exists a number p > 0 with the following

property: for every A € [a, b], there exists & > 0 such that, for each v € [0, 8], system (1.1) has at least three
2-periodic solutions in E whose norms are less than p.

Hence, by Theorem 1.2, we obtain that for each r > 0, for each p >

a7 and for each
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Example 5.2. We present this example when Theorem 1.4 is applied. Let N = 6 and T = 4. Assume
that ¢1(x) = dp3(x) = [xPx, d2(x) = da(x) = [x|x. Consider the following nonlinear difference (¢1, ¢2)-
Laplacian system:

{ A ([sin® F(t—1) +1] ¢1(Aur(t—1))) — [Isin Ftl+ 1] da(fur (1)) + Vi, F(t, w1 (t), ua(t)) =0, 54)
%

(t—1) +1] p2(Auz(t—1))) — [| cos Ft| + 1] balfuz(t)]) + Vi, F(t, uq (1), uz(t)) =0.

Then v;(t) = sin? Tt+1L yv(t) = cos? Tt+1,v3(t) = [sin t|+1, y4(t) = [cos Ft|+ 1. Obviously, the
conditions (y) and (¢) hold and vi,1=1,2,3,4 are T-periodic (T = 4). If we assume that

—(lein 2 v 2
F(t,x1,%2) = <‘sm 4t‘ +1> Ix1]2 + (COS 4t+1) 2|7,
then, obviously, (30), (J1), and (F2) hold and there exists enough small 6 € (0,1) such that

T T
F(t,x1,%2) = (’sin Zt‘ + 1) |x1|% + (cos2 Zt+ 1) Ixo|? 55)

3 5
> xql2 + o = P+ xlz, Yl <8, xl < 8.

Let 1 =2, B2 = %, and M; = M; = 1. Then (5.5) implies that (33) holds. Hence, by Theorem 1.4, we
obtained that system (5.4) has at least 48 distinct pairs of 4-periodic solutions.

Conclusion

In this paper, we obtain system (1.1) has at least three T-periodic solutions by using an abstract critical
point theorem due to Ricceri [17], and we present an example which particularly shows that the param-
eters i and A can be estimated. Moreover, we also obtain system (1.5) has 2NT distinct pairs of nonzero
T-periodic solutions by using Clark’s Theorem, and we also present an example to show that Theorem 1.4
is feasible.
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