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Abstract

The purpose of this paper is to find a solution of a general system of variational inequalities (for short, GSVI), which is
also a unique solution of a hierarchical variational inequality (for short, HVI) for an infinite family of nonexpansive mappings in
Banach spaces. We introduce general implicit and explicit iterative algorithms, which are based on the hybrid steepest-descent
method and the Mann iteration method. Under some appropriate conditions, we prove the strong convergence of the sequences
generated by the proposed iterative algorithms to a solution of the GSVI, which is also a unique solution of the HVI. c©2017 All
rights reserved.
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1. Introduction and formulations

Let X be a real Banach space with its topological dual X∗, and C be a nonempty closed convex subset
of X. Let T : C → X be a nonlinear mapping on C. We denote by Fix(T) the set of fixed points of T and
by R the set of all real numbers. A mapping T : C → X is called L-Lipschitz continuous if there exists a
constant L > 0 such that

‖Tx− Ty‖ 6 L‖x− y‖, ∀x,y ∈ C.
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In particular, if L = 1, then T is called a nonexpansive mapping, if L ∈ [0, 1), then T is called a contraction.
The normalized dual mapping J : X→ 2X

∗
is defined as

J(x) := {ϕ ∈ X∗ : 〈x,ϕ〉 = ‖x‖2 = ‖ϕ‖2}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing.
Let X be a smooth Banach space. Let A,B : C→ X be two nonlinear mappings and λ,µ be two positive

real numbers. The general system of variational inequalities (GSVI) is to find (x∗,y∗) ∈ C×C such that{
〈λAy∗ + x∗ − y∗, j(x− x∗)〉 > 0, ∀x ∈ C,
〈µBx∗ + y∗ − x∗, j(x− y∗)〉 > 0, ∀x ∈ C,

}
. (1.1)

The equivalence between the GSVI (1.1) and the fixed point problem of some nonexpansive mapping
defined on a Banach space is established in Yao et al. [31]. The authors [31] introduced and analyzed
implicit and explicit iterative algorithms for solving the GSVI (1.1) by using this equivalence, and proved
the strong convergence of the sequences generated by the proposed algorithms. Subsequently, Ceng et al.
[4] proposed and analyzed an implicit algorithm of Mann’s type and another explicit algorithm of Mann’s
type for solving GSVI (1.1).

Special case 1. Find a point x∗ ∈ C such that

〈Ax∗, x− x∗〉 > 0, ∀x ∈ C.

This problem is a fundamental problem in the variational analysis; in particular, in the optimization theory
and mechanics; see e.g., [6–8, 13–16, 18, 20, 22, 30, 32–34] and the references therein. A large number of
algorithms for solving this problem are essentially projection algorithms that employ projections onto
the feasible set C of the VI, or onto some related set, so as to iteratively reach a solution. In particular,
Korpelevich [17] proposed an algorithm for solving the VI in Euclidean space. known as the extragradient
method. This method further has been improved by several researchers; see e.g., [10, 24] and the references
therein.

Special case 2. Find a point x∗ ∈ C such that

〈Ax∗, j(x− x∗)〉 > 0, ∀x ∈ C, (1.2)

where C is a nonempty closed convex subset of a Banach space.

Aoyama et al. [1] proposed an iterative scheme to find the approximate solution of (1.2) and proved
the weak convergence of the sequences generated by the proposed scheme. For several related results,
please refer to [2, 5, 35].

The purpose of this paper is to find a solution of a general system of variational inequalities (GSVI),
which is also a unique solution of a hierarchical variational inequality (HVI) for an infinite family of
nonexpansive mappings in a real strictly convex and 2-uniformly smooth Banach space. We introduce
general implicit and explicit iterative algorithms, which are based on the hybrid steepest-descent method
and the Mann iteration method. Under some mild conditions, we prove the strong convergence of the
sequences generated by the proposed iterative algorithms to a solution of the GSVI, which is also a unique
solution of the HVI. Furthermore, we also present a weak convergence theorem for the proposed explicit
iterative algorithm involving an infinite family of nonexpansive mappings in a real Hilbert space. Our
results improve and extend the corresponding results announced by some others, e.g., Ceng et al. [4] and
Buong and Phuong [2].

2. Preliminaries and algorithms

Let X be a real Banach space with the dual space X∗. For simplicity, the norms of X and X∗ are denoted
by the symbol ‖ · ‖. Let X be a nonempty closed convex subset of a real Banach space X. We write xn ⇀ x

(respectively, xn → x) to indicate that the sequence {xn} converges weakly (respectively, strongly) to x.
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Let U := {x ∈ X : ‖x‖ = 1}. A Banach space X is said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that for any x,y ∈ U, ‖x+y2 ‖ > 1 − δ⇒ ‖x− y‖ < ε. It is known that a uniformly convex
Banach space is reflexive and strictly convex. Also, it is known that if a Banach space X is reflexive, then
X is strictly convex if and only if X∗ is smooth as well as X is smooth if and only if X∗ is strictly convex.

Here we define a function ρ : [0,∞)→ [0,∞) called the modulus of smoothness of X as follows:

ρ(τ) = sup{
1
2
(‖x+ y‖+ ‖x− y‖) − 1 : x,y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.

Lemma 2.1 ([27]). Let q be a given real number with 1 < q 6 2 and let X be a q-uniformly smooth Banach space.
Then

‖x+ y‖q 6 ‖x‖q + q〈y, Jq(x)〉+ 2‖κy‖q, ∀x,y ∈ X,

where κ is the q-uniformly smooth constant of X and Jq is the generalized duality mapping from X into 2X
∗

defined
by

Jq(x) = {ϕ ∈ X∗ : 〈x,ϕ〉 = ‖x‖q, ‖ϕ‖ = ‖x‖q−1}, ∀x ∈ X.

Let D be a subset of C and let Π be a mapping of C into D. Then Π is said to be sunny if

Π[Π(x) + t(x− Π(x))] = Π(x),

whenever Π(x) + t(x− Π(x)) ∈ C for x ∈ C and t > 0. A mapping Π of C into itself is called a retraction
if Π2 = Π. If a mapping Π of C into itself is a retraction, then Π(z) = z for each z ∈ R(Π), where R(Π)
is the range of Π. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny
nonexpansive retraction from C onto D.

Lemma 2.2 ([21]). Let C be a nonempty closed convex subset of a smooth Banach space X and D be a nonempty
subset of C and Π be a retraction of C onto D. Then the following are equivalent

(i) Π is sunny and nonexpansive;
(ii) ‖Π(x) − Π(y)‖2 6 〈x− y, j(Π(x) − Π(y))〉, ∀x,y ∈ C;

(iii) 〈x− Π(x), j(y− Π(x))〉 6 0, ∀x ∈ C,y ∈ D.

Lemma 2.3 ([31]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X.
Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : C → X be α-inverse-
strongly accretive and β-inverse-strongly accretive, respectively. For given x∗,y∗ ∈ C, (x∗,y∗) is a solution of
the GSVI (1.1) if and only if x∗ ∈ GSVI(C,A,B) where GSVI(C,A,B) is the set of fixed points of the mapping
G := ΠC(I− λA)ΠC(I− µB) and y∗ = ΠC(x

∗ − µBx∗).

Proposition 2.4 ([31]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let
the mappings A,B : C→ X be α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Then,

‖(I− λA)x− (I− λA)y‖2 6 ‖x− y‖2 + 2λ(κ2λ−α)‖Ax−Ay‖2,

and
‖(I− µB)x− (I− µB)y‖2 6 ‖x− y‖2 + 2µ(κ2µ−β)‖Bx−By‖2.

In particular, if 0 6 λ 6 α
κ2 and 0 6 µ 6 β

κ2 , then I− λA and I− µB are nonexpansive.

Lemma 2.5 ([31]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let ΠC
be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : C→ X be α-inverse-strongly accretive
and β-inverse-strongly accretive, respectively. Let the mapping G : C→ C be defined as

G := ΠC(I− λA)ΠC(I− µB).

If 0 6 λ 6 α
κ2 and 0 6 µ 6 β

κ2 , then G : C→ C is nonexpansive.
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Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : C → X be
α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let F : C → X be δ-strongly
accretive and ζ-strictly pseudocontractive with δ+ ζ > 1. Assume that λ ∈ (0, α

κ2 ) and µ ∈ (0, β
κ2 ) where

κ is the 2-uniformly smooth constant of X (see Lemma 2.2). Very recently, in order to solve GSVI (1.1),
Ceng et al. [4] introduced an implicit algorithm of Mann’s type.

Algorithm 2.6 ([4, Algorithm 3.6]). For each t ∈ (0, 1), choose a number θt ∈ (0, 1) arbitrarily. The net
{xt} is generated by the implicit method

xt = tΠC(I− λA)ΠC(I− µB)xt + (1 − t)ΠC(I− θtF)ΠC(I− λA)ΠC(I− µB)xt, ∀t ∈ (0, 1),

where xt is a unique fixed point of the contraction

Wt = tΠC(I− λA)ΠC(I− µB) + (1 − t)ΠC(I− θtF)ΠC(I− λA)ΠC(I− µB).

It was proven in [4] that the net {xt} converges in norm, as t → 0+, to the unique solution x∗ ∈
GSVI(C,A,B) to the following VI:

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ GSVI(C,A,B), (2.1)

provided limt→0+ θt = 0. In the meantime, the authors also proposed another explicit algorithm of
Mann’s type.

Algorithm 2.7 ([4, Algorithm 3.8]). For arbitrarily given x0 ∈ C, let the sequence {xk} be generated itera-
tively by

xk+1 = βkxk + γkΠC(I− λA)ΠC(I− µB)xk

+ (1 −βk − γk)ΠC(I− λkF)ΠC(I− λA)ΠC(I− µB)xk,

where {λk}, {βk} and {γk} are three sequences in [0, 1] such that βk + γk 6 1, for all k > 0.

A mapping F with domain D(F) and range R(F) in X is called

(a) accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > 0,

where J is the normalized duality mapping.
(b) δ-strongly accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > δ‖x− y‖2, for some δ ∈ (0, 1).

(c) α-inverse-strongly accretive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 > α‖Fx− Fy‖2, for some α ∈ (0, 1).

(d) ζ-strictly pseudocontractive if for each x,y ∈ D(F), there exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y)〉 6 ‖x− y‖2 − ζ‖x− y− (Fx− Fy)‖2, for some ζ ∈ (0, 1).

It is easy to see that (2.1) can be rewritten as

〈(I− F)x− (I− F)y, j(x− y)〉 > ζ‖(I− F)x− (I− F)y‖2,

where I denotes the identity mapping of X. Clearly, if F is ζ-strictly pseudocontractive with ζ = 0, then it is
said to be pseudocontractive. It is not hard to find that every nonexpansive mapping is pseudocontractive.
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Let C be a nonempty closed convex subset of a smooth Banach space X and {Ti}
∞
i=1 be an infinite

family of nonexpansive self-mappings on C. Then we set F :=
⋂∞
i=1 Fix(Ti). In 2013, Buong and Phuong

[2] considered the following HVI with C = X: find x∗ ∈ F such that

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (2.2)

In the case where X = H, a Hilbert space, we have J = I, and hence problem (2.2) reduces to the HVI: find
x∗ ∈ F such that

〈F(x∗), x− x∗〉 > 0, ∀x ∈ F. (2.3)

Assume that F =
⋂N
i=1 Fix(Ti) is the set of common fixed points of a family of N nonexpansive mappings

Ti on H, and F is an L-Lipschitz continuous and η-strongly monotone mapping, i.e.,

‖Fx− Fy‖ 6 L‖x− y‖,

and
〈Fx− Fy, x− y〉 > η‖x− y‖2

for all x,y ∈ H. Zeng and Yao [35] introduced the following implicit iteration: for an arbitrarily initial
point x0 ∈ H, the sequence {xk}

∞
k=1 is generated as follows:

xk = βkxk−1 + (1 −βk)[T[k]xk − λkµF(T[k]xk)], ∀k > 1, (2.4)

where T[n] = TnmodN, for integer n > 1, with the mod function taking values in the set {1, 2, ...,N}. They
proved the following result.

Theorem 2.8 ([35, Theorem 2.1]). Let H be a real Hilbert space and let F : H → H be a mapping such that,
for some positive constants L and η, F is L-Lipschitz continuous and η-strongly monotone. Let {Ti}

N
i=1 be N

nonexpansive mappings on H such that F :
⋂N
i=1 Fix(Ti) 6= ∅. Let µ ∈ (0, 2η/L2), x0 ∈ H, {λk}

∞
k=1 ⊂ [0, 1) and

{βk}
∞
k=1 ⊂ (0, 1) satisfying the conditions

∑∞
k=1 λk <∞, and let a 6 βk 6 b,k > 1, for some a,b ∈ (0, 1). Then

the sequence {xk}∞k=0, defined by (2.4), converges weakly to x∗ ∈ F, solving (2.3).

It is well-known that if
∑∞
k=1 λk <∞, then λk → 0, as k→∞, and the inversion is not right. Recently,

in order to obtain the strong convergence and decrease the strictness of the condition on λk, the following
implicit iteration method was proposed:

xt = T
txt, Tt := Tt0 T

t
N · · · Tt1 , t ∈ (0, 1), (2.5)

where {Tti }
N
i=0 are defined by

Tti x := (1 −βit)x+β
i
tTix, i = 1, ...,N, Tt0 y := (I− λtµF)y, x,y ∈ H,

and proved that the net {xt}, defined by (2.5), converges strongly to an element x∗ in (2.3) under the
conditions on µ,βit that are similar to Theorem 2.8, and λt → 0 as t → 0+. When N = 1, X is a
real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm and T is a
continuous pseudocontractive mapping, Ceng et al. [3] proved the following result.

Theorem 2.9 ([3, Theorem 4.3]). Let F be a δ-strongly accretive and ζ-strictly pseudocontractive mapping with
δ+ ζ > 1 and let T be a continuous and pseudocontractive mapping on X, which is a real reflexive and strictly
convex Banach space with a uniformly Gâteaux differentiable norm, such that F := Fix(T) 6= ∅. For each t ∈ (0, 1),
choose a number µt ∈ (0, 1) arbitrarily and let {zt} be defined by

zt = t(I− µtF)zt + (1 − t)Tzt. (2.6)

Then, as t→ 0+, {zt} converges strongly to x∗ ∈ F, solving (2.2).
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To find a common fixed point of an infinite family {Ti}
∞
i=1 of nonexpansive mappings on a nonempty,

closed and convex subset C in H, Takahashi introduced a W-mapping, generated by Tk, Tk−1, · · · , T1 and
real numbers αk,αk−1, · · · ,α1 as follows:

Uk,k+1 = I,
Uk,k = αkTkUk,k+1 + (1 −αk)I,
Uk,k−1 = αk−1Tk−1Uk,k + (1 −αk−1)I,

...
Uk,2 = α2T2Uk,3 + (1 −α2)I,
Wk = Uk,1 = α1T1Uk,2 + (1 −α1)I,

and, based on a contractive mapping f on C, Kikkawa and Takahashi [11] proved strong convergence
of a sequence {xk}

∞
k=1, defined by the following implicit iterative scheme: xk = γkf(xk) + (1 − γk)Wkxk

with 0 < α1 6 1 and 0 < αi 6 b < 1, for i = 2, 3, · · · . Next, in [12], when C is a nonempty, closed and
convex subset of a uniformly convex Banach space X with a uniformly Gâteaux differentiable norm, they
considered the following strongly convergent implicit method:

Skx = (1 −
1
k
)Ux+

1
k
f(x), and Ux = lim

k→∞Wkx = lim
k→∞Uk,1x. (2.7)

Note that the method (2.7) contains the limit mapping U, and hence, it is quite difficult to realize.
In [2], motivated by methods (2.5) and (2.6), by introducing a mapping Vk, defined by

Vk = V1
k, Vik = T iT i+1 · · · Tk, T i = (1 −αi)I+αiTi, i = 1, 2, · · · ,k, (2.8)

where

αi ∈ (0, 1) and
∞∑
i=1

αi <∞, (2.9)

Buong and Phuong considered two implicit methods. In both methods, the iteration sequence {xk}
∞
k=1 is

defined, respectively, by
xk = Vk(I− λkF)xk, ∀k > 1, (2.10)

and
xk = γk(I− λkF)xk + (I− γk)Vkxk, ∀k > 1, (2.11)

where λk and γk are the positive parameters, satisfying some additional conditions. The authors [2]
proved the strong convergence theorems for the methods (2.10) and (2.11).

We will make use of the following well-known results.

Lemma 2.10. Let X be a real Banach space. Then for all x,y ∈ X

(i) ‖x+ y‖2 6 ‖x‖2 + 2〈y, j(x+ y)〉 for all j(x+ y) ∈ J(x+ y);
(ii) ‖x+ y‖2 > ‖x‖2 + 2〈y, j(x)〉 for all j(x) ∈ J(x).

Lemma 2.11 ([29, Theorem 4.1]). Let X be a uniformly smooth Banach space, C be a nonempty closed convex
subset of X, T : C→ C be a nonexpansive mapping with Fix(T) 6= ∅ and f : C→ C be a fixed contractive mapping.
Let {xt} be defined by xt = tf(xt) + (1 − t)Txt. Then as t → 0, {xt} converges strongly to a unique solution
x∗ ∈ Fix(T) to the following VI:

〈(I− f)(x∗), j(x− x∗)〉 > 0, ∀x ∈ Fix(T).

Let LIM be a continuous linear functional on l∞ and s = (a1,a2, ...) ∈ l∞. We write LIMkak instead
of LIM(s). LIM is called a Banach limit if LIM satisfies ‖LIM‖ = LIMk1 = 1 and LIMkak+1 = LIMkak for
all (a1,a2, · · · ) ∈ l∞. If LIM is a Banach limit, then there hold the following:
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(i) for all k > 1, ak 6 ck implies LIMkak 6 LIMkck;
(ii) LIMkak+m = LIMkak for any fixed positive integer m;

(iii) lim infk→∞ ak 6 LIMkak 6 lim supk→∞ ak, for all (a1,a2, · · · ) ∈ l∞.

Lemma 2.12 ([36]). Let a ∈ R be a real number and a sequence {ak} ∈ l∞ satisfy the condition LIMkak 6 a for
all Banach limit LIM. If lim supk→∞(ak+m − ak) 6 0, then lim supk→∞ ak 6 a.

In particular, if m = 1 in Lemma 2.12, then we immediately obtain the following corollary.

Corollary 2.13 ([23]). Let a ∈ R be a real number and a sequence {ak} ∈ l∞ satisfy the condition LIMkak 6 a

for all Banach limit LIM. If lim supk→∞(ak+1 − ak) 6 0, then lim supk→∞ ak 6 a.

Lemma 2.14 ([3]). Let X be a real smooth Banach space and F : X→ X be a mapping.

(a) If F is ζ-strictly pseudocontractive, then F is Lipschitz continuous with constant 1 + 1
ζ .

(b) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ+ ζ > 1, then I− F is contractive with

constant
√

1−δ
ζ ∈ (0, 1).

(c) If F is δ-strongly accretive and ζ-strictly pseudocontractive with δ + ζ > 1, then for any fixed number

λ ∈ (0, 1), I− λF is contractive with constant 1 − λ(1 −
√

1−δ
ζ ) ∈ (0, 1).

Recall that X satisfies Opial’s property provided, for each sequence {xk} in X, the condition xk ⇀ x

implies
lim sup
k→∞ ‖xk − x‖ < lim sup

k→∞ ‖xk − y‖, ∀y ∈ X, y 6= x.

It is known in [19] that each lp (1 6 p < ∞) enjoys this property, while Lp does not unless p = 2. It is
known that any separable Banach space can be equivalently renormed so that it satisfies Opial’s property.
We denote by ωw(xk) the weak ω-limit set of {xk}, i.e.,

ωw(xk) = {x̄ ∈ X : xki ⇀ x̄ for some subsequence {xki} of {xk}}.

Finally, recall that in a Hilbert space H, there holds the following equality

‖λx+ (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x− y‖2

for all x,y ∈ H and λ ∈ [0, 1].
We also use the following elementary lemmas.

Lemma 2.15 ([26]). Let {ak} and {bk} be sequences of nonnegative real numbers such that
∑∞
k=1 bk < ∞ and

ak+1 6 ak + bk for all k > 1. Then limk→∞ ak exists.

Lemma 2.16 ([9, Demiclosedness Principle]). Assume that T is a nonexpansive self-mapping of a nonempty
closed convex subset C of a Hilbert space H. If T has a fixed point, then I− T is demiclosed. That is, whenever {xk}
is a sequence in C weakly converging to some x ∈ C and the sequence {(I− T)xk} strongly converges to some y, it
follows that (I− T)x = y. Here I is the identity operator of H.

3. Iterative algorithms and convergence criteria

In this section, we introduce general implicit and explicit iterative algorithms, which are based on
the hybrid steepest-descent method and the Mann iteration method. Under some suitable conditions, we
prove the strong convergence of the sequences generated by the proposed iterative algorithms to a solution
of a general system of variational inequalities (GSVI), which is also a unique solution of a hierarchical
variational inequality (HVI), in a strictly convex and 2-uniformly smooth Banach space X. Furthermore,
we also establish a weak convergence theorem for the proposed explicit iterative algorithm involving an
infinite family of nonexpansive mappings in a Hilbert space.

The following lemmas and proposition will be used to prove our main results in the sequel.
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Lemma 3.1 ([2, Lemma 3.1]). Let C be a nonempty closed convex subset of a strictly convex Banach space X
and let {Ti}

k
i=1, k > 1, be k nonexpansive self-mappings on C such that the set of common fixed points F :=⋂k

i=1 Fix(Ti) 6= ∅. Let a,b and αi, i = 1, 2, · · · ,k, be real numbers such that 0 < a 6 αi 6 b < 1, and let Vk be
a mapping, defined by (2.8) for all k > 1. Then, Fix(Vk) = F.

Lemma 3.2 ([2, Lemma 3.2]). Let C be a nonempty closed convex subset of a Banach space X and let {Ti}∞i=1 be an
infinite family of nonexpansive self-mappings on C such that the set of common fixed points F :=

⋂∞
i=1 Fix(Ti) 6= ∅.

Let Vk be a mapping, defined by (2.8), and let αi satisfy (2.9). Then, for each x ∈ C and i > 1, limk→∞ Vikx exists.

Remark 3.3.

(i) We can define the mappings

Vi∞x := lim
k→∞Vikx and Vx := V1∞x = lim

k→∞Vkx, ∀x ∈ C.

(ii) It can be readily seen from the proof of Lemma 3.2 that if D is a nonempty and bounded subset of
C, then the following holds:

lim
k→∞ sup

x∈D
‖Vikx− Vi∞x‖ = 0, ∀i > 1.

In particular, whenever i = 1, we have

lim
k→∞ sup

x∈D
‖Vkx− Vx‖ = 0.

Lemma 3.4 ([2, Lemma 3.3]). Let C be a nonempty closed convex subset of a strictly convex Banach space X
and let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that the set of common fixed points
F :=

⋂∞
i=1 Fix(Ti) 6= ∅. Let αi satisfy the first condition in (2.9). Then, Fix(V) = F.

Inspired by Lemma 3.4, we present the following.

Proposition 3.5. Let C be a nonempty closed convex subset of a strictly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : X→ X be α-inverse-
strongly accretive and β-inverse-strongly accretive, respectively. Let the mapping G : X → C ⊂ X be defined as
G := ΠC(I−λA)ΠC(I−µB) where 0 < λ 6 α

κ2 and 0 < µ 6 β
κ2 . Let {Ti}∞i=1 be an infinite family of nonexpansive

self-mappings on C such that F :=
⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let αi satisfy the first condition in (2.9).

Then, Fix(V ◦G) = F.

Proof. Let p ∈ F. Then it is obvious that Gp = p and Vikp = p for all integers i,k > 1 with k > i. So, we
have Vi∞Gp = p for all integers i > 1. In particular, we have (V ◦G)p = V1∞Gp and hence F ⊂ Fix(V ◦G).
Next, we prove that Fix(V ◦G) ⊂ F. Now, let x ∈ Fix(V ◦G) and y ∈ F. Then,

‖VkGx− VkGy‖ = ‖V1
kGx− V

1
kGy‖ = ‖(1 −α1)(V

2
kGx− V

2
kGy) +α1(T1V

2
kGx− T1V

2
kGy)‖

6 (1 −α1)‖V2
kGx− V

2
kGy‖+α1‖V2

kGx− V
2
kGy‖ = ‖V2

kGx− V
2
kGy‖

6 ‖Vi+1
k Gx− Vi+1

k Gy‖ 6 ‖VkkGx− VkkGy‖ 6 ‖Gx−Gy‖ 6 ‖x− y‖,

which together with ‖(V ◦G)x− (V ◦G)y‖ = ‖x− y‖ implies that

‖Vi∞Gx− Vi∞Gy‖ = ‖Vi+1∞ Gx− Vi+1∞ Gy‖ = ‖Gx− y‖.

Therefore, we have

‖(1 −αi)(V
i+1∞ Gx− Vi+1∞ Gy) +αi(TiV

i+1∞ Gx− TiV
i+1∞ Gy)‖ = ‖Vi+1∞ Gx− Vi+1∞ Gy‖ = ‖Gx− y‖.
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Since X is strictly convex, 0 < αi < 1, and y ∈ F, we have Gx−y = TiV
i+1∞ Gx− TiV

i+1∞ Gy = TiV
i+1∞ Gx−y

and Gx− y = Vi+1∞ Gx− Vi+1∞ Gy = Vi+1∞ Gx− y, and hence, Gx = TiV
i+1∞ Gx and Gx = Vi+1∞ Gx for every

i > 1. Consequently, for every i > 1, we have Gx = TiGx. In particular, when i = 1, we have that
Gx = T1V

2∞Gx and Gx = V2∞Gx. So, it follows that

x = (V ◦G)x = (1 −α1)V
2∞Gx+α1T1V

2∞Gx = Gx,

which together with Gx = TiGx, for all i > 1, implies that for every i > 1, we have x = Tix. It means that
x ∈ F.

Lemma 3.6 ([25]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {αk} be a sequence in [0, 1]
such that 0 < lim infk→∞ αk 6 lim supk→∞ αk < 1. Suppose that xk+1 = αkxk + (1 − αk)zk, for all k > 1,
and lim supk→∞(‖zk+1 − zk‖− ‖xk+1 − xk‖) 6 0. Then limk→∞ ‖zk − xk‖ = 0.

Lemma 3.7 ([28]). Assume that {ak} is a sequence of nonnegative real numbers such that

ak+1 6 (1 − γk)ak + γkδk, ∀k > 1,

where {γk} is a sequence in [0, 1] and {δk} is a sequence in R such that

(i)
∑∞
k=1 γk =∞;

(ii) lim supk→∞ δk 6 0 or
∑∞
k=1 |γkδk| <∞.

Then, limk→∞ ak = 0.

Now, we are in a position to prove the following main results.

Theorem 3.8. Let C be a nonempty closed convex subset of a strictly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : X → X be α-
inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let F : X → X be δ-strongly accretive
and ζ-strictly pseudocontractive with δ + ζ > 1. Assume that λ ∈ (0, α

κ2 ) and µ ∈ (0, β
κ2 ) where κ is the 2-

uniformly smooth constant of X. Let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that
F :=

⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let {Vk}∞k=1 be defined by (2.8) and (2.9). Let {xk}∞k=1 be generated in

the implicit manner {
yk = βkxk + (1 −βk)VkGxk,
xk = γk(I− λkF)xk + (1 − γk)yk, ∀k > 1,

(3.1)

where G := ΠC(I− λA)ΠC(I− µB), and {λk}
∞
k=1 ⊂ (0, 1], {γk}

∞
k=1 ⊂ (0, 1) and {βk}

∞
k=1 ⊂ [0, 1) such that

(C1) 0 < γk 6
√

1−δ
ζ ;

(C2) lim supk→∞ βk < 1.

Then,
xk → x∗ ⇔ γkλkF(xk)→ 0,

where x∗ ∈ F is a unique solution of the VI:

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (3.2)

Proof. Since lim supk→∞ βk < 1, we may assume, without loss of generality, that {βk}∞k=1 ⊂ [0,b] ⊂ [0, 1).
Let the mapping G : X → C ⊂ X be defined as G := ΠC(I − λA)ΠC(I − µB) where 0 < λ < α

κ2 and
0 < µ < β

κ2 . In terms of Lemma 2.5 we know that G is a nonexpansive mapping on X. Then, the implicit
iterative scheme (3.1) can be rewritten as

xk = γk(I− λkF)xk + (1 − γk)(βkxk + (1 −βk)VkGxk), ∀k > 1. (3.3)
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Consider the mapping

Ukx = γk(I− λkF)x+ (1 − γk)(βkx+ (1 −βk)VkGx), ∀x ∈ X.

Utilizing Lemmas 2.5 and 2.14 (c), we obtain that for all x,y ∈ X,

‖Ukx−Uky‖ 6 γk‖(I− λkF)x− (I− λkF)y‖+ (1 − γk)‖βkx+ (1 −βk)VkGx−βky− (1 −βk)VkGy‖
6 γk‖(I− λkF)x− (I− λkF)y‖+ (1 − γk)[βk‖x− y‖+ (1 −βk)‖VkGx− VkGy‖]
6 γk(1 − λkτ)‖x− y‖+ (1 − γk)[βk‖x− y‖+ (1 −βk)‖x− y‖]
= γk(1 − λkτ)‖x− y‖+ (1 − γk)‖x− y‖
= (1 − γkλkτ)‖x− y‖,

where τ = 1 −
√

1−δ
ζ ∈ (0, 1). This shows that Uk : X → X is a contraction. By the Banach contraction

principle, the fixed point equation (3.3) has a unique solution xk ∈ X for each k > 1. Thus, the sequence
{xk}

∞
k=1 is well-defined.
Again from Lemmas 2.5 and 2.14 (c), it follows that for each k > 1,

‖xk − p‖2 6 γk‖(I− λkF)xk − p‖2 + (1 − γk)‖(βkxk + (1 −βk)VkGxk) − p‖2

= γk‖(I− λkF)xk − (I− λkF)p− λkF(p)‖2 + (1 − γk)‖(βkxk + (1 −βk)VkGxk) − p‖2

6 γk[‖(I− λkF)xk − (I− λkF)p‖+ λk‖F(p)‖]2 + (1 − γk)[βk‖xk − p‖2

+ (1 −βk)‖VkGxk − p‖2]

6 γk[(1 − λkτ)‖xk − p‖+ λk‖F(p)‖]2 + (1 − γk)[βk‖xk − p‖2 + (1 −βk)‖xk − p‖2]

= γk[(1 − λkτ)‖xk − p‖+ λkτ · τ−1‖F(p)‖]2 + (1 − γk)‖xk − p‖2

6 γk(1 − λkτ)‖xk − p‖2 + γkλk · τ−1‖F(p)‖2 + (1 − γk)‖xk − p‖2

= (1 − γkλkτ)‖xk − p‖2 + γkλk · τ−1‖F(p)‖2.

Therefore, ‖xk − p‖ 6 ‖F(p)‖/τ, which implies the boundedness of {xk}∞k=1. So, the sequences {Gxk}
∞
k=1,

{VkGxk}
∞
k=1, {yk}∞k=1 and {F(xk)}

∞
k=1, where yk = βkxk + (1 −βk)VkGxk, are also bounded.

Suppose that γkλkF(xk)→ 0 as k→∞. From (3.1) we observe that

0 = xk − xk = −γkλkF(xk) + (1 − γk)(yk − xk),

and
yk − xk = (1 −βk)(VkGxk − xk).

Then from ‖γkλkF(xk)‖ → 0 and condition (C1) it follows that as k→∞,

τ‖yk − xk‖ 6 (1 − γk)‖yk − xk‖ = ‖γkλkF(xk)‖ → 0,

and
(1 − b)‖VkGxk − xk‖ 6 (1 −βk)‖VkGxk − xk‖ = ‖yk − xk‖ → 0,

where τ = 1 −
√

1−δ
ζ ∈ (0, 1). That is,

lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖xk − VkGxk‖ = 0. (3.4)

Let us show LIMk‖xk−VGzn‖2 6 LIMk‖xk− zn‖2 for any Banach limit LIM, where for each n > 1, zn
is a unique element in X such that zn = 1

n(I− F)zn + (1 − 1
n)VGzn.

Indeed, in terms of Lemma 2.14 (b) we know that I− F is contractive with constant
√

1−δ
ζ ∈ (0, 1).

Utilizing Lemma 2.11 and Proposition 3.5, we conclude that {zn} converges strongly to a unique solution
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x∗ ∈ Fix(VG) = F to the following VI:

〈(I− (I− F))x∗, j(x− x∗)〉 > 0, ∀x ∈ F. (3.5)

Since the VI (3.5) is equivalent to the VI (3.2), we know that {zn} converges strongly to a unique solution
x∗ ∈ F to the VI (3.2). Moreover, since Vk is a nonexpansive mapping for each k > 1, V is a nonexpansive
mapping on C. Note that xk = γk(I− λkF)xk + (1 − γk)yk, where yk = βkxk + (1 − βk)VkGxk. Also,
observe that for each k,n > 1

‖xk − VGzn‖ = ‖γk[(I− λkF)xk − VGzn] + (1 − γk)(yk − VGzn)‖
6 γk‖(I− λkF)xk − VGzn‖+ (1 − γk)[‖yk − VkGzn‖+ ‖VkGzn − VGzn‖]
6 γk(‖xk − VGzn‖+ ‖λkF(xk)‖) + (1 − γk)[‖yk − VkGzn‖+ ‖VkGzn − VGzn‖]
6 γk(‖xk − VGzn‖+ ‖λkF(xk)‖) + (1 − γk)[βk‖xk − VkGzn‖+ (1 −βk)‖VkGxk − VkGzn‖
+ ‖VkGzn − VGzn‖]

6 γk(‖xk − VGzn‖+ ‖λkF(xk)‖) + (1 − γk)[βk(‖xk − VkGxk‖+ ‖VkGxk − VkGzn‖)
+ (1 −βk)‖VkGxk − VkGzn‖+ ‖VkGzn − VGzn‖]

6 γk‖xk − VGzn‖+ ‖γkλkF(xk)‖+ (1 − γk)[‖xk − VkGxk‖+ ‖xk − zn‖
+ ‖VkGzn − VGzn‖],

which together with condition (C1), yields

‖xk − VGzn‖ 6
‖γkλkF(xk)‖

1 − γk
+ ‖xk − VkGxk‖+ ‖xk − zn‖+ ‖VkGzn − VGzn‖

6
1
τ
‖γkλkF(xk)‖+ ‖xk − VkGxk‖+ ‖xk − zn‖+ ‖VkGzn − VGzn‖.

(3.6)

Furthermore, from Remark 3.3 (ii), we deduce that if D is a nonempty and bounded subset of C, then, for
ε > 0, there exists m0 > i such that for all k > m0

sup
x∈D
‖Vikx− Vi∞x‖ 6 ε. (3.7)

Taking D = {Gzn : n > 1}, {Gxk : k > 1}, respectively, and setting i = 1, from (3.7) we have

‖VkGzn − VGzn‖ 6 sup
x∈D
‖Vkx− Vx‖ 6 ε and ‖VkGxk − VGxk‖ 6 sup

x∈D
‖Vkx− Vx‖ 6 ε,

which immediately imply that

lim
k→∞ ‖VkGxk − VGxk‖ = 0 and lim

k→∞ ‖VkGzn − VGzn‖ = 0, ∀n > 1. (3.8)

Since ‖γkλkF(xk)‖ → 0 as k→∞, from (3.4), (3.6) and (3.8) we obtain

LIMk‖xk − VGzn‖2 6 LIMk‖xk − zn‖2. (3.9)

Let us show LIMk〈F(x∗), j(x∗ − xk)〉 6 0. Indeed, since zn = 1
n(I− F)zn + (1 − 1

n)VGzn, we have

xk − zn =
1
n
(xk − (I− F)zn) + (1 −

1
n
)(xk − VGzn),

that is,

(1 −
1
n
)(xk − VGzn) = xk − zn −

1
n
(xk − (I− F)zn). (3.10)
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From Lemma 2.10 (ii) and (3.10) it follows that

(1 −
1
n
)2‖xk − VGzn‖2 > ‖xk − zn‖2 −

2
n
〈xk − zn + zn − (I− F)zn, j(xk − zn)〉

= (1 −
2
n
)‖xk − zn‖2 +

2
n
〈F(zn), j(zn − xk)〉.

(3.11)

Combining (3.9) and (3.11), we have

(1 −
1
n
)2LIMk‖xk − zn‖2 > (1 −

2
n
)LIMk‖xk − zn‖2 +

2
n

LIMk〈F(zn), j(zn − xk)〉,

and hence
1
n2 LIMk‖xk − zn‖2 >

2
n

LIMk〈F(zn), j(zn − xk)〉.

This implies that 1
2nLIMk‖xk − zn‖2 > LIMk〈F(zn), j(zn − xk)〉. Since zn → x∗ ∈ F as n → ∞, by the

uniform Fréchet differentiability of the norm of X we have

LIMk〈F(x∗), j(x∗ − xk)〉 6 0. (3.12)

Let us show LIMk‖xk − x∗‖2 = 0. Indeed, since xk = γk(I− λkF)xk + (1 − γk)yk, where

yk = βkxk + (1 −βk)VkGxk,

we have
xk − (I− λkF)xk = (1 − γk)[yk − (I− λkF)xk]

= (1 − γk)[yk − VkGxk + VkGxk − xk + xk − (I− λkF)xk]

= (1 − γk)[βk(xk − VkGxk) + VkGxk − xk + xk − (I− λkF)xk]

= (1 − γk)[−(1 −βk)(xk − VkGxk) + xk − (I− λkF)xk],

which hence implies that

λkF(xk) = xk − (I− λkF)xk = −
(1 − γk)(1 −βk)

γk
(I− VkG)xk.

Consequently, for x∗ ∈ F we conclude that

〈F(xk), j(xk − x∗)〉 = −
(1 − γk)(1 −βk)

γkλk
〈(I− VkG)xk − (I− VkG)x

∗, j(xk − x∗)〉 6 0. (3.13)

On the other hand, utilizing Lemma 2.14 (b) we get

〈F(xk), j(xk − x∗)〉 = 〈(I− (I− F))xk, j(xk − x∗)〉
= ‖xk − x∗‖2 + 〈(I− (I− F))x∗, j(xk − x∗)〉
+ 〈(I− F)x∗ − (I− F)xk, j(xk − x∗)〉

> (1 −

√
1 − δ

ζ
)‖xk − x∗‖2 + 〈F(x∗), j(xk − x∗)〉

= τ‖xk − x∗‖2 + 〈F(x∗), j(xk − x∗)〉.

(3.14)

It follows from (3.13) and (3.14) that

‖xk − x∗‖2 6
1
τ
〈F(x∗), j(x∗ − xk)〉.
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From (3.12) we conclude that LIMk‖xk − x∗‖2 6 0, that is,

LIMk‖xk − x∗‖2 = 0.

Let us show limk→∞ ‖xk − x∗‖ = 0. Indeed, from LIMk‖xk − x∗‖2 = 0 it follows that there exists a
subsequence {xki} of {xk} which converges strongly to x∗ ∈ F. Noting that

‖xk − VGxk‖ 6 ‖xk − VkGxk‖+ ‖VkGxk − VGxk‖,

we deduce from (3.4) and (3.8) that
lim
k→∞ ‖xk − VGxk‖ = 0.

Now assume that there exists another subsequence {xmi
} of {xk} such that xmi

→ x̂ ∈ Fix(V ◦G) = F

(because ‖xk − VGxk‖ → 0 as k → ∞). Then we have that ‖F(xmi
) − F(x̂)‖ → 0 as i → ∞. We claim that

x̂ is a solution in F to the VI (3.2). As a matter of fact, since for any p ∈ F the sequences {xmi
− p} and

{F(xmi
)} are bounded and j is norm to norm uniformly continuous on bounded subsets of X, we obtain

that as i→∞
|〈F(xmi

), j(xmi
− p)〉− 〈F(x̂), j(x̂− p)〉| 6 ‖F(xmi

) − F(x̂)‖‖xmi
− p‖+ |〈F(x̂), j(xmi

− p) − j(x̂− p)〉|→ 0.

In addition, repeating the same arguments as those of (3.13), we obtain that for any p ∈ F

〈F(xk), j(xk − p)〉 6 0,

which immediately yields

〈F(x̂), j(x̂− p)〉 = lim
i→∞〈F(xmi

), j(xmi
− p)〉 6 0.

That is, x̂ ∈ F is a solution of the VI (3.2) and hence x̂ = x∗ by uniqueness. Therefore, each cluster point
of {xk} equals x∗, and so {xk} converges strongly to x∗, which is the unique solution of the VI (3.2) in F.

Conversely, assume that xk → x∗ as k → ∞, where x∗ ∈ F is a unique solution of the VI (3.2). Then
from (3.1) it follows that

‖yk − x∗‖ = ‖βk(xk − x∗) + (1 −βk)(VkGxk − x
∗)‖

6 βk‖xk − x∗‖+ (1 −βk)‖VkGxk − x∗‖
6 βk‖xk − x∗‖+ (1 −βk)‖xk − x∗‖
= ‖xk − x∗‖ → 0 as k→∞,

that is, yk → x∗ as k→∞. Again from (3.1) we deduce that

0 = xk − xk = −γkλkF(xk) + (1 − γk)(yk − xk),

which immediately yields

‖γkλkF(xk)‖ = (1 − γk)‖yk − xk‖ 6 ‖yk − x∗‖+ ‖xk − x∗‖.

Since xk → x∗ and yk → x∗ as k → ∞, we obtain that γkλkF(xk) → x∗ as k → ∞. This completes the
proof.

Theorem 3.9. Let C be a nonempty closed convex subset of a strictly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : X → X be α-
inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let F : X → X be δ-strongly accretive

and ζ-strictly pseudocontractive with
√

1−δ
ζ < 1

2 . Assume that λ ∈ (0, α
κ2 ) and µ ∈ (0, β

κ2 ) where κ is the 2-
uniformly smooth constant of X. Let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that
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F :=
⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let {Vk}∞k=1 be defined by (2.8) and (2.9). For an arbitrary x1 ∈ X, let

{xk}
∞
k=1 be generated by {

yk = βkxk + (1 −βk)VkGxk,
xk+1 = γk(I− λkF)xk + (1 − γk)yk, ∀k > 1,

}
, (3.15)

where G := ΠC(I− λA)ΠC(I− µB), and {λk}
∞
k=1 ⊂ (0, 1], {γk}

∞
k=1 ⊂ (0, 1) and {βk}

∞
k=1 ⊂ [0, 1] such that

(C1)
∑∞
k=1 γk =∞ and 0 < γk 6 min{1 − τ, 1

2τ } with τ = 1 −
√

1−δ
ζ ;

(C2) limk→∞ |λk+1 − λk| = 0 and lim infk→∞ λk > 1
2τ ;

(C3) 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1;
(C4) limk→∞( γk+1

1−(1−γk+1)βk+1
− γk

1−(1−γk)βk
) = 0.

Then,
xk → x∗ ⇔ γkF(xk)→ 0,

where x∗ ∈ F is a unique solution of the VI:

〈F(x∗), j(x− x∗)〉 > 0, ∀x ∈ F. (3.16)

Proof. First of all, it is not difficult to find that√
1 − δ

ζ
<

1
2
⇔ 2(1 −

√
1 − δ

ζ
) > 1 ⇔ 2τ > 1.

Since 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1 and lim infk→∞ λk > 1
2τ , we may assume, without loss of

generality, that {βk}∞k=1 ⊂ [a,b] ⊂ (0, 1) and {λk} ⊂ ( 1
2τ , 1]. Let the mapping G : X → C ⊂ X be defined as

G := ΠC(I− λA)ΠC(I− µB) where 0 < λ < α
κ2 and 0 < µ < β

κ2 . In terms of Lemma 2.5 we know that G is
a nonexpansive mapping on X. Take a fixed p ∈ F arbitrarily. Then, by Remark 3.3 and Lemma 2.14 (c),
we obtain that for each k > 1,

‖xk+1 − p‖ 6 γk‖(I− λkF)xk − p‖+ (1 − γk)‖(βkxk + (1 −βk)VkGxk) − p‖
= γk‖(I− λkF)xk − (I− λkF)p− λkF(p)‖+ (1 − γk)‖(βkxk + (1 −βk)VkGxk) − p‖
6 γk[‖(I− λkF)xk − (I− λkF)p‖+ λk‖F(p)‖] + (1 − γk)[βk‖xk − p‖
+ (1 −βk)‖VkGxk − p‖]

6 γk[(1 − λkτ)‖xk − p‖+ λk‖F(p)‖] + (1 − γk)[βk‖xk − p‖+ (1 −βk)‖xk − p‖]

= γk[(1 − λkτ)‖xk − p‖+ λkτ ·
‖F(p)‖
τ

] + (1 − γk)‖xk − p‖

6 γkmax{‖xk − p‖,
‖F(p)‖
τ

}+ (1 − γk)‖xk − p‖

6 max{‖xk − p‖,
‖F(p)‖
τ

},

where τ = 1 −
√

1−δ
ζ ∈ ( 1

2 , 1). By induction, we have

‖xk − p‖ 6 max{‖x0 − p‖,
‖F(p)‖
τ

}, ∀k > 1,

which hence implies the boundedness of {xk}∞k=1. So, the sequences {Gxk}
∞
k=1, {VkGxk}

∞
k=1, {yk}

∞
k=1 and

{F(xk)}
∞
k=1, where yk = βkxk + (1 −βk)VkGxk, are also bounded.

Suppose that γkF(xk)→ 0 as k→∞. We claim that limk→∞ ‖xk+1 − xk‖ = 0. Indeed, put

ρk = (1 − γk)βk, ∀k > 1.
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Then it follows from (C1) and (C3) that

βk > ρk = (1 − γk)βk > τβk, ∀k > 1,

and hence
0 < lim inf

k→∞ ρk 6 lim sup
k→∞ ρk < 1. (3.17)

Define
xk+1 = ρkxk + (1 − ρk)wk.

Observe that

wk+1 −wk =
xk+2 − ρk+1xk+1

1 − ρk+1
−
xk+1 − ρkxk

1 − ρk

=
γk+1(I− λk+1F)xk+1 + (1 − γk+1)yk+1 − ρk+1xk+1

1 − ρk+1

−
γk(I− λkF)xk + (1 − γk)yk − ρkxk

1 − ρk

= (
γk+1(I− λk+1F)xk+1

1 − ρk+1
−
γk(I− λkF)xk

1 − ρk
) −

(1 − γk)[βkxk + (1 −βk)VkGxk] − ρkxk
1 − ρk

+
(1 − γk+1)[βk+1xk+1 + (1 −βk+1)Vk+1Gxk+1] − ρk+1xk+1

1 − ρk+1

= (
γk+1(I− λk+1F)xk+1

1 − ρk+1
−
γk(I− λkF)xk

1 − ρk
)

+
(1 − γk+1)(1 −βk+1)Vk+1Gxk+1

1 − ρk+1
−

(1 − γk)(1 −βk)VkGxk
1 − ρk

= (
γk+1(I− λk+1F)xk+1

1 − ρk+1
−
γk(I− λkF)xk

1 − ρk
) + (Vk+1Gxk+1 − VkGxk)

−
γk+1

1 − ρk+1
Vk+1Gxk+1 +

γk
1 − ρk

VkGxk

= (
γk+1

1 − ρk+1
−

γk
1 − ρk

)(I− λk+1F)xk+1 + ((I− λk+1F)xk+1 − (I− λkF)xk)
γk

1 − ρk

+ (Vk+1Gxk+1 − VkGxk) − (
γk+1

1 − ρk+1

−
γk

1 − ρk
)Vk+1Gxk+1 − (Vk+1Gxk+1 − VkGxk)

γk
1 − ρk

= (
γk+1

1 − ρk+1
−

γk
1 − ρk

)[(I− λk+1F)xk+1 − Vk+1Gxk+1]

+ ((I− λk+1F)xk+1 − (I− λkF)xk)
γk

1 − ρk

+
1 − ρk − γk

1 − ρk
(Vk+1Gxk+1 − VkGxk),

and hence

‖wk+1 −wk‖ 6 |
γk+1

1 − ρk+1
−

γk
1 − ρk

|‖(I− λk+1F)xk+1 − Vk+1Gxk+1‖

+ ‖(I− λk+1F)xk+1 − (I− λkF)xk‖
γk

1 − ρk
+

1 − ρk − γk
1 − ρk

‖Vk+1Gxk+1 − VkGxk‖

6 |
γk+1

1 − ρk+1
−

γk
1 − ρk

|‖(I− λk+1F)xk+1 − Vk+1Gxk+1‖

+ (‖(I− λk+1F)xk+1 − (I− λkF)xk+1‖
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+ ‖(I− λkF)xk+1 − (I− λkF)xk‖)
γk

1 − ρk
+

1 − ρk − γk
1 − ρk

(‖Vk+1Gxk+1 − Vk+1Gxk‖

+ ‖Vk+1Gxk − VkGxk‖)

6 |
γk+1

1 − ρk+1
−

γk
1 − ρk

|(‖xk+1‖+ ‖F(xk+1)‖+ ‖Vk+1Gxk+1‖) + (|λk+1 − λk|‖F(xk+1)‖

+ ‖xk+1 − xk‖)
γk

1 − ρk
+

1 − ρk − γk
1 − ρk

(‖xk+1 − xk‖+αk+1‖Tk+1Gxk −Gxk‖) (3.18)

= |
γk+1

1 − ρk+1
−

γk
1 − ρk

|(‖xk+1‖+ ‖F(xk+1)‖+ ‖Vk+1Gxk+1‖) + ‖xk+1 − xk‖

+
γk

1 − ρk
|λk+1 − λk|‖F(xk+1)‖+

1 − ρk − γk
1 − ρk

αk+1‖Tk+1Gxk −Gxk‖

6 ‖xk+1 − xk‖+ |
γk+1

1 − ρk+1
−

γk
1 − ρk

|(‖xk+1‖+ ‖F(xk+1)‖+ ‖Vk+1Gxk+1‖)

+ |λk+1 − λk|‖F(xk+1)‖+αk+1‖Tk+1Gxk −Gxk‖.

Thus, from (3.18), limk→∞ αk = 0, and conditions (C2), (C4), it follows that (noticing the boundedness of
{xk} and the nonexpansivity of Tk)

lim sup
k→∞ (‖wk+1 −wk‖− ‖xk+1 − xk‖) 6 0.

Since 0 < lim infk→∞ ρk 6 lim supk→∞ ρk < 1 (due to (3.17)), by Lemma 3.6 we get limk→∞ ‖wk − xk‖ =
0. Consequently,

lim
k→∞ ‖xk+1 − xk‖ = lim

k→∞(1 − ρk)‖wk − xk‖ = 0. (3.19)

Furthermore, from (3.15) we observe that

xk+1 − xk = −γkλkF(xk) + (1 − γk)(yk − xk),

and
yk − xk = (1 −βk)(VkGxk − xk).

Then from ‖γkF(xk)‖ → 0 and condition (C1) it follows that as k→∞,

τ‖yk − xk‖ 6 (1 − γk)‖yk − xk‖
= ‖xk+1 − xk + γkλkF(xk)‖
6 ‖xk+1 − xk‖+ ‖γkF(xk)‖ → 0,

and
(1 − b)‖VkGxk − xk‖ 6 (1 −βk)‖VkGxk − xk‖ = ‖yk − xk‖ → 0,

where τ = 1 −
√

1−δ
ζ ∈ (0, 1). That is,

lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖xk − VkGxk‖ = 0. (3.20)

Let us show LIMk‖xk−VGzn‖2 6 LIMk‖xk− zn‖2 for any Banach limit LIM, where for each n > 1, zn
is a unique element in X such that zn = 1

n(I− F)zn + (1 − 1
n)VGzn.

Indeed, in terms of Lemma 2.14 (b) we know that I− F is contractive with constant
√

1−δ
ζ ∈ (0, 1).

Utilizing Lemma 2.11 and Proposition 3.5, we conclude that {zn} converges strongly to a unique solution
x∗ ∈ Fix(VG) = F to the following VI:

〈(I− (I− F))x∗, j(x− x∗)〉 > 0, ∀x ∈ F. (3.21)

Since the VI (3.21) is equivalent to the VI (3.16), we know that {zn} converges strongly to a unique solution
x∗ ∈ F to the VI (3.16). Moreover, since Vk is a nonexpansive mapping for each k > 1, V is a nonexpansive
mapping on C. Note that xk+1 = γk(I− λkF)xk + (1 − γk)yk, where yk = βkxk + (1 − βk)VkGxk. Also,
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observe that for each k,n > 1

‖xk − VGzn‖− ‖xk − xk+1‖ 6 ‖xk+1 − VGzn‖
= ‖γk[(I− λkF)xk − VGzn] + (1 − γk)(yk − VGzn)‖
6 γk‖(I− λkF)xk − VGzn‖+ (1 − γk)[‖yk − VkGzn‖+ ‖VkGzn − VGzn‖]
6 γk(‖xk − VGzn‖+ ‖λkF(xk)‖) + (1 − γk)[‖yk − VkGzn‖
+ ‖VkGzn − VGzn‖]

6 γk‖xk − VGzn‖+ ‖γkλkF(xk)‖+ (1 − γk)[‖xk − VkGxk‖+ ‖xk − zn‖
+ ‖VkGzn − VGzn‖],

which together with condition (C1), yields

‖xk − VGzn‖ 6
‖γkλkF(xk)‖+ ‖xk − xk+1‖

1 − γk
+ ‖xk − VkGxk‖+ ‖xk − zn‖+ ‖VkGzn − VGzn‖

6
1
τ
(‖γkλkF(xk)‖+ ‖xk − xk+1‖) + ‖xk − VkGxk‖+ ‖xk − zn‖+ ‖VkGzn − VGzn‖.

(3.22)

Repeating the same arguments as those of (3.8) in the proof of Theorem 3.8, we get

lim
k→∞ ‖VkGxk − VGxk‖ = 0 and lim

k→∞ ‖VkGzn − VGzn‖ = 0, ∀n > 1. (3.23)

Since ‖γkλkF(xk)‖ → 0 as k→∞, from (3.19), (3.20), (3.22) and (3.23) we obtain

LIMk‖xk − VGzn‖2 6 LIMk‖xk − zn‖2. (3.24)

In addition, repeating the same arguments as those of (3.12) in the proof of Theorem 3.8 and utilizing
(3.24), we obtain

LIMk〈F(x∗), j(x∗ − xk)〉 6 0. (3.25)

Let us show lim supk→∞〈F(x∗), j(x∗ − xk)〉 6 0. To this end, put

ak := 〈F(x∗), j(x∗ − xk)〉, ∀k > 1.

Then, from (3.25) we get LIMkak 6 0 for any Banach limit LIM. Since ‖xk+1 − xk‖ → 0 (due to (3.19))
and j is uniformly continuous on bounded subsets of X, we know that

lim sup
k→∞ (ak+1 − ak) = lim sup

k→∞ 〈F(x
∗), j(x∗ − xk+1) − j(x

∗ − xk)〉 = 0.

Then, by Lemma 2.12, we obtain lim supk→∞ ak 6 0, that is,

lim sup
k→∞ 〈F(x

∗), j(x∗ − xk)〉 = lim sup
k→∞ ak 6 0. (3.26)

Next, let us show limk→∞ ‖xk − x∗‖ = 0. Indeed, observe that

xk+1 − x
∗ = γk[(I− λkF)xk − x

∗] + (1 − γk)(yk − x
∗)

= γk[(I− λkF)xk − x
∗] + (1 − γk)(1 −βk)(VkGxk − x

∗) + (1 − γk)βk(xk − x
∗).

Then, utilizing Lemma 2.10 (i), 1 − γk > τ (due to (C1)) and λk > 1
2τ (due to (C2)) we get

‖xk+1 − x
∗‖2 6 ‖(1 − γk)βk(xk − x

∗) + (1 − γk)(1 −βk)(VkGxk − x
∗)‖2

+ 2γk〈(I− λkF)xk − x∗, j(xk+1 − x
∗)〉

6 [(1 − γk)βk‖xk − x∗‖+ (1 − γk)(1 −βk)‖xk − x∗‖]2
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+ 2γk〈(I− λkF)xk − (I− λkF)x
∗, j(xk+1 − x

∗)〉
+ 2γk〈(I− λkF)x∗ − x∗, j(xk+1 − x

∗)〉
6 (1 − γk)

2‖xk − x∗‖2 + 2γk(1 − λkτ)‖xk − x∗‖‖xk+1 − x
∗‖

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
6 (1 − γk)

2‖xk − x∗‖2 + γk(1 − λkτ)[‖xk − x∗‖2 + ‖xk+1 − x
∗‖2]

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
= [(1 − γk)

2 + γk(1 − λkτ)]‖xk − x∗‖2 + γk(1 − λkτ)‖xk+1 − x
∗‖2

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
= [1 − γk(1 − γk) − γkλkτ]‖xk − x∗‖2 + γk(1 − λkτ)‖xk+1 − x

∗‖2

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
6 [1 − γkτ− γkλkτ]‖xk − x∗‖2 + γkλkτ‖xk+1 − x

∗‖2

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉,

which immediately yields

‖xk+1 − x
∗‖2 6

1 − γkτ− γkλkτ

1 − γkλkτ
‖xk − x∗‖2 +

2γkλk
1 − γkλkτ

〈F(x∗), j(x∗ − xk+1)〉

= (1 −
γkτ

1 − γkλkτ
)‖xk − x∗‖2 +

γkτ

1 − γkλkτ
· 2λk
τ
〈F(x∗), j(x∗ − xk+1)〉.

(3.27)

Now, note that when 0 < γk 6 1
2τ , one has

γkτ+ γkλkτ 6 2γkτ 6 1,

which yields γkτ
1−γkλkτ

6 1. Since
∑∞
k=1

γkτ
1−γkλkτ

>
∑∞
k=1 γkτ = ∞ and lim supk→∞ 2λk

τ 〈F(x
∗), j(x∗ −

xk+1)〉 6 0 (due to (3.26)), applying Lemma 3.7 to (3.27) we infer that

lim
k→∞ ‖xk − x∗‖ = 0.

Conversely, if xk → x∗ ∈ F as k→∞, then from (3.15) it follows that

‖yk − x∗‖ = ‖βk(xk − x∗) + (1 −βk)(VkGxk − x
∗)‖

6 βk‖xk − x∗‖+ (1 −βk)‖VkGxk − x∗‖
6 βk‖xk − x∗‖+ (1 −βk)‖xk − x∗‖
= ‖xk − x∗‖ → 0 as n→∞,

that is, yk → x∗. Again from (3.15) we obtain that

1
2τ
‖γkF(xk)‖ 6 ‖γk[(I− λkF)xk − xk]‖

= ‖xk+1 − xk − (1 − γk)(yk − xk)‖
6 ‖xk+1 − xk‖+ (1 − γk)‖yk − xk‖
6 ‖xk+1 − x

∗‖+ ‖xk − x∗‖+ (1 − γk)(‖yk − x∗‖+ ‖xk − x∗‖)
6 ‖xk+1 − x

∗‖+ 2‖xk − x∗‖+ ‖yk − x∗‖.

Since xk → x∗ and yk → x∗, we get γkF(xk)→ 0. This completes the proof.

Corollary 3.10. Let C be a nonempty closed convex subset of a strictly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : X → X be α-
inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let F : X → X be δ-strongly accretive
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and ζ-strictly pseudocontractive with
√

1−δ
ζ < 1

2 . Assume that λ ∈ (0, α
κ2 ) and µ ∈ (0, β

κ2 ) where κ is the 2-
uniformly smooth constant of X. Let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that
F :=

⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let {Vk}∞k=1 be defined by (2.8) and (2.9). For an arbitrary x1 ∈ X, let

{xk}
∞
k=1 be generated by (3.15), where G := ΠC(I− λA)ΠC(I− µB), and {λk}

∞
k=1 ⊂ (0, 1], {γk}

∞
k=1 ⊂ (0, 1) and

{βk}
∞
k=1 ⊂ [0, 1] such that

(C1)
∑∞
k=1 γk =∞ and 0 < γk 6 min{1 − τ, 1

2τ } with τ = 1 −
√

1−δ
ζ ;

(C2) limk→∞ |λk+1 − λk| = 0 and lim infk→∞ λk > 1
2τ ;

(C3) 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1;
(C4) limk→∞ |βk+1 −βk| = 0 and limk→∞ |γk+1 − γk| = 0.

Then,
xk → x∗ ⇔ γkF(xk)→ 0,

where x∗ ∈ F is a unique solution of the VI (3.16).

Proof. Observe that

γk+1

1 − (1 − γk+1)βk+1
−

γk
1 − (1 − γk)βk

=
γk+1(1 − (1 − γk)βk) − γk(1 − (1 − γk+1)βk+1)

(1 − (1 − γk+1)βk+1)(1 − (1 − γk)βk)

=
(γk+1 − γk) − γk+1βk + γkβk+1 + γk+1γkβk − γkγk+1βk+1

(1 − (1 − γk+1)βk+1)(1 − (1 − γk)βk)

=
(γk+1 − γk) − γk+1(βk −βk+1) −βk+1(γk+1 − γk) + γkγk+1(βk −βk+1)

(1 − (1 − γk+1)βk+1)(1 − (1 − γk)βk)

=
(γk+1 − γk)(1 −βk+1) − γk+1(βk −βk+1)(1 − γk)

(1 − (1 − γk+1)βk+1)(1 − (1 − γk)βk)
.

Since limk→∞ |γk+1 − γk| = 0 and limk→∞ |βk+1 −βk| = 0, we conclude that

lim
k→∞( γk+1

1 − (1 − γk+1)βk+1
−

γk
1 − (1 − γk)βk

) = 0.

Consequently, all conditions of Theorem 3.9 are satisfied. So, utilizing Theorem 3.9 we obtain the desired
result.

Theorem 3.11. Let C be a nonempty closed convex subset of a strictly convex and 2-uniformly smooth Banach
space X. Let ΠC be a sunny nonexpansive retraction from X onto C. Let the mappings A,B : X → X be α-
inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let F : X → X be δ-strongly accretive
and ζ-strictly pseudocontractive with δ + ζ > 1. Assume that λ ∈ (0, α

κ2 ) and µ ∈ (0, β
κ2 ) where κ is the 2-

uniformly smooth constant of X. Let {Ti}∞i=1 be an infinite family of nonexpansive self-mappings on C such that
F :=

⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let {Vk}∞k=1 be defined by (2.8) and (2.9). For an arbitrary x1 ∈ X, let

{xk}
∞
k=1 be generated by (3.15), where G := ΠC(I− λA)ΠC(I− µB), and {λk}

∞
k=1 ⊂ (0, 1], {γk}

∞
k=1 ⊂ (0, 1) and

{βk}
∞
k=1 ⊂ [0, 1] such that

(C1)
∑∞
k=1 γk =∞ and limk→∞ γk = 0;

(C2) limk→∞ |λk+1 − λk| = 0 and lim infk→∞ λk > 0;
(C3) 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1.

Then {xk}
∞
k=1 converges strongly to a unique solution x∗ ∈ F to the VI (3.16).

Proof. Since limk→∞ γk = 0 and 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1, we may assume, without lossof
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generality, that 0 < γk 6
√

1−δ
ζ and {βk} ⊂ [a,b] ⊂ (0, 1). In this case, it is easy to see that

lim
k→∞( γk+1

1 − (1 − γk+1)βk+1
−

γk
1 − (1 − γk)βk

) = 0.

Repeating the same arguments as in the proof of Theorem 3.9 we know that {xk}∞k=1 is bounded. So, the
sequences {Gxk}

∞
k=1, {VkGxk}

∞
k=1, {yk}

∞
k=1 and {F(xk)}

∞
k=1, where yk = βkxk + (1 − βk)VkGxk, are also

bounded.
Repeating the same arguments as those of (3.19) and (3.20) in the proof of Theorem 3.9 we know that

lim
k→∞ ‖xk+1 − xk‖ = 0, lim

k→∞ ‖xk − yk‖ = 0 and lim
k→∞ ‖xk − VkGxk‖ = 0.

Repeating the same arguments as those of (3.26) in the proof of Theorem 3.9 we know that

lim sup
k→∞ 〈F(x

∗), j(x∗ − xk)〉 6 0. (3.28)

Next, let us show limk→∞ ‖xk − x∗‖ = 0. Indeed, observe that

xk+1 − x
∗ = γk[(I− λkF)xk − x

∗] + (1 − γk)(yk − x
∗)

= γk[(I− λkF)xk − x
∗] + (1 − γk)(1 −βk)(VkGxk − x

∗) + (1 − γk)βk(xk − x
∗).

Then, utilizing Lemma 2.10 (i), we get

‖xk+1 − x
∗‖2 6 ‖(1 − γk)βk(xk − x

∗) + (1 − γk)(1 −βk)(VkGxk − x
∗)‖2

+ 2γk〈(I− λkF)xk − x∗, j(xk+1 − x
∗)〉

6 [(1 − γk)βk‖xk − x∗‖+ (1 − γk)(1 −βk)‖xk − x∗‖]2

+ 2γk〈(I− λkF)xk − (I− λkF)x
∗, j(xk+1 − x

∗)〉
+ 2γk〈(I− λkF)x∗ − x∗, j(xk+1 − x

∗)〉
6 (1 − γk)

2‖xk − x∗‖2 + 2γk(1 − λkτ)‖xk − x∗‖‖xk+1 − x
∗‖

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
6 (1 − γk)

2‖xk − x∗‖2 + γk(1 − λkτ)[‖xk − x∗‖2 + ‖xk+1 − x
∗‖2]

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉
= [(1 − γk)

2 + γk(1 − λkτ)]‖xk − x∗‖2 + γk(1 − λkτ)‖xk+1 − x
∗‖2

+ 2γkλk〈F(x∗), j(x∗ − xk+1)〉,

which immediately yields

‖xk+1 − x
∗‖2 6

(1 − γk)
2 + γk(1 − λkτ)

1 − γk(1 − λkτ)
‖xk − x∗‖2 +

2γkλk
1 − γk(1 − λkτ)

〈F(x∗), j(x∗ − xk+1)〉. (3.29)

Observe that for all k > 1

(1 − γk)
2 + γk(1 − λkτ)

1 − γk(1 − λkτ)
=

1 − (1 − λkτ)γk − 2γk[1 − (1 − λkτ)] + γ
2
k

1 − γk(1 − λkτ)

= 1 −
2γk[1 − (1 − λkτ)]

1 − γk(1 − λkτ)
+

γ2
k

1 − γk(1 − λkτ)

6 1 − 2γk[1 − (1 − λkτ)] +
γ2
k

1 − γk(1 − λkτ)

= 1 − 2γkλkτ+
γ2
k

1 − γk(1 − λkτ)
.
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Then it follows from (3.29) that

‖xk+1 − x
∗‖2 6 (1 − 2γkλkτ)‖xk − x∗‖2 +

2γk
1 − γk(1 − λkτ)

[
γk
2
‖xk − x∗‖2 + λk〈F(x∗), j(x∗ − xk+1)〉]

= (1 − 2γkλkτ)‖xk − x∗‖2 + 2γkλkτ ·
1

τ− τγk(1 − λkτ)
[
γk
2λk
‖xk − x∗‖2

+ 〈F(x∗), j(x∗ − xk+1)〉].

(3.30)

Since limk→∞ γk = 0 and lim infk→∞ λk > 0, we deduce from (3.28) that

lim sup
k→∞

1
τ− τγk(1 − λkτ)

[
γk
2λk
‖xk − x∗‖2 + 〈F(x∗), j(x∗ − xk+1)〉] 6 0.

Noticing
∑∞
k=1 γk =∞, we get

∑∞
k=1 2γkλkτ =∞. Therefore, according to Lemma 3.7 we conclude from

(3.30) that limk→∞ ‖xk − x∗‖ = 0. This completes the proof.

Next we give a weak convergence theorem for hybrid steepest-descent method (3.15) involving an
infinite family {Ti}

∞
i=1 of nonexpansive self-mappings in a Hilbert space H.

Theorem 3.12. Let C be a nonempty closed convex subset of a Hilbert space H. Let PC be the metric projection
from H onto C. Let the mappings A,B : X→ X be α-inverse-strongly monotone and β-inverse-strongly monotone,
respectively. Let F : X → X be δ-strongly monotone and ζ-strictly pseudocontractive (in the Browder-Petryshyn
sense) with δ+ ζ > 1. Assume that λ ∈ (0, 2α) and µ ∈ (0, 2β). Let {Ti}∞i=1 be an infinite family of nonexpansive
self-mappings on C such that F :=

⋂∞
i=1 Fix(Ti) ∩GSVI(C,A,B) 6= ∅. Let {Vk}∞k=1 be defined by (2.8) and (2.9).

For an arbitrary x1 ∈ H, let {xk}∞k=1 be generated by{
yk = βkxk + (1 −βk)VkGxk,
xk+1 = γk(I− λkF)xk + (1 − γk)yk, ∀k > 1,

where G := PC(I− λA)PC(I− µB), and {λk}
∞
k=1 ⊂ (0, 1], {γk}

∞
k=1 ⊂ (0, 1) and {βk}

∞
k=1 ⊂ [0, 1] such that

(C1)
∑∞
k=1 γk <∞;

(C2) 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1.

Then {xk}
∞
k=1 converges weakly to an element x∗ ∈ F.

Proof. Take a fixed p ∈ F arbitrarily. Repeating the same arguments as in the proof of Theorem 3.9 we
know that {xk}∞k=1 is bounded. So, the sequences {Gxk}

∞
k=1, {VkGxk}

∞
k=1, {yk}

∞
k=1 and {F(xk)}

∞
k=1, where

yk = βkxk + (1 −βk)VkGxk, are also bounded.
Observe that

‖xk+1 − p‖2 6 (1 − γk)‖yk − p‖2 + γk‖(I− λkF)xk − p‖2

6 ‖yk − p‖2 + γk‖(I− λkF)xk − p‖2

= ‖βk(xk − p) + (1 −βk)(VkGxk − p)‖2 + γk‖(I− λkF)xk − p‖2

= βk‖xk − p‖2 + (1 −βk)‖VkGxk − p‖2 −βk(1 −βk)‖xk − VkGxk‖2

+ γk‖(I− λkF)xk − p‖2

6 βk‖xk − p‖2 + (1 −βk)‖xk − p‖2 −βk(1 −βk)‖xk − VkGxk‖2

+ γk‖(I− λkF)xk − p‖2

6 ‖xk − p‖2 −βk(1 −βk)‖xk − VkGxk‖2 + γk[‖xk‖+ ‖F(xk)‖+ ‖p‖]2

6 ‖xk − p‖2 + γk[‖xk‖+ ‖F(xk)‖+ ‖p‖]2.

(3.31)
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Since
∑∞
k=1 γk < ∞ and {xk} and {F(xk)} are bounded, we get

∑∞
k=1 γk[‖xk‖ + ‖F(xk)‖ + ‖p‖]2 < ∞.

Utilizing Lemma 2.15, we deduce that limk→∞ ‖xk − p‖ exists. Furthermore, it follows from (3.31) that
for all k > 1

βk(1 −βk)‖xk − VkGxk‖2 6 ‖xk − p‖2 − ‖xk+1 − p‖2 + γk[‖xk‖+ ‖F(xk)‖+ ‖p‖]2. (3.32)

Since γk → 0 and 0 < lim infk→∞ βk 6 lim supk→∞ βk < 1, it follows from (3.32) that

lim
k→∞ ‖xk − VkGxk‖ = 0. (3.33)

Repeating the same arguments as in the proof of Theorem 3.9 we know that

lim
k→∞ ‖VkGxk − VGxk‖ = 0. (3.34)

Note that
‖xk − VGxk‖ 6 ‖xk − VkGxk‖+ ‖VkGxk − VGxk‖.

Combining (3.33) and (3.34) we get
lim
k→∞ ‖xk − VGxk‖ = 0.

Now, let us show that ωw(xk) ⊂ F. Indeed, let x̄ ∈ ωw(xk). Then there exists a subsequence {xki} of
{xk} such that xki ⇀ x̄. Since (I− VG)xk → 0, by Lemma 2.16 we know that x̄ ∈ Fix(V ◦G) = F (due to
Proposition 3.5).

Finally, let us show that ωw(xk) is a singleton. Indeed, let {xmi
} be another subsequence of {xk} such

that xmi
⇀ x̂. Then x̂ is also an element in F. If x̄ 6= x̂, by Opial’s property of H, we reach the following

contradiction:
lim
k→∞‖xk − x̄‖ = lim

i→∞‖xki − x̄‖
< lim
i→∞‖xki − x̂‖ = lim

i→∞‖xmi
− x̂‖

< lim
i→∞‖xmi

− x̄‖

= lim
k→∞‖xk − x̄‖.

This shows that ωw(xk) is a singleton. Consequently, {xk} converges weakly to an element in F.
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