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Abstract

In this study, a collocation method based on the generalized Bernstein polynomials is derivated for solving nonlinear
Fredholm-Volterra integral equations (FVIEs) in the most general form via the quasilinearization technique. Moreover, quadratic
convergence and error estimate of the proposed method is analyzed. Some examples are also presented to show the accuracy
and applicability of the method. c©2017 All rights reserved.
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1. Introduction

Fredholm and Volterra integral equations are well-known that linear and nonlinear integral equations
arise in many scientific fields such as the population dynamics, spread of epidemics and semi-conductor
devices. The principal investigators of the theory of these equations are Vita Volterra (1860-1940) and Ivar
Fredholm (1866-1927).

Quasilinearization pioneered by Bellman and Kalaba [6] is an effective technique that solves the non-
linear equations iteratively by a sequence of linear equations. Since this method is generalization of the
Newton-Raphson method, it can be introduced by using the Taylor series expansion. The main advan-
tage of this method is that it converges quadratically to the solution of the original equation. Some
systematic studies of this property have been given in [1, 5–7, 11, 13–15, 18]. This method is also a power-
ful tool to obtain the approximate solution of nonlinear problems included such as differential equations
[1, 3, 5, 9, 14, 17], functional differential equations [2, 7], integral equations [13, 15] and integro-differential
equations [4, 18].

The Bernstein polynomials and their basis forms defined on the interval [0, 1] can be generalized to
the interval [a,b] by considering transformation t = x−a

b−a as follows.
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Definition 1.1. The generalized Bernstein basis polynomials can be defined on [a,b] by

pi,n (x) =
1

(b− a)n

(
n

i

)
(x− a)i (b− x)n−i , i = 0, 1, · · · ,n.

Definition 1.2. Let y be a continuous function on the interval [a,b]. The generalized Bernstein polyno-
mials of n-th-degree that linear combination of the generalized Bernstein basis polynomials pi,n (x) are
defined by

Bn (y; x) =
n∑
i=0

y

(
a+

(b− a) i

n

)
pi,n (x) .

Besides, the generalized Bernstein polynomials and their basis forms have some useful properties such
as the positivity, continuity, recursion’s relation, symmetry, unity partition of the basis set over the interval
[a,b], uniform approximation, differentiability and integrability. These properties can be shown easily by
following the some studies given with the properties of the Bernstein polynomials and their basis forms
[8, 10, 12].

Theorem 1.3. If y (x) is continuous function on the interval [a,b], then lim
n→∞Bn (y; x) = y (x) converges uni-

formly.

Proof. The above theorem is proved with the similar ways given for the proof of theorem presented by
Phillips [16].

Definition 1.4. Nonlinear Fredholm-Volterra integral equation is defined as follows:

g (x,y(x)) = λ1

b∫
a

f(x, t,y(t))dt+ λ2

x∫
a

v (x, t,y(t))dt, x, t ∈ [a,b] , (1.1)

where λ1 and λ2 are constants, y(x) is an unknown function, g : [a,b]→ R, the kernels f : [a,b]× [a,b]→
R and v : [a,b]× [a,b] → R are continuous functions satisfying a Lipschitz condition with respect to the
last variables:

g (x, z) − g(x,w) 6 Lg |z−w| ,
|f (x, t, z) − f(x, t,w)| 6 Lf |z−w| ,
|v (x, t, z) − v(x, t,w)| 6 Lv |z−w| ,

such that Lg,Lf,Lv > 0 for x, t ∈ [a,b] and w, z ∈ R.

The reminder of this paper follows: In Section 2, a collocation method is developed iteratively to
get the numerical solution of the nonlinear integral equations by means of the generalized Bernstein
polynomials and quasilinearization technique. In Section 3, the uniqueness of the nonlinear Fredholm-
Volterra integral equations is analyzed, and the error estimates of the proposed method are given. In
Section 4, some nonlinear examples are considered for showing the applicability and efficiency of the
method. Numerical results are also compared with different methods. Finally, some inferences of the
study are mentioned in the last section.

2. Method of solution

In this paper, the purpose is to approximate the solution of nonlinear FVIE (1.1) by using the quasi-
linearization technique iteratively with the generalized Bernstein polynomials:

y (x) ∼= Bn (y; x) =
n∑
i=0

y

(
a+

(b− a)i

n

)
pi,n (x) . (2.1)
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Theorem 2.1. Let xs ∈ [a,b] be collocation point, y ∈ C [a,b], g, f and v have Taylor series expansion with respect
to y. Then, nonlinear FVIE (1.1) has the following iteration matrix form:

[GrP−λ1Fr−λ2Vr]Yr+1 = Hr, r = 0, 1, · · · . (2.2)

Here matrices Gr = diag [g (xs,yr (xs))], P = [pi,n (xs)], Fr = [Fr,s,i] and Vr = [Vr,s,i] are (n+ 1)× (n+ 1)
matrices, Yr+1 =

[
yr+1

(
a+

(b−a)i
n

)]
and Hr = [hr (xs)] are (n+ 1)× 1 matrices for i, s = 0, 1, · · · ,n. Besides,

elements of these matrices are defined as

hr (x) = gy (x,yr (x))yr (x) − g (x,yr (x)) + λ1

b∫
a

[f(x, t,yr (t)) − fy (x, t,yr(t))yr (t)]dt

+ λ2

x∫
a

[v (x, t,yr (t)) − vy (x, t,yr(t))yr (t)]dt,

Fr,s,i =

b∫
a

f (x, t,yr(t))pi,n(t)dt, Vr,s,i =

x∫
a

v (x, t,yr(t))pi,n(t)dt.

Proof. Since functions g, f and v are able to be expanded by Taylor series with respect to y, nonlinear
FVIE can be expressed as a sequence of linear integral equations by using quasilinearization technique
for r = 0, 1, · · · as follows

gy (x,yr (x))yr+1 (x) = gy (x,yr (x))yr (x) − g (x,yr(x))

+ λ1

b∫
a

[f (x, t,yr(t)) + fy (x, t,yr(t)) (yr+1 (t) − yr (t))]dt

+ λ2

x∫
a

[v (x, t,yr(t)) + vy (x, t,yr(t)) (yr+1 (t) − yr (t))]dt.

(2.3)

Here gy, fy and vy are partial derivatives of g, f and v with respect to function y, y0 (x) is an initial
approximation function, yr (x) is always known function and yr+1 (x) is obtained by the former one. By
considering function hr (x) given in the expression of Theorem 2.1, the equation (2.3) can be rearranged
shortly

gy (x,yr (x))yr+1(x) = hr (x) + λ1

b∫
a

fy (x, t,yr(t))yr+1 (t)dt+ λ2

x∫
a

vy (x, t,yr(t))yr+1 (t)dt. (2.4)

Since (1.1) has the generalized Bernstein polynomial solution and y(xs) = Bn (y; xs) (s = 0, 1, · · · ,n) from
the collocation method, the expression (2.1) can be written as

yr+1 (xs) = P(xs)Yr+1, r = 0, 1, · · · . (2.5)

Substituting the collocation points and relation (2.5) into (2.4), we obtain the linear algebraic system

gy (xs,yr (xs))P(xs)Yr+1−λ1Fr(xs)Yr+1 − λ2Vr (xs)Yr+1 = hr (xs) . (2.6)

Here Fr(xs) and Vr (xs) are denoted by

Fr(xs) =

b∫
a

fy (x, t,yr(t))P (t)dt =
[

Fr,s,0 Fr,s,1 . . . Fr,s,n
]

,
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Vr (xs) =

x∫
a

vy (x, t,yr(t))P (t)dt =
[

Vr,s,0 Vr,s,1 . . . Vr,s,n
]

.

Considering the matrices

Gr =


gy (x0,yr (x0)) 0 . . . 0

0 gy (x1,yr (x1)) . . . 0
...

...
. . .

...
0 0 . . . gy (xn,yr (xn))

 ,

Fr =


Fr(x0)
Fr(x1)

...
Fr(xn)

 , Vr=


Vr(x0)
Vr(x1)

...
Vr(xn)

 , Hr =


hr(x0)
hr(x1)

...
hr(xn)

 ,

for s = 0, 1, · · · ,n, the equation (2.6) can be written as matrix form (2.2). This completes the proof.

Let the following steps be given to solve the nonlinear FVIE (1.1).

Step 1. The equation (2.2) can also be written in the compact form

WrYr+1= Hr or [Wr; Hr] , r = 0, 1, · · · ,

so that Wr = GrP − λ1Fr − λ2Vr. This equation corresponds to a linear algebric equation system with
yr+1 unknown coefficients for iterations r.

Step 2. An initial approximation function y0 (x) should be selected for computing the Wr and Hr. This
function can be determined as source or constant function roughly.

Step 3. Since nonlinear integral equations reduce to a sequence of linear integral equations via the quasi-
linearization technique, we do not need to use any solution techniques of nonlinear integral equations.
As linear equation system, if rank (Wr) = rank (Wr; Hr) = n+ 1, then solution of this system is uniquely
determined. The system can also be solved by the Gauss elimination, generalized inverse, LU and QR
factorization methods.

3. Convergence and error analysis

Definition 3.1. Error is denoted by en(x) = y(x) − yr+1 (x) such that y(x) is an exact solution and
yr+1 (x) = Bn (yr+1; x) is a generalized Bernstein approximate solution. Then absolute and mean er-
rors can be numerically computed at the collocation points respectively by

|en (xs)| = |y (xs) − yr+1 (xs)| , emean = 1
n+1

n∑
s=0

|en (xs)| .

Definition 3.2. Let Er (xs) = yr+1 (xs) − yr (xs) be error on the collocation points xs ∈ [a,b] for the r-th
iteration function. Then absolute and maximum errors can be expressed as follows:

|Er (xs)| = |yr+1 (xs) − yr (xs)| , and Emax = max
xs∈[a,b]

|Er (xs)| .

Theorem 3.3 (Uniqueness Theorem). Let g ∈ C [a,b] and f, v ∈ C
(
[a,b]2

)
satisfy the Lipschitz condition with

respect to the last variables and T : C [a,b]→ C [a,b] be a mapping where

Ty (x) = g (x,y (x)) − λ1

b∫
a

f(x, t,y(t))dt− λ2

x∫
a

v (x, t,y(t))dt.

Then (1.1) has a unique solution whenever 0 < α < 1, α = Lg+(b− a) [|λ1|Lf + |λ2|Lv].
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Proof. Since g, f and v satisfy the Lipschitz condition with respect to the last variables y and y∗, we have
the following inequality for y,y∗ ∈ C [a,b]:

|Ty (x) − Ty∗ (x)| 6 |g (x,y (x)) − g (x,y∗ (x))|+ |λ1|

b∫
a

|f(x, t,y(t)) − f(x, t,y∗(t))|dt

+ |λ2|

x∫
a

|v (x, t,y(t)) − v (x, t,y∗(t))|dt

6 Lg |y (x) − y
∗ (x)|+ |λ1|Lf

b∫
a

|y (t) − y∗ (t)|dt+ |λ2|Lv

x∫
a

|y (t) − y∗ (t)|dt.

Considering the definition of maximum norm for one variable function, the inequality becomes

‖Ty− Ty∗‖∞ 6 Lg ‖y− y∗‖∞ + |λ1|Lf ‖y− y∗‖∞
b∫
a

dt+ |λ2|Lv ‖y− y∗‖∞
x∫
a

dt

6 Lg ‖y− y∗‖∞ + |λ1|Lf (b− a) ‖y− y∗‖∞ + |λ2|Lv (b− a) ‖y− y∗‖∞
6 [Lg + (b− a) (|λ1|Lf + |λ2|Lv)] ‖y− y∗‖∞

for all x, t ∈ [a,b]. Denoting α = Lg + (b− a) [|λ1|Lf + |λ2|Lv], the inequality is ‖Ty− Ty∗‖ 6 α ‖y− y∗‖ .
Under the condition 0 < α < 1, by Banach fixed-point theorem, (1.1) has a unique solution and this
completes the proof.

Theorem 3.4. Suppose that y0 (x) and yr (x) are the first and r-th iteration functions, g ∈ C2 [a,b], f and
v ∈ C2

(
[a,b]2

)
. Then the following quadratic convergence and error estimate hold ‖Er‖∞ 6 σ ‖Er−1‖2∞ and

‖Er‖∞ 6 (σ‖E1‖∞)2r

σ such that σ = M2+(b−a)[|λ1|L1+|λ2|L2]
2[M1−(b−a)(|λ1|K1+|λ2|K2)]

a positive constant. If the quantity ‖E1‖∞ < 1,
then lim

r→∞ ‖Er‖∞ = 0.

Proof. Applying the quasilinearization technique to the following equality

g (x,yr+1) − g (x,yr) = λ1

b∫
a

{f (x, t,yr+1) − f (x, t,yr)}dt+ λ2

x∫
a

{v (x, t,yr+1) − v (x, t,yr)}dt,

we have

gy (x,yr) (yr+1 − yr) = − {g (x,yr) − g (x,yr−1) − gy (x,yr−1) (yr − yr−1)}

+ λ1

b∫
a

{f (x, t,yr) − f (x, t,yr−1) − fy (x, t,yr−1) (yr − yr−1)}dt

+ λ2

x∫
a

{v (x, t,yr) − v (x, t,yr−1) − vy (x, t,yr−1) (yr − yr−1)}dt

+ λ1

b∫
a

fy (x, t,yr) (yr+1 − yr)dt++λ2

x∫
a

vy (x, t,yr) (yr+1 − yr)dt.

(3.1)

Since g ∈ C2 [a,b], f and v ∈ C2
(
[a,b]2

)
, the following equations can be written from mean value theorem
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g (x,yr) − g (x,yr−1) − gy (x,yr−1) (yr − yr−1) =
1
2 (yr − yr−1)

2 gyy (x,α) ,
f (x, t,yr) − f (x, t,yr−1) − fy (x, t,yr−1) (yr − yr−1) =

1
2 (yr − yr−1)

2 fyy (x, t,β) ,
v (x, t,yr) − v (x, t,yr−1) − vy (x, t,yr−1) (yr − yr−1) =

1
2 (yr − yr−1)

2 vyy (x, t,γ) ,

where yr−1 < α,β,γ < yr. Substituting these equations into (3.1), the equation becomes

gy (x,yr) (yr+1 − yr) = −
1
2
(yr − yr−1)

2 gyy (x,α) + λ1

b∫
a

1
2
(yr − yr−1)

2 fyy (x, t,β)dt

+ λ2

x∫
a

1
2
(yr − yr−1)

2 vyy (x, t,γ)dt+ λ1

b∫
a

fy (x, t,yr) (yr+1 − yr)dt

+ λ2

x∫
a

vy (x, t,yr) (yr+1 − yr)dt.

By definition of the maximum norm for one and two variables functions, the following inequality is
obtained

‖gy‖∞ ‖yr+1 − yr‖∞ 6
1
2
‖yr − yr−1‖2∞ ‖gyy‖∞ +

1
2
|λ1| ‖yr − yr−1‖2∞ ‖fyy‖∞ (b− a)

+
1
2
|λ2| ‖yr − yr−1‖2∞ ‖vyy‖∞ (b− a) + |λ1| ‖fy‖∞ ‖yr+1 − yr‖∞ (b− a)

+ |λ2| ‖vy‖∞ ‖yr+1 − yr‖∞ (b− a) .

Denoting
‖gy‖∞ = max

x∈[a,b]
|gy (x,yr (x))| =M1,

‖gyy‖∞ = max
x∈[a,b]

|gyy (x,α (x))| =M2,

‖fy‖∞ = max
x,t∈[a,b]

|fy (x, t,yr)| = K1,

‖vy‖∞ = max
x,t∈[a,b]

|vy (x, t,yr)| = K2,

‖fyy‖∞ = max
x,t∈[a,b]

|fyy (x, t, z)| = L1,

‖vyy‖∞ = max
x,t∈[a,b]

|vyy (x, t, )| = L2,

and
max
x∈[a,b]

(x− a) = b− a,

the above inequality becomes

M1 ‖yr+1 − yr‖∞ 6
M2

2
‖yr − yr−1‖2∞ +

L1

2
|λ1| (b− a) ‖yr − yr−1‖2∞

+
L2

2
|λ2| (b− a) ‖yr − yr−1‖2∞ + |λ1|K1 (b− a) ‖yr+1 − yr‖∞

+ |λ2|K2 (b− a) ‖yr+1 − yr‖∞ .

This inequality can be rearranged as

‖Er‖∞ 6

{
M2 + |λ1|L1 (b− a) + |λ2|L2 (b− a)

2 [M1 − |λ1|K1 (b− a) − |λ2|K2 (b− a)]

}
‖Er−1‖2∞ ,
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‖Er‖∞ 6 σ ‖Er−1‖2∞ ,

where σ = M2+|λ1|L1(b−a)+|λ2|L2(b−a)
2[M1−|λ1|K1(b−a)−|λ2|K2(b−a)]

a positive constant. This equation shows that convergence is
quadratic if there is convergence at all. We rewrite this equation as

‖Er‖∞ 6 σ ‖Er−1‖2∞ ,

‖Er−1‖∞ 6 σ ‖Er−2‖2∞ ,
...

‖E2‖∞ 6 σ ‖E1‖2∞ .

By the use of substitutions, the new inequality is

‖Er‖∞ 6 σ ‖Er−1‖2∞ 6 σ
(
σ ‖Er−2‖2∞

)2
6 . . . 6 σ

[
σ2r−2 ‖Er−3‖2r∞

]
= [σ ‖E1‖∞]2r /σ.

If the quantity σ ‖E1‖∞ < 1, then lim
r→∞ ‖Er‖∞ = 0. It completes the proof.

4. Numerical results

Two examples including nonlinear integral equations are considered for analyzing the applicability
and accuracy of the proposed Bernstein collocation method. The numerical results obtained on the collo-
cation points a+ (b−a)s

n , s = 0, 1, · · · ,n are presented and compared with the other methods.

Example 4.1. Consider the following nonlinear Volterra integral equation:

y(x) = 2 − ex +

x∫
0

ex−ty2(t)dt, 0 6 x 6 1.

Exact solution of the above equation is y(x) = 1. Let y0 (x)= 2 − ex be initial approximation function.
In Figure 1 and Table 1, the absolute errors |Er (x)| by considering the Bernstein collocation method

obtained at the collocation points s
n , s = 0, 1, · · · ,n are given for n = 3 and iterations r = 1, 2, 3, 4.

Besides, in Figure 2, the absolute errors |en (x)| of the proposed method are presented for different values
n = 2, 3, 4 and 5-th iteration.

Figure 1: The numerical results of |Er (x)| errors for n = 3.
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Table 1: The numerical results of |Er (x)| errors for n = 3.
n = 3 r = 1 r = 2 r = 3 r = 4

0 0 0 0 0
0.1 5.6× 10−3 7.5× 10−3 2.3× 10−4 1.7× 10−7

0.2 4.3× 10−3 8.6× 10−3 2.8× 10−4 2.1× 10−7

0.3 7.8× 10−3 6.3× 10−3 2.2× 10−4 1.7× 10−7

0.4 3.4× 10−2 3.4× 10−3 1.3× 10−4 1.1× 10−7

0.5 7.9× 10−2 2.8× 10−3 1.0× 10−4 9.3× 10−8

0.6 1.5× 10−1 7.6× 10−3 2.2× 10−4 1.8× 10−7

0.7 2.4× 10−1 2.1× 10−2 5.5× 10−4 4.3× 10−7

0.8 3.6× 10−1 4.5× 10−2 1.2× 10−3 8.9× 10−7

0.9 5.1× 10−1 8.3× 10−2 2.2× 10−3 1.6× 10−6

1.0 7.0× 10−1 1.4× 10−1 3.7× 10−3 2.7× 10−6

Figure 2: The numerical results of |en (x)| errors for 5-th
iteration.

Figure 3: The comparison of numerical results of |en (x)|
errors for n = 4 and 5-th iteration.

Table 2: The comparison of the |en (x)| errors of Example 4.1.

Presented Method Lagrange Collocation
Method [13]

x n = 2 n = 3 n = 4 n = 4
r = 2 r = 5 r = 2 r = 5 r = 2 r = 5 r = 2 r = 5

0.1 4.7×10−5 7.6×10−17 2.3×10−4 1.5×10−16 5.8×10−5 1.7×10−16 2.5×10−3 1.8×10−15

0.2 4.5×10−5 1.9×10−16 2.8×10−4 2.7×10−16 3.9×10−5 2.8×10−16 7.9×10−4 6.6×10−16

0.3 7.4×10−6 5.6×10−17 2.2×10−4 1.4×10−17 8.7×10−6 3.6×10−17 1.4×10−3 1.5×10−15

0.4 1.1×10−4 0 1.3×10−4 6.9×10−17 3.9×10−6 3.5×10−17 1.8×10−3 2.1×10−15

0.5 2.6×10−4 0 1.1×10−4 0 3.5×10−5 0 9.0×10−4 1.2×10−15

0.6 4.6×10−4 0 2.2×10−4 1.1×10−16 8.4×10−5 5.6×10−17 3.6×10−3 1.1×10−15

0.7 7.1×10−4 5.6×10−17 5.5×10−4 0 1.1×10−4 5.6×10−17 1.8×10−2 2.4×10−15

0.8 1.0×10−3 1.1×10−16 1.2×10−3 1.1×10−16 3.5×10−5 5.6×10−17 5.5×10−2 1.3×10−15

0.9 1.4×10−3 0 2.2×10−3 1.1×10−16 2.3×10−4 1.1×10−16 1.3×10−1 1.5×10−14

The absolute error results of the proposed method are compared with the results given by Maleknejad
and Najafi [13] in Table 2 and Figure 3. The numerical results of the Bernstein collocation method are ob-
tained at the collocation points sn , s = 0, 1, · · · ,n by considering the first iteration function y0(x) = 2 − ex.
Besides, Maleknejad and Najafi have presented a collocation method based on quasilinearization tech-
nique and Lagrange basis polynomials for the first iteration function y0(x) = 1 − ex. According to Table
2, the presented method has better numerical solutions than the other method for r = 2 and r = 5. The
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best results are also obtained for n = 2 by the presented method, therefore, it is not necessary to enlarge
n since the rounding error increases while n increases.

Example 4.2. Consider the following nonlinear Fredholm-Volterra integral equation:

y(x) = 2x+7−7x4

3 +

x∫
−1

(x+ t)y2(t)dt+

1∫
−1

(x− t)y(t)dt, − 1 6 x 6 1.

Exact solution of the above equation is y(x) = 2x. Let y0(x) = 0 be the first iteration function.

Table 3: The numerical results of emean errors for Example 4.2.
n r = 2 r = 3 r = 4 r = 5 r = 6
2 1.6×10−1 3.7×10−2 3.1×10−3 2.6×10−5 7.1×10−8

4 8.2×10−2 6.4×10−3 4.2×10−5 1.7×10−7 6.5×10−8

8 5.0×10−2 1.6×10−3 1.5×10−6 2.6×10−7 1.1×10−7

16 4.1×10−2 1.1×10−3 4.2×10−7 3.5×10−6 9.5×10−7

Mean errors of the presented method with increasing n are given at the collocation points
xs = −1 + 2s

n , s = 0, 1, · · · ,n in Table 3. We can say that the numerical results of proposed method
converge more rapidly for increasing iteration r.

5. Conclusions

In this study, a collocation method based on the generalized Bernstein polynomials has been devel-
oped for the numerical solution of nonlinear Fredholm-Volterra integral equations iteratively by using
the quasilinearization technique. The quadratic convergence and error bound of the Bernstein collocation
method have been analyzed. Examples 4.1 and 4.2 support that the proposed method derived iteratively
converges more rapidly for increasing iterations r. The advantage of the proposed method is not com-
plicated and easy applicability to the nonlinear equations, because the nonlinear equations are reduced
to linear equations via the quasilinearization. So the method does not need any solution methods of
nonlinear equations.
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