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Abstract
In this work, we investigate the dynamical behaviors of the rational difference equation

xn+1 =
Cxn−5

A+Bxn−2xn−5
,

with arbitrary initial conditions, where A, B, and C are arbitrary constants. A general solution is obtained. Asymptotic
behavior and asymptotic stability of the equilibrium points are investigated. The existence of the periodic solutions is discussed.
Numerical simulations are carried out to verify the analytical results. c©2017 All rights reserved.
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1. Introduction

Difference equations are used not only to describe dynamical systems that evolves discretely, but
also, to present, in the easiest way, many numerical schemes [1–20]. Difference equations have potential
applications in various fields of science such as game theory [2, 3, 5, 6, 17, 18], mathematical biology
[15, 34], physics, and engineering [11]. Therefore, the study of the qualitative behavior of a nonlinear
rational difference equations of higher orders [21–39] is of paramount importance because of its promising
applications.

Indeed, some qualitative behaviors of difference equations have been investigated by authors. For
examples in [4], Amleh et al. studied the third order rational difference equation

xn+1 =
a+ bxn−1

A+Bxn−2
,
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and Elabbasy et al. in [10] studied the global stability character of the following difference equation

xn+1 =
Cxn +βxn−1 + γxn−2

Axn +Bxn−1 +Cxn−2
.

Another approach to investigate a difference equation is to find the analytical formula of the general term.
Contrary to the linear case, there is no general method to find such explicit solution. Accordingly, Cinar
[8] obtained the solution of the difference equation

xn+1 =
axn−1

1 + bxnxn−1
.

Here, we are concerned with the analytic study of a class of sixth order rational difference equation

xn+1 =
Cxn−5

A+Bxn−2xn−5
, (1.1)

where A, B, and C are arbitrary constants and with arbitrary initial data x−5 = f, x−4 = e, x−3 = d,
x−2 = c, x−1 = b, and x0 = a.

Note first that, if C = 0, then for all n ∈ N, xn = 0, so we will consider that C 6= 0. The parameter
C is kept in our equation in order to investigate the rich dynamics of the difference equation (1.1) as the
variation of this parameter. Also, the cases A = 0 and B = 0 are trivial, therefore we will assume that
A 6= 0 and B 6= 0.

Finally, throughout the manuscript, we assume the product
∏m
p=n ap = 1 when (ap)p is a sequence

of complex numbers and n > m, m,n ∈ Z.

2. Preliminaries

A difference equation of order k is an equation of the form

xn+1 = F(xn, xn−1, . . . , xn−(k−1)),n = 0, 1, . . . , (2.1)

where F = F(u0,u1, . . . ,uk−1) is a function that maps on some set Ik into I. A solution of Eq. (2.1) is a
sequence xn that satisfies Eq. (2.1) for all n > 0. With each solution xn of the Eq. (1.1), we associate the
vector of initial conditions v0(x) = (x0, x−1, . . . , x−k+1) ∈ Ik.

Definition 2.1 (Equilibrium point). A point x̄ ∈ R is called an equilibrium point of the Eq. (2.1), if

x̄ = F(x̄, x̄, . . . , x̄).

Let x̄ ∈ R be an equilibrium point of the Eq. (2.1), and denote by v(x̄) ∈ Ik the vector v(x̄) =
(x̄, x̄, . . . , x̄). Suppose that the function F is continuously differentiable in some open neighborhood of an
equilibrium point x̄, and consider the linearized equation of (2.1) about the equilibrium point x̄ is given
as

yn+1 = q0yn + q1yn−1 + · · ·+ qk−1yn−(k−1), (2.2)

where qi = ∂F
∂ui

(x̄, x̄, · · · , x̄), i = 0, 1, · · · ,k− 1, so the characteristic equation of (2.2) about x̄ is defined as

λk − q0λ
k−1 − · · ·− qk−2λ− qk−1 = 0. (2.3)

Definition 2.2 ([33]). An equilibrium point of Eq. (2.1) is locally asymptotically stable if all the roots of
the characteristic equation (2.3) have absolute value less than one. However, if at least one root of the
characteristic equation (2.3) has absolute value greater than one, then this equilibrium point is unstable.
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Definition 2.3.

1. If no root of the characteristic equation (2.3) has absolute value equal to one, then the equilibrium
point x̄ of Eq. (2.1) is said to be hyperbolic.

2. If there exists a root of the characteristic equation (2.3) with absolute value equal to one, then the
equilibrium point x̄ is called nonhyperbolic.

3. An equilibrium point x̄ of Eq. (2.1) is said to be saddle if there exist at least two roots of the
characteristic equation (2.3) with absolute value above and beyond one.

4. An equilibrium point x̄ of Eq. (2.1) is said to be repeller if all roots of the characteristic equation
(2.3) have absolute value greater than one.

5. A solution (xn)n of Eq. (2.1) is said to be periodic with period p or a periodic-p solution if

xn+p = xn, ∀n > −k. (2.4)

A solution is called periodic with prime period p if p is the smallest positive integer for which Eq.
(2.4) holds.

3. Analytical expressions of (xn)n

In the following, we give some analytical expressions of the sequence (xn)n.

Theorem 3.1. Let (xn)n>−5 be the sequence given by (1.1) and the initial data that follow, then for all n > 0

x6n−5 =

fCn
n−1∏
p=1

(
A2p +Bcf

2p−1∑
k=0

AkC2p−1−k
)

n−1∏
p=0

(
A2p+1 +Bcf

2p∑
k=0

AkC2p−k
) , (3.1)

x6n−4 =

eCn
n−1∏
p=1

(
A2p +Bbe

2p−1∑
k=0

AkC2p−1−k
)

n−1∏
p=0

(
A2p+1 +Bbe

2p∑
k=0

AkC2p−k
) , (3.2)

x6n−3 =

dCn
n−1∏
p=1

(
A2p +Bad

2p−1∑
k=0

AkC2p−1−k
)

n−1∏
p=0

(
A2p+1 +Bad

2p∑
k=0

AkC2p−k
) , (3.3)

x6n−2 = cCn
n−1∏
p=0

( A2p+1 +Bcf

2p∑
k=0

AkC2p−k

A2p+2 +Bcf

2p+1∑
k=0

AkC2p+1−k

)
, (3.4)

x6n−1 = bCn
n−1∏
p=0

( A2p+1 +Bbe

2p∑
k=0

AkC2p−k

A2p+2 +Bbe

2p+1∑
k=0

AkC2p+1−k

)
, (3.5)
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x6n = aCn
n−1∏
p=0

( A2p+1 +Bad

2p∑
k=0

AkC2p−k

A2p+2 +Bad

2p+1∑
k=0

AkC2p+1−k

)
. (3.6)

Proof. By induction, we prove the result for x6n−5. For n = 0, it is easy to verify that

fC0
0−1∏
p=1

(
A2p +Bcf

2p−1∑
k=0

AkC2p−1−k
)

0−1∏
p=0

(
A2p+1 +Bcf

2p∑
k=0

AkC2p−k
) = f = x−5.

Take n > 0 and assume that the results hold for the step n, then prove the results for the step n+ 1. We
get

x6(n+1)−5 =
Cx6n−5

A+Bx6n−2x6n−5
=

fCn
n−1∏
p=1

(
A2p +Bcf

2p−1∑
k=0

AkC2p−1−k
)

n−1∏
p=0

(
A2p+1 +Bcf

2p∑
k=0

AkC2p−k
)

A
(
A2n +Bcf

2n−1∑
k=0

AkC2n−1−k
)
+BcfC2n

A2n +Bcf

2n−1∑
k=0

AkC2n−1−k

.

Hence, we obtain

x6(n+1)−5 =

fCn
n∏
p=1

(
A2p +Bcf

2p−1∑
k=0

AkC2p−1−k
)

n∏
p=0

(
A2p+1 +Bcf

2p∑
k=0

AkC2p−k
) .

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Remark 3.2. According to the expressions (3.1)-(3.6) in the previous theorem, the initial data a, b, c, d, e
and f may be chosen to satisfy the condition abcdef 6= 0, in order to avoid vanishing one or more of the
subsequences of (xn)n modulo 6.

Notation 3.3. We denote by (Pn)n the sequence of two variables polynomials defined for every n ∈N, x
and y in R as

Pn(x,y) = (A−C+Bxy)An −BxyCn.

The following corollary gives a simplified analytic expression when A 6= C.

Corollary 3.4. Consider the sequence (xn)n defined by the formula (1.1) and the initial data that follow. If A 6= C,
then for all n > 0

x6n−5 =

fCn(A−C)

n−1∏
p=1

P2p(c, f)

n−1∏
p=0

P2p+1(c, f)

, x6n−4 =

eCn(A−C)

n−1∏
p=1

P2p(b, e)

n−1∏
p=0

P2p+1(b, e)

,
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x6n−3 =

dCn(A−C)

n−1∏
p=1

P2p(a,d)

n−1∏
p=0

P2p+1(a,d)

, x6n−2 = cCn
n−1∏
p=0

(P2p+1(c, f)
P2p+2(c, f)

)
,

x6n−1 = bCn
n−1∏
p=0

(P2p+1(b, e)
P2p+2(b, e)

)
, x6n = aCn

n−1∏
p=0

(P2p+1(a,d)
P2p+2(a,d)

)
.

Proof. It is sufficient to use in the analytical expressions of the subsequences (3.1)-(3.6), the binomial
identity

xp+1 − yp+1 = (x− y)

p∑
k=0

xkyp−k,

where p is a nonnegative integer and x, y are two real numbers. Thus, the proof is obtained directly.

Corollary 3.5. Consider the sequence (xn)n defined by the formula (1.1) and the initial data that follow. For
A = C, the following subsequences of (xn)n can be obtained by direct calculations

x6n−5 = fA

n−1∏
p=1

(
A+ 2pBcf

)
n−1∏
p=0

(
A+ (2p+ 1)Bcf

) , x6n−4 = eA

n−1∏
p=1

(
A+ 2pBbe

)
n−1∏
p=0

(
A+ (2p+ 1)Bbe

) ,

x6n−3 = dA

n−1∏
p=1

(
A+ 2pBad

)
n−1∏
p=0

(
A+ (2p+ 1)Bad

) , x6n−2 = c

n−1∏
p=0

(A+ (2p+ 1)Bcf
A+ (2p+ 2)Bcf

)
,

x6n−1 = b

n−1∏
p=0

(A+ (2p+ 1)Bbe
A+ (2p+ 2)Bbe

)
, x6n = a

n−1∏
p=0

(A+ (2p+ 1)Bad
A+ (2p+ 2)Bbe

)
.

Remark 3.6. A common hypothesis in the study of rational difference equations is the choice of positive
coefficients and initial data so that the solution will be automatically well-defined. It is, in general a
problem of great difficulty to determine the good set G of the initial data without finding the analytical
expression of the considered sequence. In our study, the good set is determined as follows.

Using Corollaries 3.4 and 3.5, we can obtain easily the good set G of the sequence (xn)n as follows.

Theorem 3.7. Let (xn)n be the sequence defined by the formula (1.1) and the initial data that follows. The good set
of the sequence (xn)n is

G = {(f, e,d, c,b,a) ∈ R6 such that ad, be, and cf belong to R − {
−An

BΣn−1
k=0A

kCn−1−k , n ∈N}}.

More precisely

1. when A 6= C, the good set of the sequence (xn)n is

G = {(f, e,d, c,b,a) ∈ R6 such that ad, be, and cf belong to R − {
−An(A−C)

B(An −Cn)
, n ∈N}};
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2. when A = C, the good set of the sequence (xn)n is

G = {(f, e,d, c,b,a) ∈ R6 such that cf, bd, and ac belong to R − {
A

BZ−
}}.

The initial conditions will be considered in the corresponding good set.

4. Stability analysis of the equilibrium points

Consider the function F defined on R6 as

F(u0,u1,u2,u3,u4,u5) =
Cu5

A+Bu2u5
.

Using the function F, the Eq. (1.1) can be written as

xn+1 = F(xn, xn−1, xn−2, xn−3, xn−4, xn−5),

which has the following characteristic equation

λ6 − q0λ
5 − · · ·− q4λ− q5 = 0. (4.1)

Theorem 4.1. Let (xn)n>−5 be a solution of Eq. (1.1) and the initial data that follow.

1. When B(A−C) > 0, the Eq. (1.1) has a unique equilibrium point x1 = 0.
2. When B(A−C) < 0, the Eq. (1.1) has exactly three equilibrium points

x1 = 0, x2 =

√
C−A

B
, and x3 = −

√
C−A

B
.

Theorem 4.2. Let (xn)n>−5 be a solution of Eq. (1.1) and the initial data that follow.

1. If CA < 0, then there is no real root for (4.1).
2. If 0 6 C

A < 1, then the equilibrium point x1 is locally asymptotically stable.
3. If A = C, then the equilibrium point x1 is nonhyperbolic.
4. If CA > 1, then the equilibrium point x1 is a repeller.

Moreover, for B(A−C) < 0,

(i) the equilibrium points x2 and x3 are nonhyperbolic;
(ii) if 0 < C

A < 1, then the equilibrium points x2 and x3 are unstable.

Proof. First, define U = (u0,u1, . . . ,u5) as an arbitrary point in R6 and recall that qi = ∂F
∂ui

(x, x, · · · , x)
where x is an equilibrium point, then we have the following quantities

∂F

∂u2
(U) =

−CBu2
5

(A+Bu2u5)2 ,
∂F

∂u5
(U) =

CA

(A+Bu2u5)2 . (4.2)

We also have, for all U in the domain of differentiability of F, the following

∂F

∂u0
(U) =

∂F

∂u1
(U) =

∂F

∂u3
(U) =

∂F

∂u4
(U) = 0.

For the equilibrium point x̄1 = 0, the quantities q2 and q5 in Eq. (4.2) are

q2 = 0 and q5 =
C

A
.

The characteristic equation (4.1) of the equilibrium point x1 = 0 is

λ6 −
C

A
= 0. (4.3)

Thus, we have the following cases.



M. Ghazel, et al., J. Nonlinear Sci. Appl., 10 (2017), 4662–4679 4668

1. If CA < 0, then Eq. (4.3) has no real root.
2. If 0 < C

A < 1, then the real roots are ±(CA)
1
6 . So all the roots of Eq. (4.3) have absolute value less

than one which imply that the equilibrium point x1 is locally asymptotically stable.
3. If C = A, then the real roots of Eq. (4.3) are −1 and 1, so x1 is nonhyperbolic.
4. If CA > 1, then all the roots of Eq. (4.3) have absolute value greater than one, so x1 is a repeller.

However, when B(A−C) < 0, the two equilibrium points x̄2 and x̄3 appear. According to Eq. (4.2), their
quantities q2 and q5 are the same and they are given as follows

q2 =
∂F

∂u2
(X̄i) =

A−C

C
and q5 =

∂F

∂u5
(X̄i) =

A

C
,

where X̄i = (x̄i, x̄i, x̄i, x̄i, x̄i, x̄i), i = 2, 3. Thus, the equilibrium points x2 and x3 have the same character-
istic equation which is given by

λ6 −
A−C

C
λ3 −

A

C
= 0. (4.4)

The real roots of Eq. (4.4) are, −1 and (AC )
1
3 , then the equilibrium points x2 and x3 of (1.1) are nonhyper-

bolic. Furthermore, if AC > 1, then Eq. (4.4) has at least one root with absolute value greater than one
which implies that x2 and x3 are unstable.

5. Convergence

In this section, we study the convergence of the solution of difference equation (1.1).

5.1. The case |AC | < 1.
Theorem 5.1. Let (xn)n>−5 be the sequence given by the formula (1.1) and the initial data that follow. Assume
that |AC | < 1, then the subsequences (x6n−j)n, j ∈ {0, 1, . . . , 5} defined in (3.1)-(3.6) converge.

Proof. We distinguish the following two cases.

1. First case, when A−C+Bcf 6= 0, so by Corollary 3.4, we get

x6n−5 = (A−C)fCn

n−1∏
p=1

(
(A−C+Bcf)A2p +BcfC2p

)
n−1∏
p=0

(
(A−C+Bcf)A2p+1 +BcfC2p+1

)

=
(A−C)fCn

(A−C+Bcf)A+BcfC

n−1∏
p=1

( BcfC2p
(
(A−C+Bcf)

Bcf (AC )
2p + 1

)
BcfC2p+1

(
(A−C+Bcf)

Bcf (AC )
2p+1 + 1

))

=
fC

A+Bcf

n−1∏
p=1

( 1 + A−C+Bcf
Bcf (AC )

2p

1 +
(A−C+Bcf)

Bcf (AC )
2p+1

)
=

fC

A+Bcf

n−1∏
p=1

Up,

where (Up)p is the sequence defined as Up =
1+α(AC )2p

1+α(AC )2p+1 and α = A−C+Bcf
Bcf .

For p big enough, Up is always greater than one or lies between zero and one. Consequently, Taylor
expansion can be applied for Up as follows

Up = 1 +α(
A

C
)2p(1 −

A

C
) + o((

A

C
)2p),

which implies that Up is equivalent to 1+α(AC )
2p(1− A

C ), where this quantity represents the general term
of convergent infinite product. Therefore, the subsequence (x6n−5)n is convergent.
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2. In the second case where A−C+ Bcf = 0, the subsequence (x6n−5)n is constant and equals f. Hence,
it is convergent. Similarly, the proof for the other subsequences (x6n−j)n, j = 0, . . . , 4 can be obtained.
Thus, the proof is completed.

Remark 5.2 (Commentary on the convergence of (xn)n in the case |AC | < 1). We have proved that, in the
case when |AC | < 1, every subsequence (x6n−j)n (j = 0, 1, 2, 3, 4, 5) converges to a real number lj. So a
question arises about the convergence of the whole sequence (xn)n. To answer it, we first consider the
subsequences (x6n−1)n and (x6n−4)n which are related by the equations

x6(n+1)−1 =
Cx6n−1

A+Bx6(n+1)−4x6n−1
, (5.1)

x6(n+1)−4 =
Cx6n−4

A+Bx6n−1x6n−4
. (5.2)

Taking the limit on n in the Eq. (5.1), we obtain l1 = Cl1
A+Bl1l4

, which is equivalent to

S1 :


l1 = 0,
or
l1 6= 0 and l4 = C−A

Bl1
.

Also, taking the limit on n in the Eq. (5.2), we obtain l4 = Cl4
A+Bl4l1

, which is equivalent to

S2 :


l4 = 0,
or
l1 6= 0 and l4 = C−A

Bl1
.

Combining the systems S1, S2 and since A 6= C, we obtain

S :


l1 = l4 = 0,
or
l1 6= 0 and l4 = C−A

Bl1
.

However, the proposition l1 = l4 = 0 contradicts the fact that the infinite product Πp>0Up converges,
hence the only possibility is that

l1 6= 0, l4 6= 0, and l4 =
C−A

Bl1
.

Then, denote by g the function defined on R − {0} as g(x) = C−A
Bx , where

g(x) = x iff x2 =
C−A

B
.

Hence, g has fixed points in R − {0} iff C−A
B > 0, which are given as ∓

√
C−A
B . It can be similarly shown

that

(i) the limits l2 and l5 are associated to each other under the mapping g,

(ii) the limits l3 and l6 are associated to each other under the mapping g.

The numerical example (see Fig. 1) illustrates that, l1 and l4 are not necessarily the same even we choose
C−A
B > 0 and |AC | < 1, which implies that the sequence (xn)n may converge or diverge.
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5.2. The case C = A.
Theorem 5.3. Let (xn)n>−5 be the sequence given by the formula (1.1) and the initial data that follow. If A = C,
then the sequence (xn)n converges toward zero.

Proof. Replacing C with A into Corollary 3.5, we get

x6n−5 =
fA

A+Bcf

n−1∏
p=1

( A+ 2pBcf
A+ (2p+ 1)Bcf

)
=

fA

A+Bcf

n−1∏
p=1

Vp,

where Vp =
1 +

A

2pBcf

1 +
A

2pBcf
+

1
2p

. Furthermore, there exists p0 ∈N such that, for all p > p0, Vp ∈ (0, 1). Then,

the Taylor expansion gives

Vp = (1 +
1

2pBcf
)(1 −

1 +Bcf

2pBcf
+ o(

1
p
)) = 1 −

1
2p

+ o(
1
p
),

which is the general term of divergent infinite product. Since for p big enough, 0 < Vp < 1, then
lim
n→∞Πn−1

p=1Up = 0, which implies that the subsequence (x6n−5)n converges to zero. Similarly, one can

easily prove that the other subsequences converge to zero, therefore the sequence (xn)n converges to zero
which completes the proof.

5.3. The case C = −A.
Theorem 5.4. Let (xn)n>−5 be the sequence given by the formula (1.1) and the initial data that follow, and suppose
that AB < 0, if C = −A, we have the following propositions:

1. the subsequence (x6n−5)n converges iff cf ∈ (−∞, 0) ∪ [−2A
B ,∞). However, the subsequence (x6n−2)n

converges iff cf ∈ (0, −2A
B ];

2. the subsequence (x6n−4)n converges iff be ∈ (−∞, 0) ∪ [−2A
B ,∞). However, the subsequence (x6n−1)n

converges iff be ∈ (0, −2A
B ];

3. the subsequence (x6n−3)n converges iff ad ∈ (−∞, 0) ∪ [−2A
B ,∞). However, the subsequence (x6n)n con-

verges iff ad ∈ (0, −2A
B ].

Proof.

1. (a) Replacing C by (−A) in Corollary 3.4 for the subsequence (x6n−5)n, we obtain

x6n−5 = f(−A)n2A

n−1∏
p=1

(
(2A+Bcf)A2p +Bcf(−A)2p

)
n−1∏
p=0

(
(2A+Bcf)A2p+1 +Bcf(−A)2p+1

)

=
f(−A)n

A+Bcf

n−1∏
p=1

( 2A2p+1

2A2p+2 + 2BcfA2p+1

)
= f
( −1

1 +
Bcf

A

)n
.

Thus, (x6n−5)n converges iff


|1 + Bcf

A | > 1,
or
1 + Bcf

A = −1.
This is equivalent to cf ∈ (−∞, 0) ∪ [−2A

B ,∞). So, we

deduce that
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(i) cf ∈ (−∞, 0)∪ (−2A
B ,∞) is equivalent to (x6n−5)n converges to zero,

(ii) cf ∈ (0, −2A
B ) is equivalent to (x6n−5)n goes to infinity,

(iii) cf = −2A
B is equivalent to x6n−5 = f.

(b) To prove the other part of (1), we replace C by (−A) in Corollary 3.4 for the subsequence (x6n−2)n,
then we get

x6n−2 = c(−A)n
n−1∏
p=0

(A2p+1 +BcfA2p

A2p+2

)
= c
(
− (1 +

Bcf

A
)
)n

=
cf

x6n−5
.

Consequently, for all c and f in R such that cf 6= −2A
B , the subsequence (x6n−2)n converges iff (x6n−5)n

goes to a nonzero limit, which is equivalent (by the assertions (i) and (ii)) that (|x6n−5|)n diverges to
infinity. The last assertion holds if and only if cf ∈ (0, −2A

B ).

Similar relations hold between the subsequences (x6n−4)n, (x6n−1)n, and between the subsequences
(x6n−3)n, (x6n)n for proving (2) and (3). This completes the proof.

Remark 5.5.

(i) The case C = −A and AB > 0 give a quite similar results.
(ii) It is easy to see that, for C = −A, the only possibility for (xn)n to be convergent is when a = b =

c = d = e = f = ±
√

−2A
B and (xn)n is equal to this common value of initial data, i.e., xn = a.

5.4. The case |AC | > 1.
Theorem 5.6. Let (xn)n>−5 be the sequence given by the formula (1.1) and the initial data that follow. Assume
that |AC | > 1, then

1. for all j ∈ {0, . . . , 5}, the subsequence (x6n−j)n converges;
2. the sequence (xn)n converges iff (A − C + Bcf)(A − C + Bbe)(A − C + Bad) 6= 0, or A − C + Bcf =
A−C+Bbe = A−C+Bad = 0 and a = b = c = d = e = f.

Proof.

1. For the subsequence (x6n−5), we distinguish two cases.

(a) For A−C+Bcf 6= 0, according to Corollary 3.4

x6n−5 = (A−C)fCn

n−1∏
p=1

(
(A−C+Bcf)A2p +BcfC2p

)
n−1∏
p=0

(
(A−C+Bcf)A2p+1 +BcfC2p+1

)

=
fC

A+Bcf

(C
A

)n−1 n−1∏
p=1

( 1 + Bcf
A−C+Bcf

(
C
A

)2p

1 + Bcf
A−C+Bcf

(
C
A

)2p+1

)
=

fC

A+Bcf

(C
A

)n−1 n−1∏
p=1

Wp,

where (Wp)p is the sequence defined as Wp =
1+β

(
C
A

)2p

1+β
(
C
A

)2p+1 and β = Bcf
A−C+Bcf . Also, there exists

p0 ∈ N such that either for all p > p0, Wp ∈ (0, 1) or for all p > p0, Wp > 1. Hence, the Taylor
expansion gives

Wp = 1 +β(1 −
C

A
)
(C
A

)2p
+ o(

(C
A

)2p+1
),

which is the general term of convergent infinite product, thus (x6n−5)n converges to zero. Similarly,
one can prove that the subsequence (x6n−2)n converges to zero and that,
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(i) for A−C+Bbe 6= 0, the subsequences (x6n−4)n and (x6n−1)n converge to zero;
(ii) for A−C+Bad 6= 0, the subsequences (x6n−3)n and (x6n)n converge to zero.

(b) For A−C+Bcf = 0, by Corollary 3.4, the subsequences (x6n−5)n and (x6n−2)n are constants, x6n−5 =
f and x6n−2 = c.
Similarly, by Corollary 3.4,

(i) for A − C + Bbe = 0, the subsequences (x6n−4)n and (x6n−1)n are constants, x6n−4 = e and
x6n−1 = b;

(ii) for A − C + Bad = 0, the subsequences (x6n−3)n and (x6n)n are constants, x6n−3 = d and
x6n = a.

2. The preview calculus shows that

(a) if (A−C+Bcf)(A−C+Bbe)(A−C+Bad) 6= 0, then the sequence (xn)n converges to zero;
(b) if A−C+ Bcf = A−C+ Bbe = A−C+ Bad = 0, then the subsequences (x6n−j)n, j = 0, 1, . . . , 5 are

constants: x6n−5 = f, x6n−4 = e, x6n−3 = d, x6n−2 = c, x6n−1 = b and x6n = a, then (xn)n converges
if and only if a = b = c = d = e = f;

(c) consider for instance the case A−C+Bcf = 0 and A−C+Bbe 6= 0, the preview computations show
that the subsequences (x6n−5)n and (x6n−2)n are constants, x6n−5 = f and x6n−2 = c, and that the
subsequences (x6n−5)n, (x6n−2)n converge to zero, so if (xn)n converges, then f = c = 0, this implies
that A = C (since A−C+ Bcf = 0), which contradicts the fact that |AC | > 1. Thus (xn)n diverges and
this achieves the proof.

Based on the calculus in all preview cases, if C = −A and abcdef 6= (−2A
B )3, then one of the products

of cf, eb, and da is different of −2A
B , so the sequence (xn)n is not bounded. Therefore, the following

theorem is now proved.

Theorem 5.7 (Boundedness of (xn)n). The difference equation (1.1) has an unbounded solution iff C = −A and
abcdef 6= (−2A

B )3.

6. Periodicity

In the sequel, we need the following lemma, which describes sufficient conditions for Eq. (1.1) to have
a periodic solution.

Lemma 6.1. Let (xn)n>−5 be a solution of Eq. (1.1) and the initial data that follow. Suppose that there are real
numbers l5, l4, l3, l2, l1, l0 such that limn→∞ x6n−j = lj for j = 0, . . . , 5. Then let (yn)n>−5 be the period-6
sequence such that

y−j = lj for all j = 0, . . . , 5.

Consequently, the sequence (yn)n>−5 is a period-6 solution of Eq. (1.1).

The periodicity results are given by the following theorem.

Theorem 6.2. Let (xn)n>−5 be a solution of Eq. (1.1) and the initial data that follow, then

1. for |AC | < 1, Eq. (1.1) has a periodic-6 solution;
2. for C = −A, Eq. (1.1) has a periodic-6 solution iff cf = be = ad = −2A

B ;
3. for |AC | > 1, if (A−C+ Bcf)(A−C+ Bbe)(A−C+ Bad) = 0, then Eq. (1.1) has a nontrivial periodic-6

solution, more precisely,
(a) if A− C+ Bcf = A− C+ Bbe = A− C+ Bad = 0, then the solution of Eq. (1.1) is a periodic-6

solution;
(b) if at least one but not all the following terms A−C+ Bcf, A−C+ Bbe and A−C+ Bad is equal to

zero, then Eq. (1.1) has a periodic-6 solution.
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Proof.

1. Suppose that |AC | < 1, then by Theorem 5.1, there are real numbers l5, l4, l3, l2, l1, and l0, such that
limn→∞ x6n−j = lj for all j = 0, . . . , 5. Applying Lemma 6.1, it follows that the sequence

l5, l4, l3, l2, l1, l0, l5, l4, l3, l2, l1, l0, . . . ,

is a periodic-6 solution of Eq. (1.1).
2. In the case of C = −A, if AB < 0, then using Theorems 5.4 and 5.7, we find that at cf = be = ad =

−2A
B , Eq. (1.1) has a periodic-6 solution

f, e,d, c,b,a, f, e,d, c,b,a, . . . .

If abcdef 6= (−2A
B )3, the solution of Eq. (1.1) is unbounded therefore it has no periodic solutions.

The same results hold when AB > 0.
3. In the case of |AC | > 1, we consider the following.

(a) If A− C+ Bcf = A− C+ Bbe = A− C+ Bad = 0, then by (2) (b) in the proof of Theorem
5.6, the subsequences (x6n−j)n, j = 0, 1, . . . , 5 are constants: x6n−5 = f, x6n−4 = e, x6n−3 = d,
x6n−2 = c, x6n−1 = b and x6n = a, so the solution of Eq. (1.1) is a periodic-6 solution

f, e,d, c,b,a, f, e,d, c,b,a, . . . .

(b) Suppose for instance that A− C+ Bcf = A− C+ Bbe = 0 and A− C+ Bad 6= 0, then by (1)
(a) and (1) (b) in the proof of Theorem 5.6, we get x6n−5 = f, x6n−4 = e, x6n−2 = c, x6n−1 = b,
and the subsequences (x6n−3)n, (x6n)n converge to zero. Applying Lemma 6.1, we obtain the
following periodic-6 solution of Eq. (1.1)

f, e, 0, c,b, 0, f, e, 0, c,b, 0, . . . .

This completes the proof.

7. Numerical simulations

Even if it will be possible to obtain analytical conditions, it would be quite difficult to deal with them.
So, in order to analyze the dynamical behaviors of Eq. (1.1), we investigate the general solutions of the
whole sequence and subsequences of the proposed equation, by using numerical simulation. Therefore
we study the following cases numerically.

1. The case |AC | < 1 can be obtained by choosing the parameter values A = 0.5, B = C = 1 and the
initial data a = −1, b = 0.5, c = −0.2, d = 0.8, e = 0.5, f = 0.4. In Fig. 1, the simulation results show
that the subsequences (x6n−j)n, j = 0, 1, . . . , 5 converge which match Theorem 5.1 and the whole
sequence (xn)n diverges which matches Remark 5.2.

2. The case C = A is investigated using the parameter values A = C = 0.5, B = 1 and the initial data
a = 0.1, b = 0.2, c = 0.3, d = −0.4, e = −0.5, f = 1. The solution of Eq. (1.1) converges to zero is
depicted in Fig. 2 which is coherent to Theorem 5.3.

3. The case C = −A, AB < 0, cf ∈ (−∞, 0) ∪ (−2A
B ,∞), be ∈ (0, −2A

B ) and ad ∈ (−∞, 0) ∪ (−2A
B ,∞) is

discussed using the parameter values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = 0.3,
c = 0.1, d = −0.3, e = 0.5, f = −1. In Fig. 3, it is shown that the subsequences (x6n−5)n, (x6n−1)n,
(x6n−3)n converge to zero, however the subsequences (|x6n−2|)n, (|x6n−4|)n, (|x6n|)n go to infinity
which are coherent to Theorem 5.4. Hence, the solution is unbounded which matches Theorem 5.7.
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Figure 1: Using the parameter values A = 0.5, B = C = 1 and the initial data a = −1, b = 0.5, c = −0.2, d = 0.8, e = 0.5, f = 0.4;
(a) the sequence (xn)n diverges, (b) the subsequences (x6n−j)n, j = 0, 1, . . . , 5 converge.
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Figure 2: Using the parameter values A = C = 0.5, B = 1 and the initial data a = 0.1, b = 0.2, c = 0.3, d = −0.4, e = −0.5, f = 1;
(a) the whole sequence (xn)n converges to zero, (b) the corresponding subsequences are illustrated.

b)

-5 0 5 10 15 20 25 30 35 40 45 50

-5

-4

-3

-2

-1

0

1

2

3

4

5

X
n

 X6n-5

 X6n-4

 X6n-3

 X6n-2

 X6n-1

 X6n

n

0 20 40 60 80 100 120 140 160 180 200

-10

-8

-6

-4

-2

0

2

4

6

8

10

X
n

n

a)

Figure 3: Using the parameter values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = 0.3, c = 0.1, d = −0.3, e = 0.5,
f = −1; (a) the whole sequence is unbounded, (b) the corresponding subsequences are illustrated.
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4. The case C = −A, AB < 0, cf = −2A
B , be ∈ (0, −2A

B ) and ad ∈ (0, −2A
B ) is studied using the parameter

values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = 0.3, c = 1
3 , d = 0.3, e = 0.5, f = 3. In

Fig. 4, it is shown that the subsequences (x6n−5)n and (x6n−2)n are constants, x6n−5 = f, x6n−2 = c,
(x6n−1)n and (x6n)n converge to zero, however the subsequences (|x6n−3|)n, (|x6n−4|)n go to infinity
which match Theorem 5.4. Therefore the solution is unbounded which agrees Theorem 5.7.
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Figure 4: Using the parameter values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = 0.3, c = 1
3 , d = 0.3, e = 0.5, f = 3;

(a) the whole sequence (xn)n is unbounded, (b) the corresponding subsequences are illustrated.

5. The case C = −A, AB < 0, cf = −2A
B , be = −2A

B , ad ∈ (−∞, 0)∪ (−2A
B ,∞), is investigated using the

parameter values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = −3, c = 0.25, d = −0.3,
e = − 1

3 , f = 4. In Fig. 5, we notice that (x6n−1)n, (x6n−2)n, (x6n−4)n, (x6n−5)n are constants (since
x6n−1 = b, x6n−2 = c, x6n−4 = e, x6n−5 = f), the subsequence (x6n−3)n converges to zero, however
the subsequence (|x6n|)n goes to infinity which is coherent to Theorem 5.4. Also, the whole solution
is unbounded which is coherent to Theorem 5.7.
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Figure 5: Using the parameter values A = 2, B = −4, C = −2 and the initial data a = 0.2, b = −3, c = 0.25, d = −0.3, e = − 1
3 ,

f = 4; (a) the whole sequence (xn)n is unbounded, (b) the corresponding subsequences are illustrated.
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6. The case |AC | > 1, (A− C+ Bcf)(A− C+ Bbe)(A− C+ Bad) 6= 0, is studied using the parameter
values A = 5, B = 2, C = 4 and the initial data a = 2, b = −3, c = 2, d = −2, e = −0.5, f = 1. In Fig.
6, it is clear that the solution is damping to zero which is coherent to Theorem 5.6 part 2.
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Figure 6: Using the parameter values A = 5, B = 2, C = 4 and the initial data a = 2, b = −3, c = 2, d = −2, e = −0.5, f = 1; (a)
the whole sequence (xn)n converges to zero, (b) the corresponding subsequences are illustrated.

7. The case |AC | > 1, (A−C+Bcf)(A−C+Bbe) 6= 0, A−C+Bad = 0 is discussed using the parameter
values A = 17, B = −3, C = 5 and the initial data a = 1, b = −2, c = 2, d = 4, e = −0.5, f = 1. In Fig.
7, it is shown that the subsequences (x6n−1)n, (x6n−2)n, (x6n−4)n, (x6n−5)n converge to zero, and
the subsequences (x6n−3)n, (x6n)n are constants (since x6n−3 = d and x6n = a). Thus, the whole
sequence is bounded.
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Figure 7: Using the parameter values A = 17, B = −3, C = 5 and the initial data a = 1, b = −2, c = 2, d = 4, e = −0.5, f = 1; (a)
the whole sequence (xn)n is bounded, (b) the corresponding subsequences are illustrated.

8. The case |AC | > 1, A− C+ Bcf 6= 0, A− C+ Bbe = A− C+ Bad = 0 is illustrated in Fig. 8, with
the parameter values A = 15, B = −1, C = 3 and the initial data a = 2, b = −3, c = 1, d = 6,
e = −4, f = 1. In this figure it is shown that the subsequences (x6n−2)n, (x6n−5)n converge to
zero and that the subsequences (x6n)n, (x6n−1)n, (x6n−3)n, (x6n−4)n are constants (since x6n = a,
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x6n−1 = b, x6n−3 = d and x6n−4 = e). So the whole sequence (xn)n is bounded. This case is justified
analytically in the proof of Theorem 5.6.
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Figure 8: Using the parameter values A = 15, B = −1, C = 3 and the initial data a = 2, b = −3, c = 1, d = 6, e = −4, f = 1; (a)
the whole sequence (xn)n is bounded, (b) the corresponding subsequences are illustrated.

9. The case |AC | > 1, A−C+ Bcf = A−C+ Bbe = A−C+ Bad = 0 is illustrated in Fig. 9 in which
we set the parameter values A = 9, B = −2, C = 1 and the initial data a = 1, b = −1, c = 2, d = 4,
e = −4, f = 2. In this figure it is clear that the subsequences (x6n−j)n, j = 0, 1, . . . , 5 are constants
(since x6n = a, x6n−1 = b, x6n−2 = c, x6n−3 = d, x6n−4 = e, x6n−5 = f). This is justified analytically
in the proof of Theorem 5.6. In Fig. 9, it is also depicted that the obtained solution is a periodic-6
solution

f, e,d, c,b,a, f, e,d, c,b,a, . . . .

This is in harmony with Theorem 6.2.
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Figure 9: Using the parameter values A = 9, B = −2, C = 1 and the initial data a = 1, b = −1, c = 2, d = 4, e = −4, f = 2; (a) the
whole sequence (xn)n exhibits a periodic-6 solution, (b) the subsequences (x6n−j)n, j = 0, 1, . . . , 5 are all constants.

8. Conclusion

We have studied the dynamical behaviors of the rational difference equation xn+1 = Cxn−5
A+Bxn−2xn−5

with arbitrary initial conditions, where A, B, and C are arbitrary constants. We have also obtained its
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general solution and discussed its asymptotic behaviors. Moreover, we have investigated the existence of
periodic solutions in the proposed difference equation. Numerical simulations have been used to verify
the correctness of analytical results.
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