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Abstract
The purpose of this article is to prove the non-self multivariate contraction mapping principle in a Banach space. The main

result is the following: let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : C→ X be a weakly inward
N-variables non-self contraction mapping. Then T has a unique multivariate fixed point p ∈ C. That is, there exists a unique
element p ∈ C such that T(p,p, · · · ,p) = p. In order to get the non-self multivariate contraction mapping principle, the inward
and weakly inward N-variables non-self mappings are defined. In addition, the meaning of N-variables non-self contraction
mapping T : C→ X is the following:

‖Tx− Ty‖ 6 h∇(‖x1 − y1‖, ‖x2 − y2‖, · · · , ‖xN − yN‖)

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN, where h ∈ (0, 1) is a constant, and ∇ is an N-variables real function
satisfying some suitable conditions. The results of this article improve and extend the previous results given in the literature.
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1. Introduction

Banach contraction mapping principle is one of the important tools (or methods) in nonlinear analysis
and other mathematical fields. Weak contractions are generalizations of Banach contraction mappings
which have been studied by several authors. In 1968, Browder [4] proved a φ-contraction mapping princi-
ple. Subsequently, this result was extended in 1969 by Boyd and Wong [5] by weakening the hypothesis on
φ, in the sense that it is sufficient to assume that φ is right upper semi-continuous. For a comprehensive
study of relations between several such contraction type conditions, see [7, 11, 12, 19]. In 1973, Geraghty
[7] introduced the Geraghty-contraction and obtained the fixed point theorem. On the other hand, in 2015,
Su and Yao [18] proved a more generalized contraction mapping principle. In particular, the study of the
fixed points for weak contractions and generalized contractions was extended to partially ordered metric
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spaces in [2, 8–10, 15–17]. Among them, some results involve altering distance functions. Such functions
were introduced by Khan et al. in [14], where some fixed point theorems are presented. In 2016, Su et al.
[17] presented the concept of multivariate fixed point and proved a multivariate fixed point theorem for
the N-variables contraction mappings which further generalizes Banach contraction principle.

The following are more relevant content with the subject of this article.
In 1976, Caristi [6] put forward Caristi’s fixed point theorem:

Theorem 1.1 ([6, Caristi’s fixed point theorem]). Let X be a complete metric space, f : X −→ X be a mapping,
and φ : X −→ R+ be a lower semi-continuous functional. If

d(x, f(x)) 6 φ(x) −φ(f(x)), ∀ x ∈ X,

where R+ is the set of the positive real numbers, then f has a fixed point.

In 2009, Agarwal et al. [1] proved the following non-self contraction mapping principle by using
Caristi’s fixed point theorem.

Theorem 1.2 ([1]). Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : C → X be a
weakly inward non-self contraction mapping. Then T has a unique fixed point.

The purpose of this article is to prove the non-self multivariate contraction mapping principle in a
Banach space. In order to get the non-self multivariate contraction mapping principle, the inward and
weakly inwardN-variables non-self mappings are defined. Of course, the meaning ofN-variables non-self
contraction mapping will be defined. The results of this article improve and extend the previous results
given in the literature.

2. Preliminaries

Definition 2.1 ([17]). Let (X,d) be a metric space, T : XN → X be an N-variables mapping. An element
p ∈ X is called a multivariate fixed point if

p = T(p,p, · · ·,p).

Definition 2.2 ([1]). Let C be a nonempty subset of a Banach space (X, ‖ · ‖). For x ∈ C, the inward set of
x relative to C is the set

IC(x) = {x+ t(y− x) : y ∈ C, t > 0}.

Definition 2.3 ([1]). Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Let T : C→ X be a mapping.
Then T is said to be

(1) inward mapping if Tx ∈ IC(x) for all x ∈ C,
(2) weakly inward mapping if Tx ∈ IC(x) for all x ∈ C,

where IC(x) is the closure of the set IC(x).

Definition 2.4 ([1]). Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Let T : C → X be a non-self
mapping. Then T is said to be a non-self contraction mapping, if there exists a constant 0 < h < 1 such
that

‖Tx− Ty‖ 6 h‖x− y‖, ∀ x,y ∈ C.

In this section we present the following concepts which are useful in our approach. In particular, the
following Definition 2.5 is an extension of Definition 2.3.

Definition 2.5. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Let T : CN → X be an N-variables
mapping. Then T is said to be
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(1) inward mapping if Tx ∈ IC(xi) for all x = (x1, x2, · · · , xN) ∈ CN,
(2) weakly inward mapping if Tx ∈ IC(xi) for all x = (x1, x2, · · · , xN) ∈ CN,

where CN = C×C× · · · ×C is the Cartesian product of the set C.

Definition 2.6. A multiply normed function ∇(a1,a2, · · ·,aN) is a continuous N variables non-negative
real function with the domain

{(a1,a2, · · ·,aN) ∈ RN : ai > 0, i ∈ {1, 2, 3, · · ·,N}}

which satisfies the following conditions:

(1) ∇(a1,a2, · · ·,aN) is non-decreasing for each variable ai, i ∈ {1, 2, 3, · · ·,N};
(2) ∇(a1,a2, · · ·,aN) −→ 0⇔ ai −→ 0, i ∈ {1, 2, 3, · · ·,N};
(3) ∇(λa1, λa2, · · ·, λaN) = λ∇(a1,a2, · · ·,aN), ∀ λ > 0;
(4) ∇(a1 + b1,a2 + b2, · · ·,aN + bN) 6 ∇(a1,a2, · · ·,aN) +∇(b1,b2, · · ·,bN);
(5) ∇(a,a, · · ·,a) = a

for all ai,bi,a ∈ R, i ∈ {1, 2, 3, · · ·,N}, where R denotes the set of all real numbers.

The following are some basic examples of multiply normed functions:

Example 2.7. ∇1(a1,a2, · · ·,aN) = 1
N

N∑
i=1

ai.

Example 2.8. ∇2(a1,a2, · · ·,aN) =

N∑
i=1

λiai, λi ∈ (0, 1),
N∑
i=1

λi = 1.

Example 2.9. ∇3(a1,a2, · · ·,aN) =

√√√√ 1
N

N∑
i=1

a2
i.

It is obvious that ∇3 satisfies conditions (1)-(3) and (5). So we only need to check condition (4). From
the definition of the ∇3, we have, by using Minkowski inequality, that

∇3(a1 + b1,a2 + b2, · · ·,aN + bN) =

√√√√ 1
N

N∑
i=1

‖ai + bi‖2 6

√√√√ 1
N

N∑
i=1

(‖ai‖+ ‖bi‖)2

6

√√√√ 1
N

N∑
i=1

‖ai‖2 +

√√√√ 1
N

N∑
i=1

‖bi‖2

= ∇3(a1,a2, · · ·,aN) +∇3(b1,b2, · · ·,bN).

Example 2.10. ∇4(a1,a2, · · ·,aN) = max{a1,a2, · · ·,aN}.

3. Main results

Lemma 3.1. Let X be a Banach space with the norm ‖ · ‖. We consider on the Cartesian product space XN =
X×X× · · · ×X the following functional

‖x‖∗ = ∇(‖x1‖, ‖x2‖, · · · , ‖xN‖), ∀ x = (x1, x2, · · ·, xN) ∈ XN,

where ∇ is a multiply normed function. Then (XN, ‖ · ‖∗) is a Banach space.
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Proof. We need firstly to check the following conditions:

(1) ‖x‖∗ > 0 and ‖x‖∗ = 0⇔ x = 0, x ∈ XN;
(2) ‖λx‖∗ = |λ|‖x‖∗, ∀ x ∈ XN, λ ∈ R;
(3) ‖x+ y‖∗ 6 ‖x‖∗ + ‖y‖∗, ∀ x,y ∈ XN.

The conditions (1) and (2) are obvious. Next, we only need to check the condition (3). From the definition
of ‖ · ‖∗, we have that

‖x+ y‖∗ = ∇(‖x1 + y1‖, ‖x2 + y2‖, · · · , ‖xN + yN‖)
6 ∇(‖x1‖+ ‖y1‖, ‖x2‖+ ‖y2‖, · · · , ‖xN‖+ ‖yN‖)
6 ∇(‖x1‖, ‖x2‖, · · · , ‖xN‖) +∇(‖y1‖, ‖y2‖, · · · , ‖yN‖)
= ‖x‖∗ + ‖y‖∗

for all x = (x1, x2, · · · , xN), x = (x1, x2, · · · , xN) ∈ XN. We secondly need to prove that (XN, ‖ · ‖∗) is
complete. Let {xn} be a Cauchy sequence in the linear normed space (XN, ‖ · ‖∗), where

xn = (xn,1, xn,2, · · ·, xn,N), n = 1, 2, 3, · · · .

In this case, we have that

lim
n,m→∞ ‖xn − xm‖∗ = lim

n,m→∞∇(‖xn,1 − xm,1‖, ‖xn,2 − xm,2‖, · · · , ‖xn,N − xm,N‖) = 0,

which implies that
lim

n,m→∞ ‖xn,i − xm,i‖ = 0, ∀ i = 1, 2, 3, · · ·,N.

Since (X, ‖ · ‖) is a Banach space, there exist x1, x2, · · ·, xN such that

lim
n,m→∞ ‖xn,i − xi‖ = 0, ∀ i = 1, 2, 3, · · ·,N.

Let x = (x1, x2, · · ·, xN), then, we have

lim
n→∞ ‖xn − x‖∗ = lim

n→∞∇(‖xn,1 − x1‖, ‖xn,2 − x2‖, · · · , ‖xn,N − xN‖) = 0,

which implies that the sequence {xn} converges, in ‖ · ‖∗, to x. Hence (XN, ‖ · ‖∗) is complete. This
completes the proof.

In this section, we give the following definition which is an extension of Definition 2.4.

Definition 3.2. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Let T : CN → X be an N-variables
mapping. Then T is said to be a non-self ∇-contraction mapping, if there exists a constant 0 < h < 1 such
that

‖Tx− Ty‖ 6 h∇(‖x1 − y1‖, ‖x2 − y2‖, · · · , ‖xN − yN‖)

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN, where ∇ is a given multiply normed function.

Now, we prove the following lemmas which are useful for our main results.

Lemma 3.3. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Banach space (XN, ‖ · ‖∗) is defined by Lemma
3.1. Let T : CN → X be an N-variables non-self ∇-contraction mapping. Let T∗ : CN → XN be a mapping defined
by

T∗(x1, x2, · · ·, xN) = (T(x1, x2, · · ·, xN), T(x1, x2, · · ·, xN), · · ·, T(x1, x2, · · ·, xN))

for any (x1, x2, · · ·, xN) ∈ CN. Then T∗ is a non-self contraction mapping in Banach space (XN, ‖ · ‖∗).
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Proof. From the definition of the norm ‖ · ‖∗, we have that

‖T∗(x) − T∗(y)‖∗ = ∇(‖Tx− Ty‖, ‖Tx− Ty‖, · · · , ‖Tx− Ty‖)
= ‖Tx− Ty‖
6 h∇(‖x1 − y1‖, ‖x2 − y2‖, · · · , ‖xN − yN‖)
= h‖x− y‖∗

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN. Hence T∗ is a non-self contraction mapping in
Banach space (XN, ‖ · ‖∗). This completes the proof.

Lemma 3.4. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Banach space (XN, ‖ · ‖∗) is defined by Lemma
3.1. Let T : CN → X be an inward N-variables non-self mapping. Let T∗ : CN → XN be a mapping defined as in
Lemma 3.3. Then T∗ is an inward non-self mapping in Banach space (XN, ‖ · ‖∗).

Proof. Let CN = C×C · · · ×C be the Cartesian product of the set C. For any x = (x1, x2, · · · , xN) ∈ CN,
the inward set of x relative to CN is the set

ICN(x) = {x+ t(y− x) : y ∈ CN, t > 0}.

The inward set ICN(x) is also expressed as follows

ICN(x) = {x+ t(y− x) : y ∈ CN, t > 0}

= {(x1, x2, · · · , xN) + t((y1,y2, · · · ,yN) − (x1, x2, · · · , xN)) : y ∈ CN, t > 0}

= {(x1 + t(y1 − x1), x2 + t(y2 − x2), · · · , xN + t(yN − xn) : y ∈ CN, t > 0}
= IC(x1)× IC(x2)× · · · × IC(xN),

where y = (y1,y2, · · · ,yN). Since T is an inward N-variables non-self mapping, we have Tx ∈ IC(xi)
for all x = (x1, x2, · · · , xN) ∈ CN so that T∗x = (Tx, Tx, · · · , Tx) ∈ ICN(x). Then T∗ is an inward non-self
mapping in Banach space (XN, ‖ · ‖∗). This completes the proof.

It is easy to see that
ICN(x) = ICN(x1)× ICN(x2)× · · · × ICN(xN)

for all x = (x1, x2, · · · , xN). From Lemma 3.4, we can get the following conclusion.

Lemma 3.5. Let C be a nonempty subset of a Banach space (X, ‖ · ‖). Banach space (XN, ‖ · ‖∗) is defined by Lemma
3.1. Let T : CN → X be a weakly inward N-variables non-self mapping. Let T∗ : CN → XN be a mapping defined
as in Lemma 3.3. Then T∗ is a weakly inward non-self mapping in Banach space (XN, ‖ · ‖∗).

The following are our main results.

Theorem 3.6. Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : CN → X be a weakly
inward N-variables non-self ∇-contraction mapping. Then T has a unique multivariate fixed point p ∈ C.

Proof. Let Banach space (XN, ‖ · ‖∗) be defined as in Lemma 3.1, and the mapping T∗ : CN −→ XN be
defined as in Lemma 3.3. It is obvious that, CN is a nonempty closed convex in Banach space (XN, ‖ ·
‖∗). By using Lemma 3.5, we know that T∗ is a weakly inward non-self contraction in Banach space
(XN, ‖ · ‖∗). Then, by using Theorem 1.2, T∗ has a unique fixed point P ∈ CN. There exists an element
P = (p1,p2, · · · ,pN) ∈ CN such that

T∗(p1,p2, · · · ,pN) = (TP, TP, · · · , TP) = (p1,p2, · · · ,pN),

which implies p1 = p2 = · · · = pN. Let p = p1 = p2 = · · · = pN, then T(p,p, · · · ,p) = p. Hence, T has a
unique multivariate fixed point p ∈ C. This completes the proof.
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Let ∇ be ∇2,∇3,∇4, respectively, we can get the following corollaries.

Corollary 3.7. Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : CN → X be a weakly
inward N-variables non-self mapping satisfying the following condition

‖Tx− Ty‖ 6 h
N∑
i=1

λi‖xi − yi‖,
N∑
i=1

λi = 1

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN, where h, λi ∈ (0, 1) are constants. Then T has a unique
multivariate fixed point p ∈ C.

Corollary 3.8. Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : CN → X be a weakly
inward N-variables non-self mapping satisfying the following condition

‖Tx− Ty‖ 6 h

√√√√ 1
N

N∑
i=1

‖xi − yi‖2

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN, where h ∈ (0, 1) is a constant. Then T has a unique
multivariate fixed point p ∈ C.

Corollary 3.9. Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : CN → X be a weakly
inward N-variables non-self mapping satisfying the following condition

‖Tx− Ty‖ 6 hmax{‖x1 − y1‖, ‖x2 − y2‖, · · · , ‖xN − yN‖}

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN, where h ∈ (0, 1) is a constant. Then T has a unique
multivariate fixed point p ∈ C.

Remark 3.10. Consider T is not a self-mapping, then Picard iterative algorithm can not be directly used to
approximate the multivariate fixed point of T . In order to overcome this problem, in this article, we add
an expansive mapping to the iterative algorithm such that the relative iterative sequence can approximate
to the multivariate fixed point of T .

Theorem 3.11 (Iterative algorithm). Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let
T : CN → X be a weakly inward N-variables non-self ∇-contraction mapping. Assume there exists an expansive
mapping P : C −→ R(T) ⊂ X, where R(T) is the range of the mapping T , then for any p0 ∈ CN, the iterative
sequence {pn} ⊂ CN defined by:

p1 = (P−1Tp0,P−1Tp0, · · ·,P−1Tp0),

p2 = (P−1Tp1,P−1Tp1, · · ·,P−1Tp1),

p3 = (P−1Tp2,P−1Tp2, · · ·,P−1Tp2),
...

pn+1 = (P−1Tpn,P−1Tpn, · · ·,P−1Tpn),
...

converges, in the norm ‖ · ‖∗, to (p,p, · · ·,p) ∈ CN and the iterative sequence {P−1Tpn} ⊂ X converges, in the
norm ‖ · ‖, to p ∈ C.

Proof. Let A be a mapping defined by A = P−1T from CN into C, where P−1 is the inverse of the expansive
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mapping P. Let A∗ be a mapping defined by

A∗(x) = (Ax,Ax, · · · ,Ax) = (P−1Tx,P−1Tx, · · · ,P−1Tx)

for all x = (x1, x2, · · · , xN) ∈ CN. Then A∗ is a self-mapping from CN into it-self. Observe

‖A∗x−A∗y‖∗ = ∇(‖P−1Tx− P−1Ty‖, ‖P−1Tx− P−1Ty‖, · · · , ‖P−1Tx− P−1Ty‖)
6 ∇(‖Tx− Ty‖, ‖Tx− Ty‖, · · · , ‖Tx− Ty‖)
= ‖Tx− Ty‖
6 h∇(‖x1 − y1‖, ‖x2 − y2‖, · · · , ‖xN − yN‖)
= h‖x− y‖∗

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ CN. Observe, CN is a nonempty closed convex set in
Banach space (XN, ‖ · ‖∗) provided C is a nonempty closed convex set in Banach space (X, ‖ · ‖). By using
Banach contraction mapping principle, there exists a unique element p∗ = (p1,p2, · · · ,pN) ∈ CN such that
A∗p∗ = p∗. Meanwhile, for any given initial point p0 ∈ CN, the Picard iterative sequence pn+1 = A∗pn
converges, in the norm ‖ · ‖∗, to the fixed point p. In addition, the iterative sequence can be expressed as
follows

p1 = (P−1Tp0,P−1Tp0, · · ·,P−1Tp0),

p2 = (P−1Tp1,P−1Tp1, · · ·,P−1Tp1),

p3 = (P−1Tp2,P−1Tp2, · · ·,P−1Tp2),
...

pn+1 = (P−1Tpn,P−1Tpn, · · ·,P−1Tpn),
....

From the above expression, we also know that p1 = p2 = · · · = pN. Let pi = p, i = 1, 2, · · · ,N, then
p∗ = (p,p, · · · ,p). Then the iterative sequence {pn} converges, in the norm ‖ · ‖∗, to (p,p, · · ·,p) ∈ CN and
the iterative sequence {P−1Tpn} ⊂ X converges, in the norm ‖ · ‖, to p ∈ C. This completes the proof.

Let C be a nonempty closed convex subset of a Hilbert space X. Let PC denote the metric projection
from X onto C, then (PC)

−1 : C → X is an expansive mapping. By using Theorem 3.11, we can get the
following conclusion.

Corollary 3.12 (Iterative algorithm). Let C be a nonempty closed convex subset of a Hilbert space (X, ‖ · ‖). Let
T : CN → X be a weakly inward N-variables non-self ∇-contraction mapping. Then for any p0 ∈ CN, the iterative
sequence {pn} ⊂ CN defined by:

p1 = (PCTp0,PCTp0, · · ·,PCTp0),
p2 = (PCTp1,PCTp1, · · ·,PCTp1),
p3 = (PCTp2,PCTp2, · · ·,PCTp2),

...
pn+1 = (PCTpn,PCTpn, · · ·,PCTpn),

...

converges, in the norm ‖ · ‖∗, to (p,p, · · ·,p) ∈ CN and the iterative sequence {PCTpn} ⊂ X converges, in the norm
‖ · ‖, to p ∈ C, where PC denotes the metric projection from X onto C.

Example 3.13. Let X = (−∞,+∞), C = [0,+∞). Let T : C2 → X be a 2-variables non-self contraction
mapping defined by

T(x1, x2) = −
x1

2
, ∀ (x1, x2) ∈ C2.
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Note the fact that
‖T(x1, x2) − T(y1,y2)‖ =

1
2
‖x1 − y1‖

6
1
2

√
(x1 − y1)2 + (x2 − y2)2

=
1√
2

√
1
2
((x1 − y1)2 + (x2 − y2)2)

=
1√
2
∆3(‖x1 − y1‖, ‖x2 − y2‖)

for all (x1, x2), (y1,y2) ∈ C2. The p = 0 is a unique multivariate fixed point of T , that is T(0, 0) = 0. For
any given p0 = (p0,1,p0,2) ∈ C2, the iterative sequence {pn} ⊂ C2 defined by:

p1 = (P−1Tp0,P−1Tp0) = (−Tp0,−Tp0) = (
1
2
p0,1,

1
2
p0,1),

p2 = (P−1Tp1,P−1Tp1) = (−Tp1,−Tp1) = (
1
4
p0,1,

1
4
p0,1),

p3 = (P−1Tp2,P−1Tp2) = (−Tp2,−Tp2) = (
1
8
p0,1,

1
8
p0,1),

...

pn+1 = (P−1Tpn,P−1Tpn) = (−Tpn,−Tpn) = (
1

2n+1p0,1,
1

2n+1p0,1),

...

converges to (0, 0) and P−1Tpn =
1

2n+1p0,1 converges to 0, where P : C −→ X is an expansive mapping
defined by Px = −x.

In Example 3.13, we see, for any (x1, x2) ∈ C2, that, if x1, x2 > 0, then IC(x1) = IC(x2) = X, hence
T(x1, x2) ∈ IC(xi), i = 1, 2, if x1 = 0, then T(x1, x2) = 0 ∈ IC(xi), i = 1, 2, if x1 > 0, x2 = 0, then

IC(x1) = X, IC(x2) = C, hence T(x1, x2) = −
1
2
x1 /∈ IC(x2). Therefore T is not weakly inward. We have

naturally the following open question.

Open question

Let C be a nonempty closed convex subset of a Banach space (X, ‖ · ‖). Let T : CN → X be an N-
variables non-self ∇-contraction mapping. What conditions guarantee that T has a unique multivariate
fixed point p ∈ C ?
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