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Abstract
In this paper, we are concerned with a class of fractional neutral stochastic partial differential equations driven by α-stable

process. By the stochastic analysis technique, the properties of operator semigroup and combining the Banach fixed-point
theorem, we prove the existence and uniqueness of the mild solutions to this kind of equations driven by α-stable process. In
the end, an example is given to demonstrate the theory of our work. c©2017 All rights reserved.
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1. Introduction

In recent years, fractional calculus and fractional differential equations have attracted the attention of
many researchers due to their important applications to problems in mathematical physics, chemistry,
biology and engineering. Many results on existence and stability of solutions to various type of fractional
differential equations have been obtained. For more details on this topic, one can refer to [2, 9, 16, 29].

The deterministic models often fluctuate due to noise. Systems are often subjected to random per-
turbations. Stochastic differential equations have been investigated by many authors due to playing a
very important role in formulation and analysis of many phenomena in economic and finance, physics,
mechanics, electric and control engineering, see, for example, Da Prato and Zabczyk [5], Liu [15], Luo and
Liu [17], Jahanipur [8], and references therein. Subsequently, with the help of semigroup theory and frac-
tional calculus technique, some authors have also considered fractional stochastic differential equations
driven by Brownian motion. One can refer to the literatures [4, 10–13, 21, 22].

On the other hand, many researchers show the widespread interest in the topic of stochastic differ-
ential equations driven by α-stable processes owing to the fact that the α-stable noise exhibits the heavy
tails, which have plenty of applications to problems in mathematical physics, chemistry, biology and
engineering. For example, Priola and Zabczyk [20] gave a proper starting point on the investigation of
structural properties of SPDEs driven by an additive cylindrical stable noise, Dong et al. [6] studied the
invariant measures of stochastic 2D Navier-Stokes equation driven by α-stable processes, Xu [25] stud-
ied the ergodicity of the stochastic real Ginzburg-Landau equation driven by α-stable noise, Zhang [27]
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established the Bismut-Elworthy-Li derivative formula for stochastic differential equations driven by α-
stable noise, and Bao and Yuan [3] discussed strong convergence of exponential integrator scheme based
on spatial and time discretization for neutral stochastic partial differential equations driven by α-stable
processes. However, to the best of our knowledge, there are no results on fractional stochastic differential
equations driven by α-stable processes due to the fact that these process only has finite p-th moment for
p ∈ (0,α) and the usual stochastic evolution does not admit a stochastic differential, a fact which leads to
some powerful tools such as Itô’s formula or Burkholder-Davis-Gundy’s inequality in stochastic calculus
being unavailable. To close the gap, we will make the attempt to investigate the property of dynamics for
fractional stochastic differential equations driven by α-stable processes in this paper.

To this end, in this paper we will focus on the following neutral fractional stochastic partial differential
equations with delay driven by α-stable noise{

CD
q
t [x(t) − g(t, x(t− τ))] = [Ax(t) + f(t, x(t− τ))]dt+ σ(t)dZ(t), t ∈ [0, T ],

x0(·) = ξ ∈ D([−τ, 0],H), t ∈ [−τ, 0], (1.1)

where the fractional derivative CDq, q ∈ (1/2, 1], is understood in the Caputo sense, A is the infinitesimal
generator of an analytic semigroup of bounded linear operators {S(t)}t>0 in a Hilbert space H with inner
product 〈·, ·〉 and norm ‖ · ‖, D([−τ, 0],H) is the space of all càdlág functions paths from [−τ, 0] into H,
and g, f : H → H, σ : [0,+∞) → R+ are given functions to be specified later. The aim of this paper is
to investigate the existence and uniqueness of the mild solution to (1.1) by using the stochastic analysis
techniques, the properties of operator semigroup and combining the fixed point theorem.

The rest of this paper is organized as follows. In Section 2, we introduce some necessary notations and
preliminaries. In Section 3, we devote to investigating the existence and uniqueness of the mild solutions
to (1.1). In Section 4, we give an example to illustrate the efficiency of the obtained result.

2. Preliminary

In this section we collect some notions, conceptions and lemmas on α-stable process and recall some
basic results which will be used throughout the whole of this paper.

Let Z(t) be a cylindrical α-stable process, α ∈ (0, 2), defined by

Z(t) :=

∞∑
m=1

βmZm(t)em. (2.1)

Here {em}m>1 is an orthonormal basis of H, {Zm(t)}m>1 are independent, real-valued, normalized, sym-
metric α-stable Lévy processes defined on stochastic basis (Ω,F, {Ft}t>0, P), and {βm}m>1 is a sequence
of positive numbers. Recall that a stochastic process {Zα,β(t) : t > 0} is called an α-stable Lévy process if

(i) Zα,β(0) = 0 a.s.;
(ii) Zα,β has independent increments;

(iii) Zα,β(t) −Zα,β(s) ∼ η for any 0 6 s < t <∞,

where η stands for an α-stable random variable, which is uniquely determined by its characteristic func-
tion involving four parameters: α ∈ (0, 2], the index of stability; β ∈ [−1, 1], the skewness parameter;
σ ∈ (0,∞), the scale parameter; µ ∈ (−∞,∞) the shift, which has the form

φη(u) = Eexp(iuη) = exp{−σα|u|α(1 − iβsgn(u)Φ) + iµu}, u ∈ R,

where Φ = tan(πα/2) for α 6= 1 and Φ = −(2/π)log|u| for α = 1. We call η is strictly α-stable whenever
µ = 0, and if, in addition, β = 0, η is said to be symmetric α-stable. For a real-valued normalized
(standard) symmetric α-stable Lévy process z(t), α ∈ (0, 2), it has the characteristic function

Eexp(iuz(t)) = e−t|u|
α

, u ∈ R,

and the Lévy measure λα(dx) := cα
|x|1+α

, x ∈ R− 0, where cα is some constant. For more details of α-stable
processes, we can refer to [1] and [24].
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Let A be the infinitesimal generator of an analytic semigroup (S(t))t>0 and 0 ∈ ρ(A), where ρ(A) is the
resolvent set of A, then it is possible to define the fractional power (−A)k for 0 < k 6 1, as a closed linear
operator on its domain D(−A)k. Furthermore, the subspace D(−A)k is dense in H, and the expression

‖h‖k = ‖(−A)kh‖

defines a norm in D(−A)k. If Hk represents the space D(−A)k endowed with the norm ‖ · ‖k, then the
following properties are well-known (cf. [19, Theorem 6.13 p.74]).

Lemma 2.1. Suppose that the previous conditions are satisfied.

(1) Let 0 < k 6 1. Then Hk is a Banach space.
(2) If 0 < k 6 l then the injection Hl ↪→ Hk is continuous.
(3) For every 0 < k 6 1 there exists Mk > 0 such that

‖(−A)kS(t)‖ 6Mkt
−ke−λt, t > 0, λ > 0.

Now, we recall some notations and preliminary results about fractional calculus and some special
functions.

Definition 2.2. The Riemann-Liouville fractional integral of the order q > 0 of f : [0, T ]→ H is defined by

J
q
t f(t) =

1
Γ(q)

∫t
0
(t− s)q−1f(s)ds,

where Γ(·) is the standard Gamma function.

Definition 2.3. The Riemann-Liouville fractional derivative of the order q ∈ (0, 1] of f : [0, T ] → H is
defined by

D
q
t f(t) =

d

dt
J

1−q
t f(t).

Definition 2.4. The Caputo fractional derivative of the order q ∈ (0, 1] of f : [0, T ]→ H is defined by

CD
q
t f(t) = D

q
t (f(t) − f(0)).

The Laplace transform of Caputo fractional derivative is given by

L{CD
q
t u(t)} = λ

qû(λ) − λq−1u(0),

where û(λ) is the Laplace transform of u defined by

û(λ) =

∫∞
0
e−λtu(t)dt, Rλ > ω,

where Rλ stands for the real part of the complex number λ.

Definition 2.5. The Mittag-Leffler function is defined by

Eq,p(z) =

∞∑
n=0

zn

Γ(qn+ p)
, p,q > 0, z ∈ C. (2.2)

When p = 1, set Eq(z) = Eq,1(z).

Definition 2.6. The Mainardi’s function is defined by

Mq(z) =

∞∑
n=0

(−z)n

n!Γ(−qn+ 1 − q)
, 0 < q < 1, z ∈ C.
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The Laplace transform of Mainardi’s function Mq(r) is (see [18]):∫∞
0
e−λrMq(r)dr = Eq(−λ). (2.3)

By (2.2) and (2.3), it is clear that ∫∞
0
Mq(r)dr = 1, 0 < q < 1.

On the other hand, Mq(z) satisfies the following equality (see [18])∫∞
0

q

rq+1Mq(1/rq)e−λrdr = e−λ
q

and the equality (see [18]) ∫∞
0
rδMq(r)dr =

Γ(δ+ 1)
Γ(qδ+ 1)

, δ > −1, 0 < q < 1.

Throughout this paper we impose the following assumptions.

(H1) The operator (A,D(A)) is a self-adjoint operator on the separable Hilbert space H admitting a
discrete spectrum

0 6 λ1 6 λ2 6 · · · 6 λm 6 · · · 6 lim
m→∞ λm =∞

with corresponding eigenbasis {em}m>1 of H and generating an analytic semigroup S(t) = etA,
t > 0, 0 ∈ ρ(A), such that ‖etA‖ 6Me−λ1t.

(H2) There exists a positive constant K1 such that for all x,y ∈ H and t > 0,

‖f(t, x) − f(t,y)‖ 6 K1‖x− y‖, ‖f(t, x)‖ 6 K1(1 + ‖x‖).

(H3) There exists k ∈ (0, 1] and a positive constant K2 such that for all x,y ∈ H and t > 0,

‖(−A)kg(t, x) − (−A)kg(t,y)‖ 6 K2‖x− y‖, g(t, 0) = 0, 5Mp‖(−A)−k‖pKp2 < 1.

(H4) There exists a constant λ > 1
1+αq−α such that the function σ : [0,+∞)→ R+ satisfies∫T

0
σαλ(s)ds <∞.

3. Existence and uniqueness

In this section, we shall prove the existence and uniqueness of the mild solution to equation (1.1).
For 0 < q < 1, set Tq(t)x =

∫∞
0 Mq(r)S(t

qr)xdr and Sq(t)x =
∫∞

0 qrMq(r)S(t
qr)xdr, t > 0, x ∈ X. It is

known that u(t) = Tq(t)u0 +
∫t

0(t− s)
q−1Sq(t− s)f(s,u(s))ds, and is the mild solution to the deterministic

fractional equation {
CD

q
t u(t) = A(t)u(t) + f(t,u(t))dt, t ∈ [0,b],

u(0) = u0,

see, for example, [14, 28]. Motivated by this result and noting Definitions 2.4 and 2.5, we present the
following definition of mild solutions to (1.1).

Definition 3.1. An Ft-adapted càdlág stochastic process x(t), t ∈ [−τ, T ] is called the mild solution for
(1.1) if
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(i) x0 = ξ ∈ D([−τ, 0];H);
(ii) for arbitrary t ∈ [0, T ], x(t) satisfies the following integral equation:

x(t) =Tq(t)[ξ(0) + g(0, ξ(−τ))] + g(t, x(t− τ)) +
∫t

0
(t− s)q−1ASq(t− s)g(s, x(s− τ))ds

+

∫t
0
(t− s)q−1Sq(t− s)f(s, x(s− τ))ds+

∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s).

The following properties of Tq(t) and Sq(t) appeared in [29] are useful.

Lemma 3.2. Under the assumption (H1),
(i) for any fixed t > 0, Tq(t) and Sq(t) are linear and bounded operators such that for any x ∈ H, ‖Tα(t)x‖ 6
M‖x‖, ‖Sα(t)x‖ 6 Mq

Γ(1+q)‖x‖;
(ii) Tq(t) and Sq(t) are strongly continuous;

(iii) for any x ∈ H, β ∈ (0, 1), and k ∈ (0, 1], we have

ASq(t)x = A
1−βSq(t)A

βx and ‖AkSq(t)‖ 6
qMk

tqk
Γ(2 − k)

Γ(1 + q(1 − k))
.

Lemma 3.3. Let (H1) hold, then for any t > 0 and p > 0

E

∥∥∥ ∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s)

∥∥∥p 6 Cp,α

( ∞∑
k=1

βαk

∫t
0
(t− s)αq−αSαq(t− s)σ

α(s)ds
)p/α

,

where the constant Cp,α > 0 depends on p and α.

Proof. By virtue of (2.1), we can easily calculate that∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s) =

∞∑
k=1

Λk(t)ek,

where Λk(t) :=
∫t

0 βk(t− s)
q−1Sq(t− s)σ(s)dZk(s). Let {rk}k>1 be a Rademacher sequence defined on

a new probability space (Ω ′,F ′, {F ′
t}t>0, P ′), i.e., rk : Ω ′ → {1,−1} are i.i.d. with P ′(rk = 1) = P ′(rk =

−1) = 1/2.
The following Khintchine’s inequality holds, for arbitrary real numbers c1, · · · , cn, for any p > 0(∑

k>1

c2
k

)1/2
6M1(p)

(
E ′
∣∣∣∑
k>1

rkck

∣∣∣p)1/p
(3.1)

(see, for instance, [7]), where the constant Cp depends only on p (for p = 1, we have c1 =
√

2) and E ′

indicates the expectation with respect to P ′.
Then, by (3.1), we can write( ∞∑

k=1

( ∫t
0
(t− s)q−1Sq(t− s)σ(s)dZk(s)

)2)1/2
6M1(p)

(
E ′
∣∣∣∑
k>1

rkΛk(t)
∣∣∣p)1/p

.

Using the Fubini theorem and the property of the α-stable process Z(t) (see [20]), we have

E

∥∥∥ ∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s)

∥∥∥p
6(M1(p))

pE
[
E ′
∣∣∣∑
k>1

rkΛk(t)
∣∣∣p]

=(M1(p))
pE ′

[
E

∣∣∣∑
k>1

rkΛk(t)
∣∣∣p]

=(M1(p))
pE ′

[
E

∣∣∣∑
k>1

rk

∫t
0
βk(t− s)

q−1Sq(t− s)σ(s)dZk(s)
∣∣∣p].

(3.2)



Z. Li, J. Nonlinear Sci. Appl., 10 (2017), 4713–4723 4718

Note that |rk| = 1 for any k > 1. Then by using properties of α-stable processes again, it is not difficult to
get for any t > 0, λ ∈ R that

E exp
[
iλ

∞∑
k=1

rkΛk(t)
]
= exp

[
−|λ|α

∞∑
k=1

βαk

∫t
0
(t− s)αq−αSαq(t− s)σ

α(s)ds
]
.

Recall the fact (see page 18, [23]) that if Y is a symmetric random variable satisfying

E[eiλY ] = e−σ
α|λ|α , σ ∈ R

for some α ∈ (0, 2) and any λ ∈ R, then for all p ∈ (0,α),

E|Y|p =M2(α,p)σp, (3.3)

where M2(α,p) > 0 is a constant depending only on α and p. Applying this result to (3.2) and (3.3), we
then obtain that

E

∥∥∥ ∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s)

∥∥∥p 6 Cp,α

( ∞∑
k=1

βαk

∫t
0
(t− s)αq−αSαq(t− s)σ

α(s)ds
)p/α

,

where the constant Cp,α = (M1(p))
pM2(α,p) > 0 depends on p and α. The proof is thus complete.

Theorem 3.4. Assume that (H1)-(H4) hold, and

C :=

∞∑
k=1

βαk <∞ (3.4)

holds for α ∈ (1, 2), q ∈ (1/2, 1). Then (1.1) has a unique mild solution on [−τ, T ].

Proof. Fix T > 0 and denote by ST the Banach space of all càdlág H-valued processes x(t) ∈ D([−τ, T ];H)
with initial data x(t) = ξ(t) for t ∈ [−τ, 0] equipped with the supremum norm

‖x(t)‖ST = sup
−τ6t6T

(
E‖x(t)‖p

)1/p
.

Define the operator Ψ on ST by Ψ(x)(t) = ξ(t) for t ∈ [−τ, 0] and for t ∈ [0, T ]

Ψ(x)(t) =Tq(t)[ξ(0) + g(0, ξ(−τ))] + g(t, x(t− τ)) +
∫t

0
(t− s)q−1ASq(t− s)g(s, x(s− τ))ds

+

∫t
0
(t− s)q−1Sq(t− s)f(s, x(s− τ))ds+

∫t
0
(t− s)q−1Sq(t− s)σ(s)dZ(s).

Then it is clear that to prove the existence of mild solutions to (1.1) is equivalent to find a fixed point for
the operator Ψ. Next we will show by using the Banach fixed point theorem that Ψ has a unique fixed
point. We divide the subsequent proof into two steps.

Step 1. We show that Ψ(x)(t) ⊂ ST for t ∈ [−τ, T ]. It is trivial for the case t ∈ [−τ, 0]. For t ∈ [0, T ], and for

any fixed x ∈ ST , using the essential inequality:
(∑n

i=1 ai

)p
6 Cr

(∑n
i=1 a

p
i

)
, here Cr = 1 when p 6 1,

Cr = n
p−1 when p > 1, we have

E‖Ψ(x)(t)‖p 65p−1E‖Tq(t)[ξ(0) + g(0, ξ(−τ))]‖p + 5p−1E‖g(t, x(t− τ))‖p

+ 5p−1E

∥∥∥ ∫t
0
ASq(t− s)(t− s)

q−1g(s, x(s− τ))ds
∥∥∥p

+ 5p−1E

∥∥∥ ∫t
0
Sq(t− s)(t− s)

q−1f(s, x(s− τ))ds
∥∥∥p

+ 5p−1E

∥∥∥ ∫t
0
Sq(t− s)(t− s)

q−1σ(s)dZ(s)
∥∥∥p :=

5∑
i=1

Ii.

(3.5)
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It follows from (H1), (H3), and Lemma 3.2 that

I1 =5p−1E‖(−A)−kTq(t)(−A)k[ξ(0) + g(0, ξ(−τ))]‖p

610p−1MpE‖ξ(0)‖p + 10p−1MpK
p
2 ‖(−A)

−k‖pE‖ξ(−τ)‖p

610p−1Mp(1 +Kp2 ‖(−A)
−k‖p) sup

−τ6s60
E‖ξ(s)‖p.

(3.6)

For the second term, I2, using the assumption (H3) again, we have

I2 =5p−1E‖(−A)−k(−A)kg(t, x(t− τ))]‖p 6 5p−1MpK
p
2 ‖(−A)

−k‖pE‖x(t− τ)‖p. (3.7)

From (H3), the Hölder’s inequality and Lemma 3.2, we can obtain

I3 = 5p−1E

∥∥∥ ∫t
0
(−A)1−kSq(t− s)(t− s)

q−1(−A)kg(s, x(s− τ))ds
∥∥∥p

6 5p−1
∣∣∣K2qM1−kΓ(2 − k)

Γ(1 + q(1 − k))

∣∣∣pE
( ∫t

0
(t− s)qk−1‖x(s− τ)‖ds

)p
6 5p−1

∣∣∣K2qM1−kΓ(2 − k)

Γ(1 + q(1 − k))

∣∣∣p( ∫t
0
(t− s)qk−1ds

)p−1
∫t

0
(t− s)qk−1E‖x(s− τ)‖pds

6 5p−1
∣∣∣K2qM1−kΓ(2 − k)tqk

Γ(1 + q(1 − k))qk

∣∣∣p sup
−τ6s6t

E‖x(s)‖p.

(3.8)

By using Lemma 3.2, (H2), and the Hölder’s inequality, we have

I4 =5p−1E

∥∥∥ ∫t
0
Sq(t− s)(t− s)

q−1f(s, x(s− τ))ds
∥∥∥p

65p−1
∣∣∣ K1qM

Γ(1 + q)

∣∣∣p sup
06t6T

E
( ∫t

0
(t− s)q−1(1 + ‖x(s− τ)‖)ds

)p
610p−1

∣∣∣ K1Mt

Γ(1 + q)

∣∣∣p + 10p−1
∣∣∣ K1Mq

Γ(1 + q)

∣∣∣p( ∫t
0
(t− s)q−1ds

)p−1
∫t

0
(t− s)q−1E‖x(s− τ)‖pds

610p−1
∣∣∣ K1Mt

Γ(1 + q)

∣∣∣p + 10p−1
∣∣∣ K1Mt

Γ(1 + q)

∣∣∣p sup
−τ6s6t

E‖x(s)‖p.

(3.9)

By Lemma 3.3, we know that

I5 6Cp,α

( ∞∑
k=1

βαk

∫t
0
(Sq(t− s))

α(t− s)α(q−1)σα(s)ds
)p/α

6Cp,α

∣∣∣ Mq

Γ(1 + q)

∣∣∣p( ∞∑
k=1

βαk

∫t
0
(t− s)α(q−1)σα(s)ds

)p/α
.

Notice that α ∈ (1, 2) and q ∈ (1/2, 1], then λ > 1
1+αq−α > 1. So we can obtain by the Hölder’s inequality

that

I5 6Cp,α

∣∣∣ Mq

Γ(1 + q)

∣∣∣p[ ∞∑
k=1

βαk

( ∫t
0
(t− s)

λα(q−1)
λ−1 ds

)λ−1
λ ·
( ∫t

0
σαλ(s)ds

)1/λ]p/α
6Cp,α

∣∣∣ Mq

Γ(1 + q)

∣∣∣pT (αq−α+1)λ−1
λ

( ∫t
0
σαλ(s)ds

) p
αλ
( ∞∑
k=1

βαk

)p/α
<∞.

(3.10)
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Thus, we derive from (3.5)-(3.10) that, for some constants c1, c2, and c3,

sup
06t6T

E‖Ψ(x)(t)‖p 6 c1 + c2 sup
−τ6θ60

E‖ξ(θ)‖p + c3 sup
06t6T

E‖x(t)‖p.

Hence, Ψ(x)(t) ⊂ ST .

Step 2. We shall show that the mapping Ψ is contractive. Let x,y ∈ ST . For any fixed t ∈ [0, T ], we have

E‖Ψ(x)(t) −Ψ(y)(t)‖p 63p−1E‖g(t, x(t− τ)) − g(t,y(t− τ))‖p

+ 3p−1E

∥∥∥ ∫t
0
ASq(t− s)(t− s)

q−1[g(s, x(s− τ)) − g(s,y(s− τ))]ds
∥∥∥p

+ 3p−1E

∥∥∥ ∫t
0
Sq(t− s)(t− s)

q−1[f(s, x(s− τ)) − f(s,y(s− τ))]ds
∥∥∥p.

By the assumptions (H2), (H3), and the Hölder’s inequality, we obtain

E‖Ψ(x)(t) −Ψ(y)(t)‖p 63p−1MpK
p
2 ‖(−A)

−k‖pE‖x(t− τ) − y(t− τ)‖p

+ 3p−1
∣∣∣K2qM1−kΓ(2 − k)tqk

Γ(1 + q(1 − k))qk

∣∣∣p sup
06s6t

E‖x(s) − y(s)‖p

+ 3p−1
∣∣∣ K1Mt

Γ(1 + q)

∣∣∣p sup
06s6t

E‖x(s) − y(s)‖p.

Then,

sup
06t6T

E‖Ψ(x)(t) −Ψ(y)(t)‖p 6 3p−1(MpK
p
2 ‖(−A)

−k‖p +C1T
qkp +C2T

p) sup
06t6T

E‖x(t) − y(t)‖p,

where x(t) = y(t) on [−τ, 0], and C1 > 0, C2 > 0 are two bounded constants. Hence, by the condition
5MpK

p
2 ‖(−A)−k‖p < 1, choosing sufficiently small T1 such that

3p−1(MpK
p
2 ‖(−A)

−k‖p +C1T
qkp +C2T

p) < 1,

we can conclude that Ψ is a contraction mapping on ST1 and therefore has a unique fixed point, which is
a mild solution of (1.1) on [0, T1]. This procedure can be repeated in order to extend the solution to the
entire interval [0, T ] in finitely many steps. This completes the proof.

4. An example

In this section, an example is provided to illustrate the theory obtained.

Example 4.1. We consider the following neutral fractional stochastic partial functional differential equa-
tion driven by α-stable process:

CD
q
t

[
x(t) −

∫π
0
ϕ(−τ, ζ, x)u(t− τ, ζ)dζ)

]
=
[ ∂2

∂x2u(t, x) +φ(u(t− τ), x)
]
dt+ σ(t)dZ(t, x), (4.1)

with the Dirichlet boundary condition

u(t, 0) = u(t,π) = 0, t ∈ [0, T ],

and the initial condition
u(θ, x) = Ψ(θ, x), θ ∈ [−τ, 0], x ∈ (0,π).
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Furthermore, let φ : R → R be Lipschitzian. Assume further that ϕ : [−τ, 0] × [0,π] × [0,π] → R is
measurable such that ϕ(·, ·, 0) = ϕ(·, ·,π) = 0 and

N :=

∫π
0

∫π
0

( ∂
∂x
ϕ(−τ, ζ, x)

)2
dζdx <∞. (4.2)

Let H = L2(0,π) and A be given by

A :=
∂2

∂x2 , D(A) := H2(0,π)∩H1
0(0,π),

where Hk(0,π),k = 1, 2, represents the classical Sobolev spaces, and H1
0(0,π) is the subspace of H1(0,π) of

all functions vanishing at 0 and π. Note that A is a self-adjoint negative operator in H and Aek = −k2ek
with ek(ξ) = (2/π)1/2 sinmξ for m ∈ N and ξ ∈ [0,π]. We can easily know that A is the infinitesimal
generator of an analytic semigroup S(t) = etA, t > 0, in H and the operator (A,D(A)) is a self-adjoint
operator on the separable Hilbert space H admitting a discrete spectrum

0 6 λ1 6 λ2 6 · · · 6 λm 6 · · · 6 lim
m→∞ λm =∞

with λk = k2 and ‖S(t)‖ 6 e−t. This implies that (H1) holds. Furthermore, we know that

(−A)−
1
2 ζ =

∞∑
n=1

1
n
〈ζ, en〉en, ζ ∈ H, (4.3)

and

(−A)
1
2 ζ =

∞∑
n=1

n〈ζ, en〉en, ζ ∈ D((−A)
1
2 ), (4.4)

which in particular yields ‖(−A)− 1
2 ‖ = 1.

Let Z(t, ξ) :=
∑∞
k=1 βkZk(t)ek(ξ), where ρ < 2q − 1 − 1

α and {Zk(t)}k>1 is a cylindrical α-stable
process on H with {Zk(t)}k∈N being i.i.d. one dimensional symmetric α-stable process sequence with
1 < α < 2. Moreover, there exist some C1, C2 > 0 such that for k ∈N,

C1λ
−β
k 6 |βk| 6 C2λ

−β
k for some β > 0.

For t ∈ [0, T ] and x ∈ [0,π], let

x(t)(x) := u(t, x), g(t, x(t− τ))(x) :=
∫π

0
ϕ(−τ, ζ, x)u(t− τ, ζ)dζ

and
f(t, x(t− τ))(x) := φ(u(t− τ), x).

Then (4.1) can be rewritten in the form (1.1). Then, using ϕ(·, ·, 0) = ϕ(·, ·,π) = 0, combining (4.2)-(4.4)
with the Hölder’s inequality, we obtain ‖(−A) 1

2 (g(t, x(t− τ)) − g(t,y(t− τ))‖2 6 N‖x(t− τ) − y(t− τ)‖2

(see [26]). Hence, (H2) and (H3) hold.
On the other hand, by simple calculation we have

∞∑
k=1

βαk 6
∞∑
k=1

Cα2 λ
−αβ
k =

∞∑
k=1

Cα2 k
−2αβ.

Thus, we can see that (3.4) holds if β > 1
2α . Consequently, by Theorem 3.4, there exists a unique mild

solution to (4.1) provided that β > 1
2α and σ satisfies the assumption (H4).
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5. Conclusion

In this paper, a class of fractional neutral stochastic partial differential equations driven by α-stable
process are discussed. By estimating the pth moment of α-stable noise and using the Banach fixed-point
theorem, the existence and uniqueness of the mild solutions to this kind of equations driven by α-stable
process are obtained.
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