
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 4741–4750

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Multivariate contraction mapping principle in Menger probabilistic metric
spaces

Jinyu Guana, Yanxia Tanga, Yongchun Xua, Yongfu Sub,∗

aDepartment of Mathematics, College of Science, Hebei North University, Zhangjiakou 075000, China.
bDepartment of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China.

Communicated by C. Zaharia

Abstract

The purpose of this paper is to prove the multivariate contraction mapping principle of N-variables mappings in Menger
probabilistic metric spaces. In order to get the multivariate contraction mapping principle, the product spaces of Menger
probabilistic metric spaces are subtly defined which is used as an important method for the expected results. Meanwhile, the
relative iterative algorithm of the multivariate fixed point is established. The results of this paper improve and extend the
contraction mapping principle of single variable mappings in the probabilistic metric spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

It is, in some cases, more appropriate to work with an average of several measurements as a measure to
evaluate the distance between two points. In lines of this approach, Menger [16, 17] introduced the notion
of probabilistic metric spaces as a generalization of metric spaces. Actually, Menger replaced the distance
function d(x,y) with a distribution function Fx,y : X× X → R, in such a way that, for any number t, the
value Fx,y(t) describes the probability that the distance between x and y is less than t. Later, the study
of probabilistic metric spaces received a new impulse after the seminal work of Schweizer and Sklar [19].
The theory of probabilistic metric spaces is also very important in random functional analysis, random
differential equation theory and the mathematics of fractals (see [1]). Sehgal and Bharucha-Reid [20, 21]
established fixed point theorems in probabilistic metric spaces (for short, PM-spaces). Indeed, by using the
notion of probabilistic q-contraction, they proved a unique fixed point result, which is an extension of the
celebrated Banach contraction principle. For the interested reader, a comprehensive study of fixed point
theory in the probabilistic metric setting can be found in the book of Hadzić and Pap [12], see also [25] for
further discussion on generalizations of metric fixed point theory. Recently, Choudhury and Das [4] gave
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a generalized unique fixed point theorem by using an altering distance function, which was originally
introduced by Khan et al. [13]. For other results in this direction, we refer to [2, 4–11, 18]. In particular,
Dutta et al. [10] defined nonlinear generalized contractive type mappings involving altering distances
(say, ψ-contractive mappings) in Menger PM-spaces and proved their theorem for such kind of mappings
in the setting of G-complete Menger PM-spaces. On contributing to this study, In 2015, M. Kutbi et al. [14]
weakened the notion of ψ-contractive mapping and established some fixed point theorems in G-complete
and M-complete Menger PM-spaces, besides discussing some related results and illustrative examples. In
2014, Su and Zhang [24] proved some fixed point and best proximity point theorems for contractions in
a class of probabilistic metric spaces. In 2015, Su et al. [22] proved the generalized contraction mapping
principle and generalized best proximity point theorems in probabilistic metric spaces.

Recently, the multivariate fixed point problems (or a fixed point of order N, see [15]) were studied by
several authors. In 2016, Su et al. [23] proved some multivariate fixed point theorems by using a clever
way.

The purpose of this paper is to prove the multivariate contraction mapping principle of N-variables
mappings in Menger probabilistic metric spaces. In order to get the multivariate contraction mapping
principle, the product spaces of Menger probabilistic metric spaces are subtly defined which is used as an
important method for the expected results. Meanwhile, the relative iterative algorithm of the multivariate
fixed point is established. The results of this paper improve and extend the contraction mapping principle
of single variable mappings in the probabilistic metric spaces.

Next we shall recall some well-known definitions and results in the theory of probabilistic metric
spaces which are used later on this paper. For more details, we refer the reader to [6, 7, 12].

Definition 1.1. A triangular norm (shorter T -norm) is a binary operation T on [0, 1] which satisfies the
following conditions:

(a) T is associative and commutative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a,b) 6 T(c,d) whenever a 6 c and b 6 d for each a,b, c,d ∈ [0, 1].

The following are the four basic T -norms:

• T1(a,b) = max(a+ b− 1, 0);

• T2(a,b) = a · b;

• T3(a,b) =

{
ab

a+b−ab , ab 6= 0,
0, ab = 0;

• T4(a,b) = min(a,b).

It is easy to check the above four T -norms have the following relations:

T1(a,b) 6 T2(a,b) 6 T3(a,b) 6 T4(a,b)

for any a,b ∈ [0, 1].

Definition 1.2. A function F(t) : (−∞,+∞) → [0, 1] is called a distance distribution function if it is non-
decreasing and left-continuous with limt→−∞ F(t) = 0, limt→+∞ F(t) = 1 and F(0) = 0. The set of all
distance distribution functions is denoted byD+. A special Menger distance distribution function is given
by

H(t) =

{
0, t 6 0,
1, t > 0.
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Definition 1.3. A probabilistic metric space is a pair (E, F), where E is a nonempty set, F is a mapping
from E× E into D+ such that, if Fx,y denotes the value of F at the pair (x,y), the following conditions
hold:

(PM-1) Fx,y(t) = H(t) if and only if x = y;

(PM-2) Fx,y(t) = Fy,x(t) for all x,y ∈ E and t ∈ (−∞,+∞);

(PM-3) Fx,z(t) = 1 Fz,y(s) = 1 implies Fx,y(t+ s) = 1,

for all x,y, z ∈ E and t ∈ (−∞,+∞).

Definition 1.4. A Menger probabilistic metric space is a triple (E, F, T) where E is a nonempty set, T is a
continuous t-norm and F is a mapping from E× E into D+ such that if Fx,y denotes the value of F at the
pair (x,y), the following conditions hold:

(MPM-1) Fx,y(t) = H(t) if and only if x = y;

(MPM-2) Fx,y(t) = Fy,x(t) for all x,y ∈ E and t ∈ (−∞,+∞);

(MPM-3) Fx,y(t+ s) > T(Fx,z(t), Fz,y(s)) for all x,y, z ∈ E and t > 0, s > 0.

Definition 1.5. Let (E, F, T) be a probabilistic metric space.

(1) A sequence {xn} in E is said to converge to x ∈ E, if for any given ε > 0 and λ > 0, there must exist
a positive integer N = N(ε, λ) such that Fxn,x(ε) > 1 − λ whenever n > N.

(2) A sequence, {xn} in E is called a Cauchy sequence if for any ε > 0 and λ > 0, there must exist a
positive integer N = N(ε, λ) such that Fxn,xm(ε) > 1 − λ, whenever n,m > N.

(3) (E, F, T) is said to be complete, if each Cauchy sequence in E converges to some point in E.

2. Main results

In this section, we firstly give the concept of multiply probabilistic metric function which will play an
important role in this article.

Definition 2.1. Let T be a given T -norm. A multiply probabilistic metric function PT (a1,a2, · · ·,aN) is a
continuous N variables real function with the domain

{(a1,a2, · · ·,aN) ∈ RN : 0 6 ai 6 1, i ∈ {1, 2, 3, · · ·,N}},

and the range [0, 1] which satisfies the following conditions:

(1) PT (a1,a2, · · ·,aN) is non-decreasing for each variable ai, i ∈ {1, 2, 3, · · ·,N};

(2) PT (T(a1,b1), T(a2,b2), · · ·, T(aN,bN)) > T(PT (a1,a2, · · ·,aN),PT (b1,b2, · · ·,bN));

(3) PT (a,a, · · ·,a) = a;

(4) PT (a1,a2, · · ·,aN)→ 1⇔ ai → 1, i ∈ {1, 2, 3, · · ·,N}

for all ai,bi,a ∈ R, i ∈ {1, 2, 3, · · ·,N}, where R denotes the set of all real numbers.

Example 2.2. For T(a,b) = max{a+ b− 1, 0}, the N variables real function

PT (a1,a2,a3, · · · ,aN) =
1
N

N∑
i=1

ai,

is a multiply probabilistic metric function. The above conditions (1), (3), (4) are obvious. Next, we check
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the condition (2).

PT (T(a1,b1), T(a2,b2), · · ·,∆(aN,bN)) =
1
N

N∑
i=1

T(ai,bi)

=
1
N

N∑
i=1

max{ai + bi − 1, 0}

>
1
N

max{
N∑
i=1

(ai + bi − 1), 0}

=max{
1
N

N∑
i=1

ai +
1
N

N∑
i=1

bi − 1, 0}

=T(PT (a1,a2, · · ·,aN),PT (b1,b2, · · ·,bN)).

Example 2.3. For T(a,b) = max{a+ b− 1, 0}, the N variables real function

PT (a1,a2,a3, · · · ,aN) =

N∑
i=1

λiai,

is a multiply probabilistic metric function, where λi, i = 1, 2, 3, · · · ,N are constants and

0 < λi < 1,
N∑
i=1

λi = 1.

The above conditions (1), (3), (4) are obvious. Next, we check the condition (2).

PT (T(a1,b1), T(a2,b2), · · ·, T(aN,bN)) =

N∑
i=1

λiT(ai,bi)

=

N∑
i=1

λi max{ai + bi − 1, 0}

>max{
N∑
i=1

λi(ai + bi − 1), 0}

=max{
N∑
i=1

λiai +

N∑
i=1

λibi − 1, 0}

=T(PT (a1,a2, · · ·,aN),PT (b1,b2, · · ·,bN)).

Definition 2.4. Let (E, F) be a probabilistic metric space, T : EN → E be an N-variables mapping, an
element p ∈ E is called a multivariate fixed point if

p = T(p,p, · · ·,p).

The following theorem is one of the main results which will play an important role.

Theorem 2.5. Let (E, F, T) be a Menger probabilistic metric space. Let EN be the Cartesian product of E and

Dx,y(t) = PT (Fx1,y1(t), Fx2,y2(t), · · · , FxN,yN
(t))

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ EN, where PT is a multiply probabilistic metric function. Then
(EN,D, T) is a Menger probabilistic metric space. Further, (EN,D, T) is complete provided (E, F, T) is complete.
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Proof. From the continuity of multiply probabilistic metric function and the conditions (3), (4) of Definition
2.1, we know that Dx,y(t) is a distance distribution function for all x,y ∈ EN. That is, Dx,y(t) is non-
decreasing and left-continuous with limt→−∞Dx,y(t) = 0, limt→+∞Dx,y(t) = 1 and Dx,y(0) = 0 for all
x,y ∈ EN. Next, we check the conditions (MPM-1)–(MPM-3) of Definition 1.4. The conditions (MPM-1)
and (MPM-2) are obvious. Now, we check the condition (MPM-3). For all

x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN), z = (z1, z2, · · · , zN) ∈ EN,

and t, s > 0, from the condition (2) of Definition 2.1, we have that

Dx,y(t+ s) = PT (Fx1,y1(t+ s), Fx2,y2(t+ s), · · · , FxN,yN
(t+ s))

> PT (T(Fx1,z1(t), Fz1,y1(s)), T(Fx2,z2(t), Fz2,y2(s)), · · · , T(FxN,zN(t), FzN,yN
(s)))

> T(PT (Fx1,z1(t), Fx2,z2(t), · · · , FxN,zN(t)),PT (Fz1,y1(s), Fz2,y2(s), · · · , FzN,yN
(s)))

= T(Dx,z(t),Dz,y(s)).

Hence (EN,D, T) is a Menger probabilistic metric space.
Let {xn = (x1,n, x2,n, · · · , xN,n)} ∈ (EN,D, T) be a Cauchy sequence. That is,

lim
n,m→+∞Dxn,xm(t) = 1, ∀ t > 0.

This is equivalent to
lim

n,m→+∞ Fxi,n,xi,m(t) = 1, ∀ t > 0, ∀ i = 1, 2, 3, · · · ,N.

Since (E, F, T) is complete, there exist x1, x2, · · · , xN ∈ E such that xi,n converges to xi for all i =
1, 2, 3, · · · ,N. That is

lim
n→+∞ Fxi,n,xi

(t) = 1, ∀ t > 0, ∀ i = 1, 2, 3, · · · ,N,

which implies that
lim

n→+∞Dxn,x(t) = 1, ∀ t > 0,

where x = (x1, x2, · · · , xN) ∈ EN. Hence (EN,D, T) is complete. This completes the proof.

Corollary 2.6. Let (E, F, T1) be a Menger probabilistic metric space, where T1(a,b) = max{a+ b− 1, 0}. Let EN

be the Cartesian product of E and

Dx,y(t) =

N∑
i=1

λiFxi,yi
(t)

for all x = (x1, x2, · · · , xN),y = (y1,y2, · · · ,yN) ∈ EN, where λi, i = 1, 2, 3, · · · ,N are constants and 0 < λi <
1,
∑N

i=1 λi = 1. Then (EN,D, T1) is a Menger probabilistic metric space. Further, (EN,D, T1) is complete provided
(E, F, T1) is complete.

In special, we have the following result.

Corollary 2.7. Let (E, F, T1) be a Menger probabilistic metric space, where T1(a,b) = max{a+ b− 1, 0}. Let EN

be the Cartesian product of E and

Dx,y(t) =
1
N

N∑
i=1

Fxi,yi
(t)

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ EN. Then (EN,D, T1) is a Menger probabilistic metric space.
Further, (EN,D, T1) is complete provided (E, F, T1) is complete.

In 1972, Sehgal and Bharucha-Ried [21] proved a unique fixed point result, which is an extension of
the celebrated Banach contraction mapping principle
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Lemma 2.8 ([21]). Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm T . Let
T : E→ E be a mapping satisfying the following condition

FTx,Ty(t) > Fx,y(
t

h
)

for every x,y ∈ E and t > 0, where h ∈ (0, 1) is a constant. Then either

(i) T has a unique fixed point; or

(ii) for every p0 ∈ E, sup{Gp0(t) : t ∈ R} < 1, where

Gp0(t) = inf{Fp0,pn(t)}, pn = Tpn−1, n = 1, 2, 3, · · · .

Theorem 2.9 ([21]). Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm
T(a,b) = min{a,b}. Let T : E→ E be a mapping satisfying the following condition:

FTx,Ty(t) > Fx,y(
t

h
)

for every x,y ∈ E and t > 0, where h ∈ (0, 1) is a constant. Then T has a unique fixed point.

In what follows, we prove the following theorems, which generalize the result of Sehgal and Bharucha-
Ried [21].

Theorem 2.10. Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm T . Let
T : EN → E be an N-variables mapping satisfying the following condition:

FTx,Ty(t) > PT (Fx1,y1(
t

h
), Fx2,y2(

t

h
), · · · , FxN,yN

(
t

h
))

for every
x = (x1, x2, · · ·, xN) ∈ XN, y = (y1,y2, · · ·,yN) ∈ XN,

and t > 0, where h ∈ (0, 1) is a constant and PT is a probabilistic multiply metric function. Assume there exists
p0 ∈ E such that sup{Gp0(t) : t ∈ R} = 1, where

Gp0(t) = inf{Fp0,pn(t)}, n = 1, 2, 3, · · · ,
p1 = T(p0,p0, · · · ,p0),
p2 = T(p1,p1, · · · ,p1),
p3 = T(p2,p2, · · · ,p2),

...
pn = T(pn−1,pn−1, · · · ,pn−1),

...

Then T has a unique multivariate fixed point.

Proof. Let EN be the Cartesian product of E and

Dx,y(t) = PT (Fx1,y1(t), Fx2,y2(t), · · · , FxN,yN
(t))

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ EN, where PT is a multiply probabilistic metric function.
Then (EN,D, T) is a complete Menger probabilistic metric space. Let T∗ : EN → EN be defined by

T∗ : (x1, x2, · · · , xN) 7→ (Tx, Tx, · · · , Tx)
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for all x = (x1, x2, · · · , xN) ∈ EN. In this case, we have that

DT∗x,T∗y(t) = PT (FTx,Ty(t), FTx,Ty(t), · · · , FTx,Ty(t))

= FTx,Ty(t)

> PT (Fx1,y1(
t

h
), Fx2,y2(

t

h
), · · · , FxN,yN

(
t

h
))

= Dx,y(
t

h
)

for all x = (x1, x2, · · · , xN) ∈ EN,y = (y1,y2, · · · ,yN) ∈ EN. By using Lemma 2.8, then either

(i) T∗ has a unique fixed point x∗ ∈ EN; or

(ii) for every P0 ∈ EN, sup{GP0(t) : t ∈ R} < 1, where

GP0(t) = inf{DP0,Pn
(t)}, Pn = T∗Pn−1, n = 1, 2, 3, · · · .

In the case (i): There exists a unique x∗ = (x∗1 , x∗2 , · · · , x∗N) ∈ EN such that

T∗x∗ = (Tx∗, Tx∗, · · · , Tx∗)
= (x∗1 , x∗2 , · · · , x∗N).

This implies that x∗1 = x∗2 = · · · = x∗N and x∗1 = T(x∗1 , x∗1 , · · · , x∗1), hence T has a unique multivariate fixed
point x∗1 .

In the case (ii): We take P0 = (p0,p0, · · · ,p0) ∈ EN, then

DP0,Pn
(t) = PT (Fp0,pn(t), Fp0,pn(t), · · · , Fp0,pn(t))

= Fp0,pn(t).

Hence
GP0(t) = inf{DP0,Pn

(t)}

= inf{Fp0,pn(t)}

= Gp0(t).

From the condition of Theorem 2.10, we know sup{GP0(t) : t ∈ R} = 1. This is a contradiction. This
completes the proof.

Theorem 2.11. Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm T(a,b) =
min{a,b}. Let T : EN → E be an N-variables mapping satisfying the following condition:

FTx,Ty(t) > PT (Fx1,y1(
t

h
), Fx2,y2(

t

h
), · · · , FxN,yN

(
t

h
)),

for every
x = (x1, x2, · · ·, xN) ∈ XN, y = (y1,y2, · · ·,yN) ∈ XN,

and t > 0, where h ∈ (0, 1) is a constant and PT is a probabilistic multiply metric function. Then T has a unique
multivariate fixed point.

Proof. Let EN be the Cartesian product of E and

Dx,y(t) = PT (Fx1,y1(t), Fx2,y2(t), · · · , FxN,yN
(t))

for all x = (x1, x2, · · · , xN), y = (y1,y2, · · · ,yN) ∈ EN, where PT is a multiply probabilistic metric function.
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Then (EN,D, T) is a complete Menger probabilistic metric space with the T -norm T(a,b) = min{a,b}. Let
T∗ : EN → EN be defined by

T∗ : (x1, x2, · · · , xN) 7→ (Tx, Tx, · · · , Tx)

for all x = (x1, x2, · · · , xN) ∈ EN. In this case, we have that

DT∗x,T∗y(t) = PT (FTx,Ty(t), FTx,Ty(t), · · · , FTx,Ty(t))

= FTx,Ty(t)

> PT (Fx1,y1(
t

h
), Fx2,y2(

t

h
), · · · , FxN,yN

(
t

h
))

= Dx,y(
t

h
)

for all x = (x1, x2, · · · , xN) ∈ EN,y = (y1,y2, · · · ,yN) ∈ EN. By using Theorem 2.9, T∗ has a unique fixed
point x∗ ∈ EN. That is, there exists a unique x∗ = (x∗1 , x∗2 , · · · , x∗N) ∈ EN such that

T∗x∗ = (Tx∗, Tx∗, · · · , Tx∗)
= (x∗1 , x∗2 , · · · , x∗N).

This implies that x∗1 = x∗2 = · · · = x∗N and x∗1 = T(x∗1 , x∗1 , · · · , x∗1), hence T has a unique multivariate fixed
point x∗1 . This completes the proof.

From Example 2.2 and Example 2.3, we can get the following results.

Corollary 2.12. Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm

T(a,b) = max{a+ b− 1, 0}.

Let T : EN → E be an N-variables mapping satisfying the following condition:

FTx,Ty(t) >
1
N
(Fx1,y1(

t

h
) + Fx2,y2(

t

h
) + · · ·+ FxN,yN

(
t

h
))

for every
x = (x1, x2, · · ·, xN) ∈ XN, y = (y1,y2, · · ·,yN) ∈ XN,

and t > 0, where h ∈ (0, 1) is a constant. Assume there exists p0 ∈ E such that sup{Gp0(t) : t ∈ R} = 1, where

Gp0(t) = inf{Fp0,pn(t)}, n = 1, 2, 3, · · · ,p1 = T(p0,p0, · · · ,p0),
p2 = T(p1,p1, · · · ,p1),
p3 = T(p2,p2, · · · ,p2),

...
pn = T(pn−1,pn−1, · · · ,pn−1),

...

Then T has a unique multivariate fixed point.

Corollary 2.13. Let (E, F, T) be a complete Menger probabilistic metric space with a continuous T -norm T(a,b) =
max{a+ b− 1, 0}. Let T : EN → E be an N-variables mapping satisfying the following condition:

FTx,Ty(t) > λ1Fx1,y1(
t

h
) + λ2Fx2,y2(

t

h
) + · · ·+ λNFxN,yN

(
t

h
),

for every
x = (x1, x2, · · ·, xN) ∈ XN, y = (y1,y2, · · ·,yN) ∈ XN,
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and t > 0, where h ∈ (0, 1) is a constant and λi ∈ (0, 1), i = 1, 2, 3, · · · ,N are constants with
∑N

i=1 λi = 1.
Assume there exists p0 ∈ E such that sup{Gp0(t) : t ∈ R} = 1, where

Gp0(t) = inf{Fp0,pn(t)}, n = 1, 2, 3, · · · ,
p1 = T(p0,p0, · · · ,p0),
p2 = T(p1,p1, · · · ,p1),
p3 = T(p2,p2, · · · ,p2),

...
pn = T(pn−1,pn−1, · · · ,pn−1),

...

Then T has a unique multivariate fixed point.

The result of Sehgal and Bharucha-Ried [21] was proved by using Picard’s iterative sequence method.
Therefore, in our results, the multivariate fixed point of T can be also approximated by using Picard’s iter-
ative sequence starting any given initial point. We can use the following iterative method to approximate
the multivariate fixed point of T .

Iterative sequence 2.14. For any p0 ∈ EN, the iterative sequence {pn} ⊂ EN defined by pn+1 = T∗pn, n =
0, 1, 2, · · · converges to a unique fixed point p∗ of T∗ in the complete Menger probabilistic metric space
(EN,D, T). Let p∗ = (p∗1 ,p∗2 , · · · ,p∗N), from the definition of T∗, we know that

p∗ = (p∗1 ,p∗2 , · · · ,p∗N)

= T∗p∗

= (T(p∗1 ,p∗2 , · · · ,p∗N), T(p∗1 ,p∗2 , · · · ,p∗N), · · · , T(p∗1 ,p∗2 , · · · ,p∗N)).

This implies that
p∗1 = p∗2 = · · · = p∗N = T(p∗1 ,p∗2 , · · · ,p∗N).

Hence, we can denote p∗ by
p∗ = (p,p, · · · ,p).

Let p0 = (p0,1,p0,2, · · · ,p0,N), then the iterative sequence

p1 = (Tp0, Tp0, · · ·, Tp0)

p2 = (Tp1, Tp1, · · ·, Tp1)

p3 = (Tp2, Tp2, · · ·, Tp2)

...
pn+1 = (Tpn, Tpn, · · ·, Tpn)

...

converges to a unique fixed point p∗ of T∗ in the complete Menger probabilistic metric space (EN,D, T).
Since

Dpn,p∗(t) = PT (FTpn−1,p(t), FTpn−1,p(t), · · · , FTpn−1,p(t))

= FTpn−1,p(t),

for all n = 1, 2, 3, · · · . Therefore, the sequence {Tpn} converges to a unique multivariate fixed point p of T
in the complete Menger probabilistic metric space (E, F, T).
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