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Abstract

In this manuscript, using Schaefer’s fixed point theorem, we derive some sufficient conditions for the existence of solutions
to a class of fractional differential equations (FDEs). The proposed class is devoted to the impulsive FDEs with nonlinear
integral boundary condition. Further, using the techniques of nonlinear functional analysis, we establish appropriate conditions
and results to discuss various kinds of Ulam-Hyers stability. Finally to illustrate the established results, we provide an example.
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1. Introduction and preliminaries

Recently impulsive differential equations have been considered by many authors due to their signif-
icant applications in various fields of science and technology. These equations describe the evolution
processes that are subjected to abrupt changes and discontinuous jumps in their states. Many physical
systems like the function of pendulum clock, the impact of mechanical systems, preservation of species by
means of periodic stocking or harvesting and the heart’s function, etc. naturally experience the impulsive
phenomena. Similarly in many other situations, the evolutional processes have the impulsive behavior.
For example, the interruptions in cellular neural networks, the damper’s operation with percussive ef-
fects, electromechanical systems subject to relaxational oscillations, dynamical systems having automatic
regulations, etc., have the impulsive phenomena. For detail study, see [1, 6, 9, 13, 29, 39]. Due to its large
number of applications, this area has been received great importance and remarkable attention from the
researchers. In [34], Wang et al. studied the existence and uniqueness of solutions to a class of nonlocal
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Cauchy problems of the form{
CDpu(t) = g(t,u(t)); t ∈ J = [0, T ], t 6= tm, for m = 1, 2, . . . ,q,
u(0) = u0, ∆(u(t))|t=tm = Im(u(t))|t=tm , m = 1, 2, . . . ,q,

where CDp is the Caputo fractional derivative of order p ∈ (0, 1), the function g : J×R→ R is continuous
and u0 ∈ R. Wang et al. [32], studied a class of differential equations with fractional integrable impulses
of the form 

u ′(t) = g(t,u(t)), t ∈ (ζm, tm+1], m = 1, 2, . . . ,q,
u(t) = Iptmσm(t,u(t)), p ∈ (0, 1), m = 1, 2, . . . ,q,

u(0) = u0 ∈ R,

where g : [0, T ]×R→ R and σm : [tm, ζm]×R→ R for all m = 1, 2, . . . ,q are continuous and

I
p
tm
σm(t,u(t)) =

1
Γ(p)

∫t
tm

(t− ζ)p−1σm(ζ,u(ζ))dζ.

Besides from the aforesaid problems, recently by using fixed point theory, several remarkable problems
have been investigated in FDEs with various boundary conditions, for detail see [2, 7, 28] and the ref-
erences therein. Sometimes in many applications like numerical analysis, optimization, mathematical
biology, business mathematics, economics etc., we come across the situation where finding the exact so-
lution is quite difficult task. Therefore stability analysis plays important role in this regard. Various
kinds of stability like, exponential, Mittage-Leffler stability, etc. have been considered in many papers.
Another form of stability called Ulam-type stability has been studied in many papers. This concept was
introduced in the mid of 19th century and now it is a well-explored area of research. Further, about
the stability of functional equations, ordinary differential equations and FDEs for some recent work, we
recommend the readers to study [3, 3, 14, 30, 36]. Further, to know about the recent contribution, we refer
to [4, 5, 8, 10–12, 15, 17, 18, 21, 26, 27, 31, 33, 35, 37, 38].

Recently another class of fractional differential equations known as fuzzy fractional differential equa-
tions has given much attention. As in very recent years, some authors investigated the solvability results
for nonlocal problems of fuzzy fractional differential systems under gh-differentiability in fuzzy metric
spaces, which has been further extended to fuzzy wave equations, see [24] for detail. Similarly, the au-
thors [23], considered fuzzy fractional partial differential equations under Caputo generalized Hukuhara
differentiability and developed interesting results were obtained. The aforesaid equations have signifi-
cant applications in the theory of linear viscoelasticity. Onward, the authors of [22] developed a new
approach for the solutions of fuzzy differential systems (FDSs) and fuzzy partial differential equations.
Similarly, in [25], authors investigated the solvability of Darboux problems for nonlinear fractional partial
integro-differential equations with uncertainty under Caputo gh-fractional differentiability in the infinite
domain [0,∞) × [0,∞). Further, they introduced some new concepts about Hyers-Ulam stability and
Hyers-Ulam-Rassias stability for considered problems by using the equivalent integral forms.

Motivated by the aforesaid work, in this manuscript, we investigate the existence, uniqueness and
Ulam-Hyers stability results for the following implicit impulsive fractional differential equations with
nonlinear integral boundary conditions

CDpu(t) = g(t,u(t),CDpu(t)), t 6= tm ∈ J = [0, T ], for m = 1, 2, . . . ,q,

u(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ,

∆u(tm) = Im(u(tm)), m = 1, 2, . . . ,q,

(1.1)

where CDp is the Caputo fractional derivative and p ∈ (0, 1], moreover, the nonlinear functions g,σ :
J×R→ R are continuous. Further, Im : R→ R represents impulsive nonlinear mapping and ∆u(tm) =
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u(t+m) − u(t−m) where u(t+m) and u(t−m) represent the right and the lift limits, respectively, at t = tm for
m = 1, 2, . . . ,q.

This manuscript is organized as follows. In Section 2, we introduce some notations, definitions and
auxiliary results. In Section 3, we give the uniqueness and existence results for the concerned problem
(1.1). The uniqueness result is obtained via the Banach contraction principle, while the existence result
is obtained by using the Schaefer’s fixed point theorem. In Section 4, we investigate the Ulam-Hyers
stability and Ulam-Hyers-Rassias stability results for the problem (1.1). And in Section 5, we present an
example to explain the applicability of our obtained results.

2. Background materials and preliminaries

In this section, we recall some preliminaries materials required in this paper from [19, 20, 34, 40].

Definition 2.1. The fractional integral of order p ∈ R+ for a function ϕ ∈ L1([0, T ], R+) is defined by

Ipϑ(t) =

∫t
0

(t− ζ)p−1

Γ(p)
ϑ(ζ)dζ,

provided that the integral converges.

Definition 2.2. The Caputo derivative of fractional order p for a function ϕ : (0,∞)→ R is defined by

CDpϑ(t) =
1

Γ(p− 1)

∫t
0
(t− ζ)n−p−1ϑ(n)(ζ)dζ,

where n = [p] + 1 and [p] is the integer part of the real number p.

Lemma 2.3. For p > 0, the following result holds

IpCDpϑ(t) = ϑ(t) −

n−1∑
i=0

ϑ(i)(0)
i!

ti, where n = [p] + 1.

Lemma 2.4. For p > 0, the differential equation CDpϑ(t) = 0 has a solution in the form

ϑ(t) = e0 + e1t+ e2t
2 + e3t

3 + · · ·+ en−1t
n−1, where ei ∈ R, i = 0, 1, 2, 3, . . . ,n− 1, n = [p] + 1.

Lemma 2.5. For p > 0, the following result is valid

IpCDpϑ(t) = e0 + e1t+ e2t
2 + e3t

3 + · · ·+ en−1t
n−1, where ei ∈ R, i = 0, 1, 2, 3, . . . ,n− 1, n = [p] + 1.

Let J = [0, T ], J0 = [0, t1], J1 = (t1, t2], J2 = (t2, t3], . . . , Jq−1 = (tq−1, tq], Jq = (tq, T ], J ′ =
J \ {t1, t2, . . . , tq}. Also for convenience use the notation Jm = (tm, tm+1]. Further, define

B = PC(J, R) = {u : J→ R : u ∈ C(Jm, R),m =, 1, . . . ,q

and there exist the left limit u(t−m) and right limit u(t+m), m = 1, 2, . . . ,q}. Obviously the space B is a
Banach space endowed with norm defined by ‖u‖PC := supt∈J{|u(t)|}. Assume that for w ∈ B, ε > 0,
ψ > 0, and a nondecreasing function ϕ ∈ C(J, R+), the following inequalities hold:{

|CDpw(t) − g(t,w(t),CDpw(t))| 6 ε, t ∈ Jm, m = 1, 2, . . . ,q,
|4w(tm) − Im(w(tm))| 6 ε, m = 1, 2, . . . ,q,

(2.1)

{
|CDpw(t) − g(t,w(t),CDp(t))| 6 ϕ(t), t ∈ Jm, m = 1, 2, . . . ,q,
|4w(tm) − Im(w(tm))| 6 ψ, m = 1, 2, . . . ,q,

(2.2)

and {
|CDpw(t) − g(t,w(t),CDpw(t))| 6 εϕ(t), t ∈ Jm, m = 1, 2, . . . ,q,
|4w(tm) − Im(w(tm))| 6 εψ, m = 1, 2, . . . ,q.

(2.3)
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Definition 2.6 ([33]). The problem (1.1) is Ulam-Hyers stable, if there exists a real number cg,m,q,σ > 0,
such that for each ε > 0 and for each solution w ∈ B of the inequality (2.1), there exists a solution u ∈ B
of the problem (1.1) such that

|w(t) − u(t)| 6 cg,p,q,σε, t ∈ J.

Definition 2.7 ([33]). The problem (1.1) is generalized Ulam-Hyers stable if there exists a real number
θg,θ,m,q,σ ∈ C(R+, R+), θg,θ,m,q,σ(0) = 0, such that and each ε > 0 and for each solution w ∈ B of the
inequality (2.1), there exists a solution u ∈ B to the problem (1.1) such that

|w(t) − u(t)| 6 θg,θ,p,q,σ(ε), t ∈ J.

Remark 2.8. It should be noted that Definition 2.6 implies Definition 2.7.

Definition 2.9 ([33]). The problem (1.1) is Ulam-Hyers-Rassias stable with respect to (ϕ,ψ), if there exists
a real number cg,m,q,σ,ϕ > 0, such that for each ε > 0 and for each solution w ∈ B of the inequality (2.3),
there exists a solution u ∈ B of the problem (1.1) such that

|w(t) − u(t)| 6 cg,p,q,σ,ϕε(ψ+ϕ(t)), t ∈ J.

Definition 2.10 ([33]). The problem (1.1) is generalized Ulam-Hyers-Rassias stable with respect to (ϕ,ψ)
if there exists a real number cg,p,q,σ,ϕ > 0, such that for each solution w ∈ B of the inequality (2.2), there
exists a solution u ∈ B of the problem (1.1) such that

|w(t) − u(t)| 6 cg,q,σ,ϕ(ψ+ϕ(t)), t ∈ J.

Remark 2.11. We remark that Definition 2.9 implies Definition 2.10.
Remark 2.12. A function w ∈ B is a solution of the inequality (2.1) if there exists a function $ ∈ B and a
sequence $m, m = 1, 2 . . . ,q depending on w, such that

(i) |$(t)| 6 ε, |$m| 6 ε, t ∈ Jm, m = 1, 2, . . . ,q;
(ii) CDpw(t) = g(t,w(t),CDpw(t)) +$(t), t ∈ Jm, m = 1, 2, . . . ,q;

(iii) ∆w(t = tm) = Im(w(tm)) +$m, t ∈ Jm, m = 1, 2, . . . ,q.

Remark 2.13. A function w ∈ B is a solution of the inequality (2.2) if there exists a function $ ∈ B and a
sequence $m, m = 1, 2 . . . ,q depending on w, such that

(i) |$(t)| 6 ϕ(t), |$m| 6 ψ, t ∈ Jm, m = 1, 2, . . . ,q;
(ii) CDpw(t) = g(t,w(t),CDpw(t)) +$(t), t ∈ Jm, m = 1, 2, . . . ,q;

(iii) ∆w(tm) = Im(w(tm)) +$m, t ∈ Jm, m = 1, 2, . . . ,q.

Remark 2.14. A function w ∈ B is a solution of the inequality (2.2) if there exists a function $ ∈ B and a
sequence $m, m = 1, 2 . . . ,q (which depends on w) such that

(i) |$(t)| 6 εϕ(t), |$m| 6 εψ, t ∈ Jm, m = 1, 2, . . . ,q;
(ii) CDpw(t) = g(t,w(t),CDpw(t)) +$(t), t ∈ Jm, m = 1, 2, . . . ,q;

(iii) ∆w(tm) = Im(w(tm)) +$m, t ∈ Jm, m = 1, 2, . . . ,q.

Theorem 2.15 ([16, Banach’s fixed point theorem]). Let B be a Banach space. Then any contraction mapping
z : B→ B has a unique fixed point.

Theorem 2.16 ([16, Schaefer’s fixed point theorem]). Let B be a Banach space and z : B→ B is a completely
continuous operator and the set D = {u ∈ B : u = µzu, 0 < µ < 1} is bounded. Then z has a fixed point in B.

Theorem 2.17 ([20, Arzelà-Ascoli’s theorem]). Let H ∈ C(J, R), H is relatively compact (i.e., H̄ is compact) if
1. H is uniformly bounded that is there exists ε > 0, such that

|f(v)| < ε for each g ∈ H and v ∈ J.

2. H is equi-continuous, that is for every ε > 0, there exists δ > 0 such that for any

w, v̄ ∈ J, |v− v̄| 6 δ implies |g(v) − g(v̄)| 6 ε for each g ∈ H.
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3. Existence of at least one solution

In this section, we investigate the existence and uniqueness of solution to the proposed class of impul-
sive integral boundary value problem of implicit fractional differential equations.

Lemma 3.1. The solution u ∈ C1(J, R) of the following fractional integral boundary value problem of impulsive
differential equations for y ∈ C(J, R)

CDpu(t) = y(t), 0 < p 6 1, t 6= tm ∈ J, for m = 1, 2, . . . ,q,

u(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ,

4 u(tm) = Im(u(tm), where m = 1, 2, . . . ,q,

(3.1)

is given by

u(t) =



1
Γ(p)

∫t
0
(t− ζ)p−1y(ζ)dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ J0,∫t

tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+

m∑
i=1

[ ∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
y(ζ)dζ+ Ii(u(ti))

]

+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ Jm, m = 1, 2, . . . ,q.

(3.2)

Proof. Let u be a solution of problem (3.1), then for any t ∈ J0, there exists a constant e0 ∈ R such that

u(t) = Ipy(t) + e0 =
1
Γ(p)

∫t
0
(t− ζ)p−1y(ζ)dζ+ e0. (3.3)

Using the condition u(0) =
∫T

0
(T−ζ)p−1

Γ(p) σ(ζ,u(ζ))dζ, equation (3.3) yields that

e0 = u(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ.

Therefore, (3.3) takes the form

u(t) =
1
Γ(p)

∫t
0
(t− ζ)p−1y(ζ)dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ J0.

Similarly for t ∈ J1, there exists a constant d1 ∈ R, such that

u(t) =
1
Γ(p)

∫t
t1

(t− ζ)p−1y(ζ)dζ+ d1.

Hence we have

u(t−1 ) =
1
Γ(p)

∫t1

0
(t1 − ζ)

p−1y(ζ)dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, u(t+1 ) = d1.

In view of
∆u(t1) = u(t

+
1 ) − u(t−1 ) = I1(u(t1)),

we get

d1 =
1
Γ(p)

∫t1

0
(t1 − ζ)

p−1y(ζ)dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ+ I1(u(t1)).
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For this value of d1, we have

u(t) =
1
Γ(p)

∫t
t1

(t− ζ)p−1y(ζ)dζ+
1
Γ(p)

∫t1

0
(t1 − ζ)

p−1y(ζ)dζ+ I1(u(t1))

+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ J1.

Repeating the same fashion in this way for t ∈ Jm, we get

u(t) =

∫t
tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+

m∑
i=1

[ ∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
y(ζ)dζ+ Ii(u(ti))

]

+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ Jm, m = 1, 2, . . . ,q.

Conversely, assume that u is a solution of the integral equation (3.2), then we can easily verify that the
solution u(t) given by equation (3.2) satisfies problem (3.1) along with its impulsive and integral boundary
conditions.

For obtaining the desired results, we assume the following.

(H1) the function g : J×R×R→ R is continuous;

(H2) there exist constants Kg > 0 and 0 < Lg < 1 such that

|g(t,u1,w1) − g(t,u2,w2)| 6 Kg|u1 − u2|+ Lg|w1 −w2|, for t ∈ J and u1,u2,w1,w2 ∈ R;

(H3) there exists a constant Lσ > 0 such that

|σ(t,u1) − σ(t,u2)| 6 Lσ|u1 − u2|, for each u1,u2 ∈ R, t ∈ Jm,m = 1, 2, . . . ,q;

(H4) there exists a constant LI > 0 such that

|Im(u1) − Im(u2)| 6 LI|u1 − u2| for each u1,u2 ∈ R, t ∈ Jm and m = 1, 2, . . . ,q;

(H5) there exist constants α,β,γ ∈ C(J, R+), such that

|f(t,u(t),w(t))| 6 α(t) +β(t)|u|+ γ(t)|w|, for t ∈ J,u,w ∈ R,

with α∗ = supt∈J α(t), β
∗ = supt∈J β(t) and γ∗ = supt∈J γ(t) < 1;

(H6) the functions Im : R→ R are continuous and there exist constants N,N∗ > 0, such that

|Im(u)| 6 N|u(t)|+N∗ for each u ∈ R, m = 1, 2, . . . ,q;

(H7) the function σ : J×R→ R is continuous and there exists a constant = > 0 such that

|σ(t,u)| 6 = for each t ∈ Jm, for all u ∈ R.

Theorem 3.2. Let assumptions (H1)-(H4) be satisfied and if[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
< 1, (3.4)

then the problem (1.1) has a unique solution u in B.
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Proof. We define a mapping z : B→ B by

(zu)(t) =
1
Γ(p)

∫t
0
(t− ζ)p−1g(ζ,u(ζ),y(ζ))dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ J0;

z(u(t)) =

∫t
tm

(t− ζ)p−1

Γ(p)
g(ζ,u(ζ),y(ζ))dζ+

∑
0<tm<t

[ ∫tm
tm−1

(tm − ζ)p−1

Γ(p)
g(ζ,u(ζ),y(ζ))dζ+ Im(u(tm))

]

+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ Jm, m = 1, 2, . . . ,q.

For any u,w ∈ B and t ∈ Jm, consider the following

|(zw)(t) − (zu)(t)| 6
∫t
tm

(t− ζ)p−1

Γ(p)
|x(ζ) − y(ζ)|dζ+

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
|x(ζ) − y(ζ)|dζ

+
∑

0<tm<t

|Im(w(tm)) − Im(u(tm))|+

∫T
0

(T − ζ)p−1

Γ(p)
|σ(ζ,w(ζ)) − σ(ζ,u(ζ))|dζ,

where x, y ∈ C(J, R) and are given by

x(t) = g(t,w(t), x(t)), y(t) = g(t,u(t),y(t)).

By (H2), we have

|x(t) − y(t)| = |g(t,w(t), x(t)) − g(t,u(t),y(t))| 6 Kg|w(t) − u(t)|+ Lg|x(t) − y(t)|.

Then
|x(t) − y(t)| 6

Kg

1 − Lg
|w(t) − u(t)|. (3.5)

Thus using inequality (3.5) and assumptions (H3) and (H4), we have

‖zw−zu‖PC 6
Kg

1 − Lg

∫t
tm

(t− ζ)p−1

Γ(p)
|w(t) − u(t)|dζ+

Kg

1 − Lg

q∑
m=1

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
|w(t) − u(t)|dζ

+ LI

q∑
m=1

|w(t) − u(t)|+ Lσ

∫T
0

(T − ζ)p−1

Γ(p)
|w(t) − u(t)|dζ

6

(
KgT

p

(1 − Lg)Γ(p+ 1)
+

qKgT
p

(1 − Lg)Γ(p+ 1)
+ qLI +

LσT
p

Γ(p+ 1)

)
|w(t) − u(t)|.

Thus we have

‖zw−zu‖PC 6

[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
‖w− u‖PC.

By the same process, for t ∈ J0, we obtain the following result

‖zw−zu‖PC 6

(
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)

)
‖w− u‖PC.

Combining both the results, we have for t ∈ J0 ∪ Jm = J

‖zw−zu‖PC 6

[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
‖w− u‖PC.

Now since [
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
< 1,

hence by the Banach’s contraction theorem z is a contraction and thus it has a unique fixed point, which
is the corresponding unique solution of problem (1.1). This completes the proof.
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Our next result is based on the Schaefer’s fixed point theorem.

Theorem 3.3. If the assumptions (H1)-(H6) are satisfied and if

qN+
β∗Tp(q+ 1)

(1 − γ∗)Γ(p+ 1)
< 1,

then problem (3.1) has at least one solution.

Proof. Consider the operator z defined in Theorem 3.2. We use the Schaefer’s fixed point theorem to
show that z has a fixed point. The proof is completed in four steps.

Step 1. z is continuous. Take a sequence {un} ∈ B, such that un → u ∈ B. For t ∈ Jm, we have

|(zun)(t) − (zu)(t)|

6
∫t
tm

(t− ζ)p−1

Γ(p)
|yn(ζ) − y(ζ)|dζ+

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
|yn(ζ) − y(ζ)|dζ

+
∑

0<tm<t

|Im(un(tm)) − Im(u(tm))|+

∫T
0

(T − ζ)p−1

Γ(p)
|σ(ζ,un(ζ)) − σ(ζ,u(ζ))|dζ,

(3.6)

where yn,y ∈ C(J, R) and are given by

yn(t) = g(t,un(t), x(t)) and y(t) = g(t,u(t),y(t)).

By (H2), we have

|yn(t) − y(t)| = |g(t,un(t),yn(t)) − g(t,u(t),y(t))| 6 Kg|un(t) − u(t)|+ Lg|yn(t) − y(t)|.

Therefore, we have

|yn(t) − y(t)| 6
Kg

1 − Lg
‖un − u‖PC.

Now since un → u as n → ∞, which implies that yn(t) → y(t) as n → ∞ for each t ∈ Jm. As a
consequence of Lebesgue dominated convergent theorem, the right hand side of inequality (3.6) tends to
zero as n→∞, hence

|(zun)(t) − (zu)(t)|→ 0 as n→∞,

which implies that
‖zun −zu‖PC → 0 as n→∞.

Similarly for t ∈ J0, we can easily show that

‖zun −zu‖PC → 0 as n→∞.

Thus z is continuous on J.

Step 2. z maps bounded sets into bounded sets in B. In fact we just need to show that for any positive
constant µ, there exists a constant η > 0 such that for each u ∈ Bµ = {u ∈ B : ‖u‖PC 6 µ}, we have
‖z(u)‖PC 6 η. For t ∈ Jm

(zu)(t) =
∫t
tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
y(ζ)dζ

+
∑

0<tm<t

Im(u(tm)) +

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ,

(3.7)
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where y ∈ C(J, R) and is given by
y(t) = g(t,u(t),y(t)).

Keeping in mind (H5) and for t ∈ Jm, consider

|y(t)| = |g(t,u,y(t))| 6 α(t) +β(t)‖u‖PC + γ(t)|y(t)| 6 α(t) +β(t)µ+ γ(t)|y(t)| 6 α∗ +β∗µ+ γ∗|y(t)|,

where α∗ = supt∈Jm α(t), β
∗ = supt∈Jm β(t), and γ∗ = supt∈Jm γ(t) < 1. From above last result, we get

|y(t)| 6
α∗ +β∗µ

1 − γ∗
=M.

And by (H7), we have |σ(t,u)| 6 =. Thus by (H5), (H6), and (H7), (3.7) becomes

|(zu)(t)| 6
MTp

Γ(p+ 1)
+
qMTp

Γ(p+ 1)
+ q(µN+N∗) +

=Tp

Γ(p+ 1)
= Q.

Similarly for t ∈ J0, we have

|(zu)(t)| 6
MTp

Γ(p+ 1)
+

=Tp

Γ(p+ 1)
= Q∗.

Step 3. z maps bounded set into equi-continuous set of B.
Let t1, t2 ∈ Jm with t1 < t2 and let Bµ be a bounded set as in the second step. Then for u ∈ Bµ, we

have

|(zu)(t2) − (zu)(t1)| 6
∫t1

tm

∣∣∣∣(t2 − ζ)
p−1 − (t1 − ζ)

p−1

Γ(p)
y(ζ)

∣∣∣∣dζ+ ∫t2

t1

∣∣∣∣(t2 − ζ)
p−1

Γ(p)
y(ζ)

∣∣∣∣dζ
+

∑
0<tm<t2−t1

|Im(u(tm))|

6
M

Γ(p+ 1)

[
(t2 − tm)p − (t2 − t1)

p − (t1 − tm)p
]
+ (t2 − t1)(N‖u‖PC +N∗).

(3.8)

Similarly if t1, t2 ∈ J0, with t1 < t2 and u ∈ Bµ, we have

|(zu)(t2) − (zu)(t1)| 6

∣∣∣∣ ∫t1

0

(
(t2 − ζ)

p−1

Γ(p)
−

(t1 − ζ)
p−1

Γ(p)

)
y(ζ)dζ

∣∣∣∣+ ∣∣∣∣ ∫t2

t1

(t2 − ζ)
p−1

Γ(p)
y(ζ)dζ

∣∣∣∣
6

M

Γ(p+ 1)

[
t
p
2 − tp1 + 2(t2 − t1)

p

]
.

(3.9)

We see, the right-hand sides of (3.8) and (3.9) tend to zero as t1 → t2. Therefore, as a result of the above
three steps and Arzelà-Ascoli theorem, we deduce that z : B→ B is completely continuous.

Step 4. A priori bound. Now in the final step, we show that the set defined by

Z = {u ∈ B : u = ξ(zu) for some 0 < ξ < 1}

is bounded. Let u ∈ Z, then for some 0 < ξ < 1, u = ξ(zu). Therefore for t ∈ J, we have

u(t) = ξ

∫t
tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+ ξ

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
y(ζ)dζ

+ ξ
∑

0<tm<t

Im(u(tm)) + ξ

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ

6
∫t
tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1

Γ(p)
y(ζ)dζ

+
∑

0<tm<t

Im(u(tm)) +

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ.

(3.10)
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Also, we have |y(t)| 6 α∗+β∗‖u‖PC
1−γ∗ =M. Thus (3.10) becomes

|u(t)| 6
(α∗ +β∗‖u‖PC)
(1 − γ∗)Γ(p)

∫t
tm

(t− ζ)p−1dζ+
(α∗ +β∗‖u‖PC)
(1 − γ∗)Γ(p)

∑
0<tm<t

∫tm
tm−1

(tm − ζ)p−1dζ

+ q(N‖u‖PC +N∗) +
=

Γ(p)

∫T
0
(T − ζ)p−1dζ,

‖u‖PC 6

((q+1)α∗Tp
(1−γ∗)Γ(p+1) + qN

∗ + =Tp

Γ(p+1)

1 − qN−
β∗Tp(q+1)

(1−γ∗)Γ(p+1)

= M.

It means that the set Z is bounded. Thus via the Schaefer’s fixed point theorem, we conclude that z has
a fixed point which is the corresponding solution of the proposed problem (1.1).

4. Ulam-Hyers stability analysis

In this section, we obtain some sufficient conditions for the problem (1.1) to satisfy the definitions of
various types of Ulam-Hyers stabilty.

Theorem 4.1. If the assumptions (H1)-(H3) and the inequality (3.4) are satisfied, then the problem (1.1) is Ulam-
Hyers stable and consequently generalized Ulam-Hyers stable.
Proof. Let w ∈ B be a solution of the inequality (2.1) and let u be the unique solution of the following
problem 

CDpu(t) = g(t,u(t),CDpu(t)), t 6= tm ∈ J = [0, T ], for m = 1, 2, . . . ,q,

u(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ,

4 u(tm) = Im(u(tm), m = 1, 2, . . . ,q.

By Lemma 3.1, we have for each t ∈ Jm

u(t) =

∫t
tm

(t− ζ)p−1

Γ(p)
y(ζ)dζ+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
y(ζ)dζ

+

m∑
i=1

Ii(u(ti)) +

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ, t ∈ Jm, m = 1, 2, . . . ,q,

where y ∈ C(J, R) and is given by y(t) = g(t,u(t),y(t)). Since w is a solution of inequality (2.1), hence by
Remark 2.12, we get

CDpw(t) = g(t,w(t),CDpw(t)) +$(t), t ∈ Jm, m = 1, 2, . . . ,q,

w(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,w(ζ))dζ,

4w(tm) = Im(w(tm)) +$m,m = 1, 2, . . . ,q.

(4.1)

Obviously the solution of (4.1) will be

w(t) =



1
Γ(p)

∫t
0
(t− ζ)p−1x(ζ)dζ+

1
Γ(p)

∫t
0
(t− ζ)p−1$(ζ)dζ+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,w(ζ))dζ, t ∈ J0,∫t

tm

(t− ζ)p−1

Γ(p)
x(ζ)dζ+

∫t
tm

(t− ζ)p−1

Γ(p)
$(ζ)dζ+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
x(ζ)dζ

+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
$(ζ)dζ+

m∑
i=1

Ii(w(ti)) +

m∑
i=1

$i

+

∫T
0

(T − ζ)p−1

Γ(p)
σ(ζ,w(ζ))dζ, t ∈ Jm, m = 1, 2, . . . ,q,
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where x ∈ C(J, R) and is given by
x(t) = g(t,w(t), x(t)).

Therefore, for each t ∈ Jm, we have the following

|w(t) − u(t)| 6
∫t
tm

(t− ζ)p−1

Γ(p)
|x(ζ) − y(ζ)|dζ+

∫t
tm

(t− ζ)p−1

Γ(p)
|$(ζ)|dζ

+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
|x(ζ) − y(ζ)|dζ+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
|$(ζ)|dζ

+

m∑
i=1

|Ii(w(ti)) − Ii(u(ti))|+

m∑
i=1

|$i|

+

∫T
0

(T − ζ)p−1

Γ(p)
|σ(ζ,w(ζ)) − σ(ζ,u(ζ))|dζ, t ∈ Jm, m = 1, 2, . . . ,q.

By (H2) we get

‖x− y‖ 6
Kg

1 − Lg
‖w− u‖PC.

Hence by (H2), (H3), (H4), and (i) of Remark 2.12, we get

‖w− u‖PC 6
Kg‖w− u‖PC

1 − Lg

∫t
tm

(t− ζ)p−1

Γ(p)
dζ+ ε

∫t
tm

(t− ζ)p−1

Γ(p)
dζ

+
Kg‖w− u‖PC

1 − Lg

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
dζ

+ ε

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
dζ+ ‖w− u‖PC

m∑
i=1

LI +

m∑
i=1

ε

+ Lσ‖w− u‖PC
∫T

0

(T − ζ)p−1

Γ(p)
dζ, t ∈ Jm, m = 1, 2, . . . ,q

6 ε

(
Tp

Γ(p+ 1)
(1 + q) + q

)
+

[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
‖w− u‖PC,

which implies that

‖w− u‖PC 6
ε
(

Tp

Γ(p+1)(1 + q) + q
)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] . (4.2)

Similarly for t ∈ J0, we obtain

‖w− u‖PC 6
ε Tp

Γ(p+1)

1 − Tp

Γ(p+1)

(
Kg

1−Lg
+ Lσ

) . (4.3)

Combining (4.2) and (4.3), for t ∈ J, we have

‖w− u‖PC 6 ε


(

Tp

Γ(p+1)(1 + q) + q
)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] + Tp

Γ(p+1)

1 − Tp

Γ(p+1)

(
Lg

1−Lg
+ Lσ

)
 .
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Thus
‖w− u‖PC 6 cg,p,q,σε,

where

cg,p,q,σ =


(

Tp

Γ(p+1)(1 + q) + q
)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] + Tp

Γ(p+1)

1 − Tp

Γ(p+1)

(
Kg

1−Lg
+ Lσ

)
 .

Hence the problem (1.1) is Ulam-Hyers stable. Moreover if we set θ(ε) = cg,p,q,σ(ε); θ(0) = 0, then the
problem (1.1) is generalized Ulam-Hyers stable.

Now for the next result we assume that

(H8) there exists a nondecreasing function ϕ ∈ PC(J, R+) and there exists λϕ > 0 such that

Ipϕ(t) 6 λϕϕ(t) for each t ∈ J.

Theorem 4.2. Assume that (H1)-(H4), (H8), and inequality (3.4) are satisfied, then the problem (1.1) is Ulam-
Hyers-Rassias stable with respect to (ψ,ϕ), consequently generalized Ulam-Hyers-Rassias stable.

Proof. Let w ∈ Jm be a solution of the inequality (2.3) and let u be a unique solution of the following
problem 

CDpu(t) = g(t,u(t),CDpu(t)), t 6= tm ∈ J = [0, T ], for m = 1, 2, . . . ,q,

u(0) =
∫T

0

(T − ζ)p−1

Γ(p)
σ(ζ,u(ζ))dζ,

4 u(tm) = Im(u(tm), m = 1, 2, . . . ,q.

From the proof of Theorem 4.1, for each t ∈ Jm, we obtain

|w(t) − u(t)| 6
∫t
tm

(t− ζ)p−1

Γ(p)
|x(ζ) − y(ζ)|dζ+

∫t
tm

(t− ζ)p−1

Γ(p)
|$(ζ)|dζ

+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
|x(ζ) − y(ζ)|dζ+

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
|$(ζ)|dζ

+

m∑
i=1

|Ii(w(ti)) − Ii(u(ti))|+

m∑
i=1

|$i(t)|

+

∫T
0

(T − ζ)p−1

Γ(p)
|σ(ζ,w(ζ)) − σ(ζ,u(ζ))|dζ, t ∈ Jm, m = 1, 2, . . . ,q.

By (H2) we get

|x(t) − y(t)| 6
Kg

1 − Lg
‖w− u‖PC.

Hence by (H2), (H3), (H4), and (i) of Remark 2.14, we get

|w(t) − u(t)| 6
Kg‖w− u‖PC

1 − Lg

∫t
tm

(t− ζ)p−1

Γ(p)
dζ+ ε

∫t
tm

(t− ζ)p−1

Γ(p)
ϕ(ζ)dζ

+
Kg‖w− u‖PC

1 − Lg

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
dζ+ ε

m∑
i=1

∫ti
ti−1

(ti − ζ)
p−1

Γ(p)
ϕ(ζ)dζ

+ ‖w− u‖PC
m∑
i=1

LI + ε

m∑
i=1

ψ+ Lσ‖w− u‖PC
∫T

0

(T − ζ)p−1

Γ(p)
dζ, t ∈ Jm, m = 1, 2, . . . ,q.
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Using (H8), we get

|w(t) − u(t)| 6 ε (λϕϕ(t)(1 + q) + qψ)

+

[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
‖w− u‖PC

6 ε(ϕ(t) +ψ)(λϕ(1 + q) + q)

+

[
KgT

p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)]
‖w− u‖PC.

From which we have

‖w− u‖PC 6
ε(ϕ(t) +ψ)(λϕ(1 + q) + q)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] . (4.4)

Similarly for t ∈ J0, we obtain

‖w− u‖PC 6
ελϕϕ(t)

1 − Tp

Γ(p+1)

(
Kg

1−Lg
+ Lσ

) . (4.5)

Combining both results of (4.4) and (4.5), we have for t ∈ J

‖w− u‖PC 6 ε(ϕ(t) +ψ)

×

 (λϕ(1 + q) + q)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] + λϕ

1 − Tp

Γ(p+1)

(
Kg

1−Lg
+ Lσ

)
 .

Thus
‖w− u‖PC 6 cg,p,q,σ,ϕε(ϕ(t) +ψ),

where

cg,p,q,σ,ϕ =

 (λϕ(1 + q) + q)

1 −
[

KgTp

(1−Lg)Γ(p+1) +
LσTp

Γ(p+1) + q
(

KgTp

(1−Lg)Γ(p+1) + LI

)] + λϕ

1 − Tp

Γ(p+1)

(
Kg

1−Lg
+ Lσ

)
 .

Thus the problem (1.1) is Ulam-Hyers-Rassias stable. Hence it is also obvious that the proposed problem
(3.1) is generalized Ulam-Hyers-Rassias stable.

5. Example

To justify our established results, we provide the following example.

Example 5.1. 

CD
1
2u(t) =

2 + |u(t)|+ |CD
1
2u(t)|

90et2+2(1 + |u(t)|+ |CD
1
2u(t)|

, t 6= 1
2
∈ J = [0, 1],

u(0) =
∫ 1

0

(1 − s)−
1
2

40Γ( 1
2)

sin |u(s)|ds,

I1u

(
1
2

)
=

∣∣∣∣u(1
2

)∣∣∣∣
70 +

∣∣∣∣u(1
2

)∣∣∣∣ .
(5.1)
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Here p = 1
2 , J0 = [0, 1

2 ], J1 = (1
2 , 1], t0 = 0, t1 = 1

2 , q = 1. Also

g(t,u,w) =
2 + |u(t)|+ |CD

1
2u(t)|

90et2+2(1 + |u(t)|+ |CD
1
2u(t)|

, t ∈ [0, 1], u,w ∈ R, σ(t,u(t)) =
1
40

sin |u(t)|

is continuous. Therefore, for u,w, ū, w̄ ∈ R, we have

|g(t,u,w) − g(t, ū, w̄)| 6
1

90e2 [|u− ū|+ |w− w̄|].

So we have Kg = Lg = 1
90e2 . Thus (H2) holds and also we see

g(t,u,w) 6
1

90e2 (2 + |u(t)|+ |CD
1
2u(t)|) for every t ∈ J,

from which we have
α(t) =

1
45et2+2

, β(t) = γ(t) =
1

90et2+2

which implies that α∗ = 1
45e2 , β∗ = 1

90e2 , γ∗ = 1
90e2 . Further, we see that∣∣∣∣I1u(1

2

)∣∣∣∣ 6 1
70

∣∣∣∣u(1
2

)∣∣∣∣+ 1,

from which, one can see that N = 1
70 , N∗ = 1 and also∣∣∣∣I1u(1

2

)
− I1ū

(
1
2

)∣∣∣∣ 6 1
70

|u− ū|.

Obviously

qN+
β∗Tp(q+ 1)

(1 − γ∗)Γ(p+ 1)
=

1
70

+
2

90e2(
1 − 1

90e2 )Γ(
3
2

) < 1.

Thus, thanks to Theorem 3.3, the given problem (5.1) has at least one solution. Further

KgT
p

(1 − Lg)Γ(p+ 1)
+

LσT
p

Γ(p+ 1)
+ q

(
KgT

p

(1 − Lg)Γ(p+ 1)
+ LI

)
=

4
(90e2 − 1)

√
π
+

1
20
√
π
+

1
70

= 0.045695 < 1.

Thus by Theorem 3.2, the given problem (5.1) has a unique solution. Further the conditions of Theorem
4.1 are satisfied so the solution of the given problem (5.1) is Ulam-Hyers stable and generalized Ulam-
Hyers stable. Further it is also easy to check the conditions of Theorem 4.2 hold and thus the problem
(5.1) is Ulam-Hyers-Rassias stable and consequently generalized Ulam-Hyers-Rassias stable.

6. Conclusion

With the help of nonlinear functional analysis and fixed point theorems of Banach and Schaefer, we
have successfully developed some adequate conditions for the uniqueness and existence of solution to a
nonlinear implicit type impulsive boundary value problem of FDEs. The obtained conditions ensure the
existence of at least one solution to the proposed problem. Further different kinds of Ulam type stability
have been investigated which is a new direction of analysis of nonlinear FDEs. The concerned stability is
very much important from optimization and numerical point of view.
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[5] S. András, A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math.
Comput., 219 (2013), 4853–4864. 1

[6] D. D. Bainov, M. B. Dimitrova, A. B. Dishliev, Oscillation of the bounded solutions of impulsive differential-difference
equations of second order, Appl. Math. Comput., 114 (2000), 61–68. 1

[7] T. Bashiri, S. M. Vaezpour, C. Park, A coupled fixed point theorem and application to fractional hybrid differential problems,
Fixed Point Theory and Appl., 2016 (2016), 11 pages. 1

[8] M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential
equations of fractional order, Moroccan J. Pure Appl. Anal., 1 (2015), 22–37. 1

[9] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing
Corporation, New York, (2006). 1
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