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1. Introduction

If we talk about the fixed point of any mapping T in a metric space then one can easily answer about
this query that fixed point exists for a self-mapping in a metric space if x = Tx. Similar concept can
be applied in Banach spaces for fixed point theory. No doubt, in fixed point theory, Banach contraction
principle [8] is one of the very earlier results in the literature of the mathematics and non-linear analysis.
Furthermore, moving ahead if we can not find a fixed point, we have a non-self-mapping T : A → B

where A,B are subsets of given space then one can find best proximity point which gives us optimal
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approximate solution in the sense that the error d(x, Tx) = d(A,B) is minimum. Simply, it asserts that
to find the solution for non-self-mapping that is to find best proximity point for any mapping is more
general case than to find fixed point for any mapping. It shows that fixed point theory is the special
case of best proximity point theory by taking self-mapping instead of non-self-mapping. Authors in [6]
proposed different fixed point results relating to metric spaces. For further detail related to best proximity
points in different spaces one can see the references [1–5, 7, 9–11].

In this paper, we obtain the best proximity point theorems via fixed point theorems for α-proximal
contractions in the setting of complete norm spaces. We present an example to prove the validity of our
results. Our results extend and unify many existing results in the literature. Also, it is easily verified that
a normed linear space is a metric space with respect to metric d defined by d(x,y) = ‖x− y‖, (see [12]).
Banach space is a complete normed linear space.

2. Preliminaries

Definition 2.1 ([1]). Let X be a metric space, and A and B two nonempty subsets of X. Define

d(A,B) = inf{d(a,b) : a ∈ A,b ∈ B},
A0 = {a ∈ A : there exists some b ∈ B such that d(a,b) = d(A,B)},
B0 = {b ∈ B : there exists some a ∈ A such that d(a,b) = d(A,B)}.

Definition 2.2 ([10]). Given a non-self mapping f : A → B, then an element x∗ is called best proximity
point of the mapping if the following condition is satisfied

d(x∗, fx∗) = d(A,B).

Definition 2.3 ([10]). Let (X,d) be a metric space and A,B ⊆ X. We say T : A→ B is

1. generalized proximal contraction of the first kind if there exist non-negative numbers α, β, γ with
α+ 2β+ 2γ < 1 such that the condition

d(u, Tx) = d(A,B) = d(v, Ty)

implies
d(u, v) 6 αd(x,y) +βd(x,u) +βd(y, v) + γd(x, v) + γd(y,u);

2. generalized proximal contraction of the first kind if there exist non-negative numbers α, β, γ with
α+ 2β+ 2γ < 1 such that the condition

d(u, Tx) = d(A,B) = d(v, Ty)

implies

d(Tu, Tv) 6 αd(Tx, Ty) +βd(Tx, Tu) +βd(Ty, Tv) + γd(Tx, Tv) + γd(Ty, Tu).

Theorem 2.4 ([1]). Let X be a complete metric space and let Y ⊆ X and Y 6= ∅. Define a mapping F : Y → (−∞,∞]
which is proper function and bounded from below. Let S : Y → 2Y \ {∅} be a multivalued mapping such that for each
x ∈ Y there exists y ∈ Sx with the following inequality:

F(y) + d(x,y) 6 F(x).

Assume that for z ∈ X
inf{d(x, z) + d(x,Sx) : x ∈ Y} = 0⇒ z ∈ Sz∩ Y.

Then there exists w ∈ Y such that w ∈ Sw.

Motivated by Ardsalee and Saejung in [1], in this paper, we will introduce new notions about general-
ized contractions in Banach spaces and find out best proximity points by using fixed point theorem with
certain conditions.
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3. Fixed point theorem for generalized multivalued mappings in Banach spaces

In this part of the research article we will present fixed point theorem for multivalued mappings in
Banach spaces. Furthermore, we will apply this theorem to some best proximity point problems with
certain generalized contractions under Banach spaces.

Theorem 3.1. Let X be a Banach space and let Y ⊆ X and Y 6= ∅. Define a mapping A : Y → (−∞,∞] which is
proper function and bounded below. Let S : Y → 2Y \ {∅} be a multivalued mapping such that for each x ∈ Y there
exists y ∈ Sx with the following inequality:

|A(y)|+ ‖x− y‖ 6 |A(x)|. (3.1)

Assume that for z ∈ X
inf{‖x− z‖+ ‖x− Sx‖ : x ∈ Y} = 0⇒ z ∈ Sz∩ Y. (3.2)

Then there exists w ∈ Y such that w ∈ Sw.

Proof. Let x0 ∈ Y such that |A(x0)| <∞. By inequality (3.1), there exists x1 ∈ Sx0 such that |A(x1)|+ ‖x0 −
x1‖ 6 |A(x0)|. By induction, we obtain a sequence {xn} ∈ Y such that

xn+1 ∈ Sxn and |A(xn+1)|+ ‖xn − xn+1‖ 6 |A(xn)| for all n > 0.

Thus, {A(xn)} is a decreasing sequence. Since A is bounded below, limn→∞A(xn) = k for any k ∈ R. Let
us assume m > 0. We get

Σn=mn=0 ‖xn − xn+1‖ 6Σn=mn=0 |A(xn) −A(xn+1)| = |A(x0)|− |A(xn+1)| 6 |A(x0)|− k.

Then Σ∞
n=0‖xn − xn+1‖ = Σn=mn=0 ‖xn − xn+1‖ < ∞ and so {xn} is a Cauchy sequence. So limn→∞ xn = w

for any w ∈ X. Noting

lim
n→∞ ‖xn −w‖ = 0 and lim

n→∞ ‖xn − Sxn‖ 6 lim
n→∞ ‖xn − xn+1‖ = 0,

by (3.2), we conclude that w ∈ Sw∩ Y.

4. New results related to generalized α-proximal contraction of the first kind in Banach spaces

In this section, we will present some new notions and contraction (α-proximal contraction of the first
kind) to find the best proximity point with the help of results of Ardsalee and Saejung [1], to find optimal
approximate solution for multivalued mappings in Banach spaces and will express best proximity point
theorems by using fixed point theorem.

Definition 4.1. Let X be a Banach space and let A,B be non-empty subsets of X with A0 6= φ. The non-
self-mapping T : A → B is said to be generalized α-proximal contraction of the first kind if there exist
non-negative numbers β,γ with 2β+ γ < 1 such that the condition

‖u− Tx‖ = d(A,B) = ‖v− Ty‖

implies that
|α(x,y)|‖u− v‖ 6 β‖u− x‖+ γ‖x− y‖+β‖y− v‖,

where α : X×X→ [0,∞) such that α(x,y) > 1,

d(A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B},

and
A0 = {a ∈ A : ‖a− b‖ = d(A,B)}.

Likewise, define B0.
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Theorem 4.2. Let X be a Banach space and A,B be subsets of X and A0 6= ∅ and closed. Define a mapping
T : A → B such that T(A0) ⊆ B0 and T is generalized α-proximal contraction of the first kind. Consider that for
each x,y ∈ A0 satisfying ‖x− T(y)‖ = d(A,B), we have |α(x,y)| > 1. Then the following are satisfied:

1. there exists a unique element x ∈ A such that ‖x− Tx‖ = ‖A−B‖;
2. if {xn} is a sequence in A0 with ‖xn+1 − Txn‖ = ‖A−B‖ for each n > 0, then

lim
n→∞ xn = x.

Proof. Since A0 6= ∅, we take x0 ∈ A0, since T(A0) ⊆ B0, there exists x1 ∈ A0 such that

‖x1 − T(x0)‖ = d(A,B), with |α(x0, x1)| > 1.

Again, in same manner we get x2 ∈ A0 such that

‖x2 − T(x1)‖ = d(A,B), with |α(x1, x2)| > 1.

Repeating this process, we get |α(xn, xn+1)| > 1 for any n ∈N. For every element x ∈ A0, we assume that

Sx = {y : y ∈ A0 and ‖y− Tx‖ = d(A,B)},

where d(A,B) = inf{‖x− y‖, for x ∈ A, y ∈ B}. It shows that S : A0 → 2A0 \ {∅}. Since T is generalized
α-proximal contraction of the first kind, there are β,γ > 0 with 2β+γ < 1 such that ‖u− Tx‖ = d(A,B) =
‖v− Ty‖ implies that

‖u− v‖ 6 α(x,y)‖u− v‖ 6 β‖u− x‖+ γ‖x− y‖+β‖y− v‖

for all u, v, x,y ∈ A. Substitute k = β+γ
1−β and b = k+1

2 . Then 0 6 k < b < 1.
Claim that, for every x,y, z ∈ A0, if y ∈ Sx and z ∈ Sy, then

‖z− y‖ 6 k‖y− x‖.

To verify this, let us check, for x,y, z ∈ A0 such that y ∈ Sx and z ∈ Sy. Then

‖y− Tx‖ = d(A,B) = ‖z− Ty‖.

Since T is generalized α-proximal contraction of the first kind,

‖z− y‖ 6 |α(x,y)|‖z− y‖ 6 β‖z− y‖+ γ‖y− x‖+β‖x− y‖.

Thus,
‖z− y‖ 6 k‖y− x‖.

So, we proved the claim.
Further, we will express that whether the inequality (3.1) holds here. For this, let us take x ∈ A0. Since

0 < b < 1, we can take y ∈ Sx so that
b‖x− y‖ 6 ‖x− Sx‖. (4.1)

If z ∈ Sy, then we get by the proved claim that

‖y− Sy‖ 6 ‖z− y‖ 6 k‖y− x‖. (4.2)

By using (4.1) and (4.2), we obtain

‖y− Sy‖+ b‖x− y‖ 6 k‖x− y‖+ ‖x− Sx‖.
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Then
1

b− k
‖y− Sy‖+ ‖y− x‖ 6 1

b− k
‖x− Sx‖.

Suppose F : A0 → [0,∞) is a mapping defined as F(x) = 1
b−k‖x− Sx‖ for every x ∈ A0. So F satisfies

inequality (3.1) of Theorem 3.1. Next step is to confirm that whether the inequality (3.2) of Theorem 3.1
is also satisfied or not?

For this, let us consider a sequence {xn} ∈ A0 and z ∈ X with

lim
n→∞ ‖xn − z‖ = 0 and lim

n→∞ ‖xn − Sxn‖ = 0.

Since A0 is closed so we get z ∈ A0 and Tz ∈ T(A0) ⊂ B0. Then we obtain an element u ∈ A0 such that

‖u− Tz‖ = d(A,B).

We choose a sequence {un} ∈ A0 as un ∈ Sxn also

‖xn − un‖ < ‖xn − Sxn‖+
1
n

for each n > 1. So, limn→∞ ‖xn − un‖ = 0. We know that un ∈ Sxn for each n > 0,

‖un − Txn‖ = d(A,B).

Also, we have limn→∞ ‖xn−z‖ = 0 and limn→∞ ‖xn−un‖ = 0, by using these, we obtain limn→∞ un = z.
Using (4.1) and (4.2), and with the fact that T is generalized α-proximal contraction of the first kind, we
get for every n > 0,

|α(z, xn)|‖u− un‖ 6 β‖u− xn‖+ γ‖xn − z‖+β‖z− un‖.

Now, by taking limit as n → ∞, we have ‖u− z‖ 6 limn→∞ |α(z, xn)|‖u− z‖ 6 β‖u− z‖ < ‖u− z‖. This
is a contradiction. Thus, u = z and so ‖z− Tz‖ = d(A,B), this shows that z ∈ Sz. Hence inequality (3.2)
of Theorem 3.1 is also satisfied here. To conclude this, we say by using Theorem 3.1 there is an element
w ∈ A0 such that w ∈ Sw, it means

‖w− Tw‖ = d(A,B).

Now, for uniqueness, let ‖w̃− Tw̃‖ = d(A,B) for some w̃ ∈ A. We know that T is generalized α-proximal
contraction of the first kind, we get as

‖w− w̃‖ 6 γ‖w− w̃‖.

From here we obtain w = w̃. Hence we get the first part. Next to prove second part, let us take a sequence
{xn} in A0 such that

‖xn+1 − Txn‖ = d(A,B) for each n > 0.

Hence xn+1 ∈ Sxn. From the claim, we obtain as for every n > 0,

‖xn+2 − xn+1‖ 6 k‖xn+1 − xn‖.

Thus {xn} is a Cauchy sequence and hence limn→∞ xn = x for some x ∈ A0. Since T is generalized
α-proximal contraction of the first kind, we get

‖xn+1 −w‖ 6 |α(xn,w)|‖xn+1 −w‖ 6 γ‖xn −w‖+β‖xn − xn+1‖+β‖w−w‖

for every n > 0. Taking limit as n→∞, we obtain ‖x−w‖ 6 γ‖x−w‖. From here we can say that x = w.
Therefore, limn→∞ xn = w and now we have also proved the second part. Hence, we have proved the
theorem.
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5. Some new results related to generalized α-proximal contraction of the second kind in Banach spaces

In this part, we will define generalized α-proximal contraction of the second kind and will express
some results related to this kind of contraction.

Definition 5.1. Let X be a Banach space and let A,B be non-empty subsets of X with A0 6= ∅. The non-
self-mapping T : A→ B is said to be generalized α-proximal contraction of the second kind if there exist
non-negative numbers β,γ with 2β+ γ < 1 such that the condition

‖u− Tx‖ = d(A,B) = ‖v− Ty‖

implies that
|α(Tx, Ty)|‖Tu− Tv‖ 6 β‖Tu− Tx‖+ γ‖Tx− Ty‖+β‖Ty− Tv‖,

where α : X×X→ [0,∞) such that α(x,y) > 1,

d(A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B},

and
A0 = {a ∈ A : ‖a− b‖ = d(A,B)}.

Likewise, define B0.

Theorem 5.2. Let us take a Banach space (X, ‖.‖) and A,B be two non-empty subsets of X such that A0 6= φ.
Let us define a non-self-mapping T : A → B such that T(A0) ⊂ B0. If we consider that T is generalized α-
proximal contraction of the second kind and T(A0) is closed subset of X. Consider that for each x,y ∈ A0 satisfying
‖x− T(y)‖ = d(A,B), we have |α(x,y)| > 1. Then the following hold:

(I) there exists x ∈ A such that ‖x− Tx‖ = d(A,B);
(II) if there is x̃ ∈ A such that ‖x̃− Tx̃‖ = d(A,B), then Tx = Tx̃;

(III) if {xn} is a sequence in A0 with ‖xn+1 − Txn‖ = d(A,B) for each n > 0, then

lim
n→∞ Txn = Tx.

Proof. Since A0 6= ∅, we take x0 ∈ A0, since T(A0) ⊆ B0, there exists x1 ∈ A0 such that

‖x1 − T(x0)‖ = d(A,B), with |α(x0, x1)| > 1.

Again, in same manner we get x2 ∈ A0 such that

‖x2 − T(x1)‖ = d(A,B), with |α(x1, x2)| > 1.

Repeating this process, we get |α(xn, xn+1)| > 1 for any n ∈N. We suppose that for each x ∈ T(A0),

Sx = {y : y = Tu where u ∈ A0 and ‖u− x‖ = d(A,B)}.

It shows that S : T(A0) → 2T(A0) \ {∅}. Since T is generalized α-proximal contraction of the second kind,
so there are β,γ > 0 with 2β+ γ < 1 such that ‖u− Tx‖ = d(A,B) = ‖v− Ty‖ shows that

‖Tu− Tv‖ 6 |α(x,y)|‖Tu− Tv‖ 6 β‖Tu− Tx‖+ γ‖Tx− Ty‖+β‖Ty− Tv‖,

for every u, v, x,y ∈ A. Put k = β+γ
1−β and b = k+1

2 . Then 0 6 k < b < 1. Now, we have to prove the claims
of Theorem 3.1 as the first claim is about: for each u, v, x,y ∈ T(A0), if u ∈ Sx and v ∈ Sy, then

‖u− v‖ 6 γ‖x− y‖+β‖x− u‖+β‖y− v‖.
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Now, let us prove this claim as by taking elements u, v, x,y ∈ T(A0) such that u ∈ Sx and v ∈ Sy. So
u = Tũ, v = Tṽ, x = Tx̃,y = Tỹ for some ũ, ṽ, x̃, ỹ ∈ A0 with

‖ũ− Tx̃‖ = d(A,B) = ‖ṽ− Tỹ‖.

We know that T is generalized α-proximal contraction of the second kind, so

‖Tũ− Tṽ‖ 6 |α(x,y)|‖Tũ− Tṽ‖ 6 β‖Tx̃− Tũ‖+ γ‖Tx̃− Tỹ‖+β‖Tỹ− Tṽ‖,

that is,
‖u− v‖ 6 γ‖x− y‖+β‖x− u‖+β‖y− v‖.

Hence, we have proved the first claim. Now, we will prove the second claim of Theorem 3.1, that is, for
each x,y, z ∈ T(A0) if y ∈ Sx and z ∈ Sy, then ‖z− y‖ 6 k‖x− y‖. For this, let us assume x,y, z ∈ T(A0)
such that y ∈ Sx and z ∈ Sy. Here we will use the first claim, we get

‖z− y‖ 6 γ‖y− x‖+β‖y− z‖+β‖x− y‖.

So ‖z− y‖ 6 k‖x− y‖. Hence, the second claim has been proved.
Next, we will prove that inequality (3.1) in Theorem 3.1 holds here. Let x ∈ T(A0). Since 0 < b < 1,

there exists y ∈ Sx such that
b‖x− y‖ 6 ‖x− Sx‖. (5.1)

Let z ∈ Sy then we get by using the claim II,

‖y− Sy‖ 6 ‖z− y‖ 6 k‖x− y‖. (5.2)

Now, using (5.1) and (5.2), we get

‖y− Sy‖+ b‖x− y‖ 6 k‖x− y‖+ ‖x− Sx‖.

Then 1
b−k‖y − Sy‖ + ‖x − y‖ 6 1

b−k‖x − Sx‖. Suppose F : T(A0) → [0,∞) is a mapping defined as
F(x) = 1

b−k‖x− Sx‖ for every x ∈ T(A0). So F satisfies the inequality (3.1) of Theorem 3.1 here.
Further we will prove that the inequality (3.2) of Theorem 3.1 also holds. Let z ∈ X and {xn} is a

sequence in T(A0) such that

lim
n→∞ ‖xn − z‖ = 0 and lim

n→∞ ‖xn − Sxn‖ = 0.

Since T(A0) is closed, z ∈ T(A0) and so we can let z̃ ∈ Sz.
Now we have to show that z = z̃. Since limn→∞ ‖xn − Sxn‖ = 0, we can choose a sequence {yn} in

T(A0) so that
yn ∈ Sxn

for every n > 0 and
lim
n→∞ ‖xn − yn‖ = 0.

Since limn→∞ ‖xn − z‖ = 0 and limn→∞ ‖xn − yn‖ = 0, we get limn→∞ yn = z. Using (5.1), (5.2) and
claim I,

‖z̃− yn‖ 6 |α(xn,yn)|‖z̃− yn‖ 6 γ‖z− xn‖+β‖z− z̃‖+β‖xn − yn‖.

As n → ∞, we obtain ‖z̃ − z‖ 6 β‖z − z̃‖ < ‖z − z̃‖, which gives us a contradiction, so z = z̃. Thus,
inequality (3.2) in Theorem 3.1 also holds here. Using Theorem 3.1, there exists w ∈ T(A0) such that
w ∈ Sw, that is, there exists w∗ ∈ A0 such that w = Tw∗ and

‖w∗ − Tw∗‖ = d(A,B).
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So we have best proximity point for T . Thus, we have proved the first part (I). Next, to prove uniqueness of
best proximity point of T , that is second part (II) of Theorem 5.2, for this v ∈ A be another best proximity
point of T such that ‖v− Tv‖ = d(A,B). Since T is generalized α-proximal contraction of the second kind,

‖Tv− Tw∗‖ 6 |α(Tv, Tw∗)|‖Tv− Tw∗‖ 6 γ‖Tv− Tw∗‖+β‖Tv− Tv‖+β‖Tw∗ − Tw∗‖.

Then ‖Tv− Tw∗‖ 6 γ‖Tv− Tw∗‖ < ‖Tv− Tw∗‖ implies that Tv = Tw∗. Hence we have proved the first
two parts of Theorem 5.2, now it only remains that the last part left to be proved. For this, let {xn} be a
sequence in A0 such that ‖xn+1 − Txn‖ = d(A,B) for all n > 0. So we get Txn+1 ∈ STxn. By using claim
II of this theorem, we have for all n > 0,

‖Txn+2 − Txn+1‖ 6 k‖Txn+1 − Txn‖.

Thus {Txn} is a Cauchy sequence and so limn→∞ Txn = s for any s ∈ X. Since w ∈ Sw and Txn+1 ∈ STxn,
we get

‖w− Txn+1‖ 6 |α(w, txn)|‖w− Txn+1‖ 6 γ‖w− Txn‖+β‖w−w‖+β‖Txn − Txn+1‖.

By taking limit as n → ∞, we obtain ‖w− s‖ 6 γ‖w− s‖. So w = s. It means that limn→∞ Txn = w.
Thus, theorem has been proved.

Definition 5.3. Let (X, ‖.‖) be a Banach space and let A,B be non-empty subsets of X. The set B is said
to be approximately compact with respect to A if every sequence {yn} of B satisfying the condition that
limn→∞ ‖x− yn‖ = d(x,B) for some x ∈ A has a convergent subsequence.

Theorem 5.4. Let (X, ‖.‖) be a Banach space and A,B be non-empty closed subsets of X such that A0 is non-empty.
Assume a continuous mapping T : A→ B which is generalized α-proximal contraction of the second kind such that
T(A0) ⊂ B0. If A is approximately compact with respect to B, then the following hold:

1. there exists x ∈ A such that ‖x− Tx‖ = d(A,B);
2. if there is x̃ ∈ A such that ‖x̃− Tx̃‖ = d(A,B), then Tx = Tx̃;
3. if {xn} is a sequence in A0 with ‖xn+1 − Txn‖ = d(A,B) for each n > 0, then

lim
n→∞ Txn = Tx.

Proof. Let define mappings S : T(A0)→ 2T(A0) \ {φ} and F : T(A0)→ [0,∞) as in the proof of Theorem 5.2
likewise. Proceeding the same proof lines with above mentioned mappings, we proved that the inequality
(3.1) of the Theorem 3.1 is satisfied.

Next, to prove that second inequality (3.2) of Theorem 3.1 also holds. For this, assume that a sequence
{xn} ∈ T(A0) and let z ∈ X. Suppose that

lim
n→∞ ‖xn − z‖ = 0 and lim

n→∞ ‖xn − Sxn‖ = 0. (5.3)

Since xn ∈ T(A0) ⊂ T(A) ⊂ B and B is closed, z ∈ B. We take a sequence {yn} in T(A0) so that yn ∈ Sxn
for every n > 0 and

‖xn − yn‖ = 0. (5.4)

We know that yn ∈ Sxn for each n > 0, we may write yn = Tun for some un ∈ A0 with

‖un − xn‖ = d(A,B).

We have

d(A,B) 6 ‖un − z‖ 6 ‖un − xn‖+ ‖xn − z‖ = d(A,B) + ‖xn − z‖.
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Thus limn→∞ ‖un − z‖ = d(A,B). Since A is approximately compact with respect to B, there is a subse-
quence {unk} of {un} such that unk → u for some u ∈ A. Since T is continuous, we get Tunk → Tu. By
using (5.3) and (5.4), we obtain yn → z and so

Tu = lim
k→∞ Tunk = lim

n→∞ Tun = lim
n→∞yn = z.

Therefore,
‖u− Tu‖ = ‖u− z‖ = lim

k→∞ ‖unk − xnk‖ = d(A,B),

that is, Tu ∈ STu or z ∈ Sz ∩ T(A0). Therefore, the inequality (3.2) in Theorem 3.1 holds here. Now by
using Theorem 3.1, we can say, there is w ∈ T(A0) such that w ∈ Sw, it means w = Tw̃ for any w̃ ∈ A0
with ‖w̃− Tw̃‖ = d(A,B). Hence, the first part of this theorem 5.4 is proved and the rest of it can be
proved from the conclusions from Theorem 5.2.

Example 5.5. Let us take R2 with usual norm and A = {(0,a) : 0 6 a} and B = {(1,b) : 0 6 b}. We
take A0 = A and B0 = B. Define a mapping T : A → B as T(0,a) = (1,g(a)), where g(a) = 3

4 + 3
a+4 and

(0,a) ∈ A. Also,

‖g(a) − g(b)‖ = ‖ 3
a+ 4

−
3

b+ 4
‖ 6 3

4
‖a− b‖.

Since we know that T(A0) = T(A) = {(1, x) : x ∈ [0, 3
4)} is not closed, it is obvious that A is approximately

compact with respect to B and also T is continuous. Define α : X×X→ R+ as

α(x,y) = 1, if x,y ∈ (0,a) where a > 0,

otherwise 0. We will prove that T is generalized α-proximal contraction of the second type. Let us take
u, v, x,y ∈ A such that ‖u− Tx‖ = ‖v− Ty‖ = d(A,B). Then we can say that x = (0,a1) and y = (0,a2) for
some a1,a2 > 0. Thus, u = Tx that is, u = (1,g(a1)) and v = Ty implies that v = (1,g(a2)). We write as

‖Tu− Tv‖ = ‖g2(a1) − g
2(a2)‖ 6

3
4
‖g(a1) − g(a2)‖ =

3
4
‖Tx− Ty‖.

Therefore, T is generalized α-proximal contraction of the second type. Thus, claims of Theorem 5.4
satisfied.

6. Conclusions

In this article the authors introduced the new notions of generalized α-proximal contractions of the
first and second kinds in Banach spaces. These contractions and theorems in this paper motivated the
new techniques for finding the best proximity points in Banach spaces.
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