
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 4812–4821

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

A projection-type method for generalized variational inequalities with dual
solutions

Ming Zhu, Guo-Ji Tang∗

School of Science, Guangxi University for Nationalities, Nanning, Guangxi 530006, P. R. China.

Communicated by S. S. Chang

Abstract
In this paper, a new projection-type method for generalized variational inequalities is introduced in Euclidean spaces.

Under the assumption that the dual variational inequality has a solution, we show that the proposed method is well-defined and
prove that the sequence generated by the proposed method is convergent to a solution, where the condition is strictly weaker
than the pseudomonotonicity of the mapping used by some authors. We provide an example to support our results. Compared
with the recent works of Li and He [F.-L. Li, Y.-R. He, J. Comput. Appl. Math., 228 (2009), 212–218], and Fang and He [C.-J.
Fang, Y.-R. He, Appl. Math. Comput., 217 (2011), 9543–9551], condition (A3) is removed. Moreover, the results presented in this
paper also generalize and improve some known results given in other literature. c©2017 All rights reserved.
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1. Introduction

Let C be a nonempty, closed, and convex subset of Rn and F : C ⇒ Rn be a set-valued mapping.
Denote the usual inner product and norm in Rn by 〈·, ·〉 and norm ‖ · ‖, respectively. We consider the
generalized variational inequality (in short GVI(F,C)): find x∗ ∈ C and ξ ∈ F(x∗) such that

〈ξ,y− x∗〉 > 0, ∀y ∈ C.

For convenience, we denote by SOL(F,C) the set of solutions of GVI(F,C). If F is single-valued, then
GVI(F,C) reduces to the variational inequality (in short VI(F,C)), i.e., find x∗ ∈ C such that

〈F(x∗),y− x∗〉 > 0, ∀y ∈ C.

It is well-known that the solution of GVI(F,C) is closely related with that of the dual variational inequality
problem (in short DVI(F,C)) of finding x∗ ∈ C such that

∀y ∈ C and ∀η ∈ F(y), 〈η,y− x∗〉 > 0. (1.1)
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Such an element x∗ ∈ C satisfying (1.1) is called a solution of DVI(F,C), or a dual solution of GVI(F,C).
The set of all solutions of DVI(F,C) is denoted by SOLD(F,C).

In the theory of variational inequalities, it is an important part to devise some algorithms to find an
approximate solution of variational inequalities. In this paper, we will focus on the topic of projection-type
methods. Thus, we should recall some development process of projection-type methods. The simplest
version among projection-type methods for solving VI(F,C) is the Picard iteration, which depends on
its equivalent fixed point reformulation x = PC(x − µF(x)). In order to get the convergence, Picard
iteration scheme requires very strong conditions, i.e., the strong monotonicity and Lipschitz continuity
of the mapping F. In 1976, Korpelevič [10] constructed a double projection method such that the strong
monotonicity of F is relaxed to its monotonicity. In 1997, Iusem and Svaiter [8] introduced a variant of
Korpelevich’s method by using Armijo linear search procedure such that the Lipschitz continuity of F is
further relaxed to the continuity. Then He [5] constructed a new double projection method by introducing
another Armijo type linear search different from that of Iusem and Svaiter [8], and analyzed the rate of
convergence. Recently, based on the crucial points of convergence proof of related projection methods,
Ye and He [17] proposed a double projection method for VI(F,C). They require that dual variational
inequality has a solution, which is weaker than pseudomonotonicity of the mapping. For more related
works, we refer the readers to the references [6, 14–16].

For GVI(F,C), the appearance of set-valued mapping causes solving GVI(F,C) and analyzing the
convergence of the methods to become more complicated. As mentioned by Iusem and Perez [7], the
point-to-point mappings in VI(F,C) can not be automatically extended to point-to-set mappings. In algo-
rithms for solving VI(F,C), if we just replace F(x) by u ∈ F(x), then the algorithm might be unsuccessful.
They also provide an example to support his viewpoint in Sect. 2 of [7]. Thus, it is interesting to deal
with the algorithms for GVI(F,C).

If T is maximal monotone, Iusem and Perez [7] suggested an extragradient method to solve GVI(F,C).
In 2009, Li and He [11] devised a projection type method to solve GVI(F,C), where for taking an element
in F(xi), they have to solve another single-valued variational inequality. For more details, the reader
may refer to the references [7, 11] (see, for example, (35) and (36) of [7], and (2.1) of [11]). Therefore the
price at each iteration is somewhat expensive. To overcome this difficulty, Fang and He [2] modified the
algorithms and it is arbitrary to take an element in F(xi). Both Li and He [11] and Fang and He [2], in
order to analyze the convergence of the algorithms, adopted the same assumptions as follows:

(A1) SOL(F,C) is nonempty;

(A2) F is continuous with nonempty compact convex values;

(A3) for each x ∈ SOL(F,C), it holds that

〈η,y− x〉 > 0, ∀y ∈ C and ∀η ∈ F(y).

It is easy to see that if F is pseudomonotone (see Definition 2.1), then condition (A3) is true. The single-
valued version of condition (A3) is also used in literatures, see, for example [13]. However, since we do
not know all elements of SOL(F,C) in advance (otherwise there is nothing to do), it is not easy to check
condition (A3). On the other hand, there are many applications from reality such that the mapping F
in the model GVI(F,C) is not pseudomonotone, see for example [3, 9, 12] and the references therein. A
natural problem is whether there is a more efficient condition that can replace (A3), or how to weaken
condition (A3), even the best is whether condition (A3) can be removed.

Motivated and inspired by the research work mentioned above, in this paper, we suggest a new
projection method for GVI(F,C) in Euclidean spaces. Under very mild assumptions, we prove that the
sequence generated by the proposed method is globally convergent to a solution of the problem. In some
extent, we remove condition (A3) and do not need to add other conditions to get the convergence of the
proposed algorithm.



M. Zhu, G.-J. Tang, J. Nonlinear Sci. Appl., 10 (2017), 4812–4821 4814

2. Preliminaries

In this section, we shall recall some notations, definitions, and other results, which will be used in the
sequel. The following definition regarding inner point is taken from [4, 9]. For a given set C ⊂ Rn, its
convex hull is denoted by conv(C). For any x,y ∈ Rn, we set

[x,y] := conv{x,y}.

Analogously, we can define the segments (x,y], [x,y), and (x,y). A point t ∈ Rn is said to be perpendic-
ular to C if 〈t, x〉 is constant for all x ∈ C. The set of perpendicular elements to C is denoted by CP. A
point y ∈ C is said to be an inner point of C if, for any t ∈ Rn \ {0}, the following implication holds:

〈t, x〉 6 〈t,y〉, ∀x ∈ C ⇒ t ∈ CP.

The set of inner points of C is denoted by inn(C).

Definition 2.1. A set-valued operator F : Rn ⇒ Rn is said to be

(i) monotone if we have

〈u− v, x− y〉 > 0, ∀x,y ∈ Rnand ∀u ∈ F(x), v ∈ F(y);

(ii) maximal monotone if it is monotone and not properly contained in another monotone operator in
the sense of their graphs;

(iii) pseudomonotone if for each pair of points x,y ∈ Rn, and for all u ∈ F(x), v ∈ F(y), we have

〈u,y− x〉 > 0 implies 〈v,y− x〉 > 0;

(iv) quasimonotone if for each pair of points x,y ∈ Rn, and for all u ∈ F(x), v ∈ F(y), we have

〈u,y− x〉 > 0 implies 〈v,y− x〉 > 0;

(v) strictly quasimonotone if it is quasimonotone and for every distinct x,y ∈ Rn, there exists z ∈ (x,y)
such that

〈η, x− y〉 6= 0, ∀η ∈ F(z);

(vi) semistrictly quasimonotone if it is quasimonotone and for every distinct x,y ∈ Rn, the relation

〈ζ, x− y〉 > 0, for some ζ ∈ F(y),

implies

〈η, x− y〉 > 0, for some z ∈ (
x+ y

2
, x) and ∀η ∈ F(z).

Remark 2.2. The notions of monotonicity, maximal monotonicity, pseudomonotonicity, and quasimono-
tonicity are well-known. The notions of strict quasimonotonicity and semistrict quasimonotonicity for
the single-valued mapping is introduced by Hadjisavvas and Schaible [3], while the analogues for the
set-valued mapping are taken from the work of Konnov [9].
Remark 2.3. Various (generalized) monotonicity in Definition 2.1 has the following implication relations:

(a) Maximal monotonicity⇒Monotonicity⇒ Pseudomonotonicity⇒ Semistrict quasimonotonicity⇒
Quasimonotonicity;

(b) Strict quasimonotonicity⇒ Semistrict quasimonotonicity.

Definition 2.4. A set-valued operator F : Rn ⇒ Rn is said to be

(i) upper semicontinuous at x ∈ Rn if for every open set V containing F(x), there is an open set U
containing x such that F(y) ⊂ V for all y ∈ U;
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(ii) lower semicontinuous at x ∈ Rn if for any sequence {xk} converging to x and each y ∈ F(x), there
exists a sequence {yk} with yk ∈ F(xk), converging to y;

(iii) continuous at x ∈ Rn if it is both upper semicontinuous and lower semicontinuous at x;

(iv) upper semicontinuous (resp. lower semicontinuous, continuous) if it is upper semicontinuous (resp.
lower semicontinuous, continuous) at each x ∈ Rn;

(v) hemicontinuous if F is upper semicontinuous from line segment of Rn to Rn.

For a nonempty, closed, and convex set C in Rn and a point x ∈ Rn, the orthogonal projection of x
onto C, denoted by PC(x), is defined as

PC(x) := arg min{‖y− x‖ : y ∈ C}.

Lemma 2.5 ([5, Lemma 2.4]). Let X be a nonempty, closed, and convex set, x̄ = PX(x) and x∗ ∈ X. Then one has

‖x̄− x∗‖2 6 ‖x− x∗‖2 − ‖x− x̄‖2.

Let µ > 0 be a parameter.

Proposition 2.6. x ∈ C and ξ ∈ F(x) solves GVI(F,C) if and only if

rµ(x, ξ) := x− PC(x− µξ) = 0.

Lemma 2.7 ([11, Lemma 2.3]). For any x ∈ C and ξ ∈ F(x), one has

〈ξ, rµ(x, ξ)〉 > µ−1‖rµ(x, ξ)‖2. (2.1)

Unless specified otherwise, in this paper we will adopt the following assumptions.

(H1) The set of solutions for DVI(F,C) is nonempty, i.e., SOLD(F,C) 6= ∅;

(H2) F : Rn ⇒ Rn is continuous with nonempty and compact values.

Regarding assumption (H1), in order to show its reasonability, we should give some sufficient condi-
tions to ensure that (H1) holds. Now we need the notions of the trivial solution set and the nontrivial
solution set of GVI(F,C), that is,

SOLT (F,C) := {x∗ ∈ C | there is ξ ∈ F(x∗) such that 〈ξ,y− x∗〉 = 0, ∀y ∈ C},
SOLN(F,C) := SOL(F,C) \ SOLT (F,C).

Theorem 2.8. If one of the following conditions holds:

(i) F is pseudomonotone on C and SOL(F,C) 6= ∅;

(ii) F is quasimonotone on C and SOLN(F,C) 6= ∅;

(iii) condition (A3) is true,

then SOLD(F,C) is nonempty.

Proof.
(i) This is a direct consequence of the pseudomonotonicity of F and SOL(F,C) 6= ∅.
(ii) Combining the definitions of SOLN(F,C) and the quasimonotonicity of F, we easily get it.
(iii) It is trivial.

The following two results are taken from Theorems 4.1 and 4.2 of Konnov [9].
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Theorem 2.9. Let C is a nonempty, bounded, closed, and convex subset of Rn with inn(C) 6= ∅. Let F be a
hemicontinuous, semistrictly quasimonotone mapping with nonempty and compact values. Then SOLD(F,C) is
nonempty.

Theorem 2.10. Let C is a nonempty, closed and convex subset of Rn with inn(C) 6= ∅. Let F be a hemicontinuous,
semistrictly quasimonotone mapping with nonempty and compact values. Suppose that there exists a compact subset
W of Rn and a point w0 ∈W ∩ inn(C) such that, for every x ∈ C \W, there exists g ∈ F(w0) such that

〈g,w0 − x〉 < 0.

Then SOLD(F,C) is nonempty.

3. Algorithm

In this section, we will state our algorithm and show the well-definedness of the proposed algorithm.

Algorithm 3.1.

Initialization: Choose an initial point x0 ∈ C and parameters γ,σ ∈ (0, 1) and µ ∈ (0, 1
σ). Set k := 0.

Iteration Step: Given xk ∈ C, if rµ(xk, ξ) = 0 for some ξ ∈ F(xk), then stop. Otherwise, take ξk ∈ F(xk)
arbitrarily and compute

mk = min{k ∈N+| inf
y∈F(xk−γkrµ(xk,ξk))

〈ξk − y, rµ(xk, ξk)〉 6 σ‖rµ(xk, ξk)‖2}, (3.1)

ηk = γmk ,

and
zk = xk − ηkrµ(x

k, ξk).

Compute
xk+1 = PC∩H̃k(x

k), (3.2)

where H̃k = ∩kj=0Hj with Hj := {v ∈ Rn|hj(v) 6 0} is a halfspace dependent on the function

hj(v) := sup
ξ∈F(zj)

〈ξ, v− zj〉. (3.3)

Let k := k+ 1 and return to the Iteration Step.

Remark 3.2.

(i) If F is single-valued, then Algorithm 3.1 reduces to Algorithm 2.1 of Ye and He [17].

(ii) Compared with Algorithm 1 of Fang and He [2], in the projection step (3.2) of our algorithm, the
constraint set H̃k is the intersection of existing halfspaces Hj for j from 0 to k. This leads to accelerate
the convergence of the proposed algorithm in some extent. In addition, this will not cause expensive
computation burden, since Hj for j from 0 to k− 1 have achieved in the previous iteration.

(iii) Compared with Algorithm 1 of Li and He [11], ξk can be taken arbitrarily in our algorithm, while
ξk is selected by solving a single-valued inequality in [11]. It seems that it will cause expensive
computation. Moreover, there is other difference between our algorithm and Li and He’s algorithm,
for example, Armijo-type linesearch procedure and projection step.

In what follows, we should show the well-definedness of Algorithm 3.1.
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Lemma 3.3 ([2, Proposition 2.2]). If rµ(xk, ξ) = 0 for some ξ ∈ F(xk), then xk ∈ SOL(F,C). Otherwise, the
linesearch (3.1) in Algorithm 3.1 is well defined.

Lemma 3.4. Let the function hj be defined by (3.3) and xk be given in Algorithm 3.1. If SOLD(F,C) 6= ∅, then
one has

hk(x
k) > ηk(µ

−1 − σ)‖rµ(xk, ξk)‖2. (3.4)

If x∗ ∈ SOLD(F,C), then
hk(x

∗) 6 0.

Proof. Since zk = xk − ηkrµ(x
k, ξk), we have

hk(x
k) = sup

ξ∈F(zk)
〈ξ, xk − zk〉 = ηk sup

ξ∈F(zk)
〈ξ, rµ(xk, ξk)〉 > ηk〈ξk, rµ(xk, ξk)〉− σηk‖rµ(xk, ξk)‖2

> ηk(µ
−1 − σ)‖rµ(xk, ξk)‖2,

where the first inequality follows from (3.1) and the second inequality follows from (2.1). If x∗ ∈
SOLD(F,C), then one has

hk(x
∗) = sup

ξ∈F(zk)
〈ξ, x∗ − zk〉 6 0.

This completes the proof.

Lemma 3.5. The projection step (3.2) in Algorithm 3.1 is well-defined.

Proof. To this end, it is sufficient to prove that C ∩ H̃k is nonempty, closed, and convex. By Lemma 3.4
and assumption (H1), we have that

∅ 6= SOLD(F,C) ⊆ Hj
for j = 0, · · · ,k. Obviously, SOLD(F,C) ⊆ C. So the set C ∩ H̃k is nonempty. It is easy to see that it is
closed and convex. This completes the proof.

Remark 3.6. From Lemmas 3.3 and 3.5, we conclude that Algorithm 3.1 is well-defined under the assump-
tion (H1).

4. Convergence analysis

Lemma 4.1 ([11, Lemma 2.2]). The function hj defined by (3.3) is Lipschitz with a constantM := supξ∈F(zk) ‖ξ‖
on Rn.

Lemma 4.2 ([5, Lemma 2.3]). Let C be a closed and convex subset of Rn, h be a real-valued function on Rn, and
K be the set {x ∈ C : h(x) 6 0}. If K is nonempty and h is Lipschitz continuous on C with modulus α > 0, then

dist(x,K) > α−1 max{h(x), 0}, ∀x ∈ C, (4.1)

where dist(x,K) denotes the distance from x to K.

Lemma 4.3. Let {xk} be an infinite sequence generated by Algorithm 3.1 and x̃ be any cluster point of {xk}. Then
one has x̃ ∈ ∩∞k=1Hk.

Proof. To this end, for any given nonnegative integer l, we will show that x̃ ∈ Hl. Since x̃ is a cluster point
of {xk}, there is a subsequence {xki} of {xk}, such that

lim
i→∞ xki = x̃. (4.2)

According to the definitions of xki = PC∩H̃ki−1
(xki−1) and H̃ki−1 = ∩j=ki−1

j=0 Hj, we have xki ∈ Hl for all
i > l+ 1. Combining the closedness of Hl and (4.2), we have x̃ ∈ Hl. This completes the proof.
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We now present the convergence result of Algorithm 3.1.

Theorem 4.4. Under the assumptions (H1) and (H2), if Algorithm 3.1 terminates at the k-th iteration, then xk is a
solution of GVI(F,C). Otherwise, the infinite sequence {xk} generated by Algorithm 3.1 is convergent to a solution
of GVI(F,C).

Proof. The first conclusion follows from Lemma 3.3. Now let {xk} be the infinite sequence generated by
Algorithm 3.1. According to the stop criterion, one knows that rµ(xk, ξk) 6= 0 for each k and all ξk ∈ F(xk).
By xk+1 = PC∩H̃k(x

k), applying Lemma 2.5, one has that for each x∗ ∈ ∩∞k=0(Hk ∩C),

‖xk+1 − x∗‖2 6 ‖xk − x∗‖2 − ‖xk+1 − xk‖2 = ‖xk − x∗‖2 − dist2(xk,C∩ H̃k). (4.3)

It is easy to see that the sequence {‖xk − x∗‖} is nonincreasing and bounded below. Hence limk→∞ ‖xk −
x∗‖ exists. This implies that {xk} is bounded and

lim
k→∞ dist(xk,C∩ H̃k) = 0.

By the definition of H̃k, we have H̃k ⊂ Hk for all k. Thus, it follows that

dist(xk,C∩ H̃k) > dist(xk,C∩Hk)

and so
lim
k→∞ dist(xk,C∩Hk) = 0. (4.4)

By the boundedness of {xk}, there is a convergent subsequence {xki} converging to x̄. Since F is an upper
semicontinuous mapping with compact values, it follows from Proposition 3.11 of [1] that {F(xk)|k ∈ N}

is a bounded set, and so the sequences {ξk}, {rµ(xk, ξk)}, and {zk} are bounded. Thus, akin to the previous
argument, {F(zk)|k ∈N} is a bounded set, i.e., there is M > 0 such that

sup
ξ∈F(zk)

‖ξ‖ 6M, for all k.

It follows from (4.1) and (3.4) that

dist(xk,C∩Hk) >M−1hk(x
k) >M−1ηk(µ

−1 − σ)‖rµ(xk, ξk)‖2. (4.5)

Thus, by (4.4) and (4.5), we have
lim
k→∞ηk‖rµ(xk, ξk)‖2 = 0. (4.6)

We now consider two possible cases.

Case 1: Suppose that ηk 9 0 as k → ∞. Then there is a subsequence of {ηk}, still denoted by {ηk},
and some η > 0 such that ηk > η for all k. Thus, it follows from (4.6) that limk→∞ ‖rµ(xk, ξk)‖ = 0.
Since rµ(·, ·) is continuous and the sequences {xk} and {ξk} are bounded, there is a cluster point (x̂, ξ̂)
of {(xk, ξk)} such that rµ(x̂, ξ̂) = 0. This implies that x̂ is a solution of GVI(F,C) by Proposition 2.6. By
Lemma 4.3, we have x̂ ∈ ∩∞k=1(Hk ∩ SOL(F,C)). Replacing x∗ by x̂ in (4.3), we have that the sequence
{‖xk − x̂‖} is nonincreasing and hence convergent. Since x̂ is a cluster point of {xk}, some subsequence of
{‖xk− x̂‖} is convergent to zero. This shows that the whole sequence {‖xk− x̂‖} is also convergent to zero,
and hence limk→∞ xk = x̂.

Case 2: Suppose that limk→∞ ηk = 0. Let (x̄, ξ̄) be any cluster point of {(xk, ξk)}. Then there exists some
subsequence {(xki , ξki)} converging to (x̄, ξ̄). Since F is upper semicontinuous with compact values, it
follows from Proposition 3.7 of [1] that F is closed, and so ξ̄ ∈ F(x̄). By the choice of ηk, (3.1) implies that

inf
y∈F(xki−γ−1ηkirµ(x

ki ,ξki))
〈ξki − y, rµ(xki , ξki)〉 > σ‖rµ(xki , ξki)‖2, ∀i. (4.7)
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Taking into account the boundedness of {rµ(xki , ξki)} and limi→∞ ηki = 0, we have

lim
i→∞ηkirµ(xki , ξki) = 0.

Since F and rµ(·, ·) are continuous, it follows from (4.7) that

σ‖rµ(x̄, ξ̄)‖2 6 inf
y∈F(x̄)

〈ξ̄− y, rµ(x̄, ξ̄)〉. (4.8)

Combining ξ̄ ∈ F(x̄), we get

inf
y∈F(x̄)

〈ξ̄− y, rµ(x̄, ξ̄)〉 6 〈ξ̄− ξ̄, rµ(x̄, ξ̄)〉 = 0.

This, together with (4.8) and σ > 0, implies that rµ(x̄, ξ̄) = 0. Applying the similar argument in Case 1,
we get that limk→∞ xk = x̄ and x̄ ∈ SOL(F,C). This completes the proof.

Remark 4.5. Compared with the works of [2, 11], since condition (A3) is not easy to check, it is often
replaced by the pseudomonotonicity of the mapping when we use it. In order to support our results,
we should provide an example, where the mapping F satisfies assumptions (H1) and (H2), but it is not
pseudomonotone.

Example 4.6. Let a ∈ R+, C = [0,a]× {0}× [0,a] ∈ R3. Define F : C⇒ R3 as follows:

F(x) := F(x1, 0, x3) = {(ξ1, ξ2, 0) ∈ R3 : −a 6 ξ1 6 −x1,−a 6 ξ2 6 a}.

Then one has

(i) the mapping F is continuous with nonempty and compact values;

(ii) the mapping F is semistrictly quasimonotone;

(iii) the mapping F is not pseudomonotone;

(iv) SOLD(F,C) 6= ∅.

Proof.

(i) First, we show that F is upper semicontinuous. Indeed, for every x = (x1, 0, x3) ∈ C, and for any ε > 0,
denote

V = {(ξ1, ξ2, ξ3) ∈ R3 : −a− ε < ξ1 < −x1 + ε,−a− ε < ξ1 < a+ ε,−ε < ξ3 < ε},

which is an open set containing F(x). Take U = O(x; ε2 ), an open ball centered at x and radius ε2 . Then for
any y = (y1, 0,y3) ∈ U∩C, we have |x1 − y1| <

ε
2 , i.e., −x1 −

ε
2 < −y1 < −x1 +

ε
2 . So,

F(y1, 0,y3) = {(ξ1, ξ2, 0) ∈ R3 : −a 6 ξ1 6 −y1,−a 6 ξ2 6 a}

⊆ {(ξ1, ξ2, 0) ∈ R3 : −a 6 ξ1 6 −x1 +
ε

2
,−a 6 ξ2 6 a} ⊆ V .

Hence, by arbitrariness of x ∈ C, we have that F is upper semicontinuous.
Secondly, we show that F is lower semicontinuous. Indeed, for every x = (x1, 0, x3) ∈ C, if given any

sequence {xk} ⊂ C converging to x, and any ξ ∈ F(x), by the continuity of the function f1(x) = −x1,
which is a constrained condition of F(x), we conclude that there exists a sequence {ξk} with ξk ∈ F(xk)
converging to ξ. Hence, by arbitrariness of x ∈ C, we have that F is lower semicontinuous.

Moreover, it is obvious that F has nonempty and compact values.

(ii) Let x = (x1, 0, x3),y = (y1, 0,y3) ∈ C, and ξ ∈ F(x) satisfy 〈ξ,y− x〉 > 0. Then we have

〈ξ,y− x〉 = 〈(ξ1, ξ2, 0), (y1 − x1, 0,y3 − x3)〉 = ξ1(y1 − x1) > 0,

which implies that ξ1 6= 0 and y1 − x1 < 0. For any η = (η1,η2, 0) ∈ F(y), we have
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〈η,y− x〉 = 〈(η1,η2, 0), (y1 − x1, 0,y3 − x3)〉 = η1(y1 − x1) > 0.

Therefore, F is quasimonotone. Moreover, it follows from y1 < x1 that x1 6= 0 or y1 6= 0. Then we can take
z = (z1, 0, z3) ∈ (y+x2 ,y) such that z1 6= 0. Thus, for any ζ = (ζ1, ζ2, 0) ∈ F(z), we have ζ1 6= 0, and so

〈ζ,y− x〉 = 〈(ζ1, ζ2, 0), (y1 − x1, 0,y3 − x3)〉 = ζ1(y1 − x1) > 0.

Therefore, F is semistrictly quasimonotone.

(iii) Select x0 = (0, 0, 0), y0 = (a, 0, 0), ξ0 = (0, 0, 0) ∈ F(x0), and η0 = (−a,a, 0). We have

〈ξ0,y0 − x0〉 = 0, and 〈η0,y0 − x0〉 = −a2 < 0.

This is a contradiction with the definition of pseudomonotone mappings (see item (iii) of Definition 2.1).
Therefore, F is not a pseudomonotone mapping.

(iv) Firstly, it is easy to see that (a2 , 0, a2 ) ∈ inn(C) 6= ∅. Secondly, the upper semicontinuity of F (see
item (i) of this theorem) implies its hemicontinuity. Combining item (ii) and applying Theorem 2.9, we
conclude that SOLD(F,C) 6= ∅. This completes the proof.

In the sequel, in order to show the contribution of this paper from the theoretical viewpoint, we will
show that we have removed condition (A3) and the convexity of F(x) for all x ∈ C in (A2) used in [2, 11].
Recall the known relationship between SOL(F,C) and SOLD(F,C), see, for example, Proposition 2.2 of [9].

Proposition 4.7. Let C be a nonempty and convex subset of Rn, and let F be a hemicontinuous mapping with
nonempty, compact, and convex values. Then SOLD(F,C) ⊆ SOL(F,C).

On the other hand, it is clear that if condition (A3) is true, we have SOL(F,C) ⊆ SOLD(F,C). This
together with Proposition 4.7 implies that SOL(F,C) = SOLD(F,C) under the assumptions (A1)-(A3).
Thus, condition (A1) can be replaced by (H1). Therefore, the condition combinations used in [2, 11]
become (H1), (A2), and (A3). Compared with the condition combinations (H1) and (H2) used in this
paper, it is easy to find that condition (A3) is removed and we do not add other conditions.

5. Concluding remarks

In this paper, we suggest a new projection-type method for GVI(F,C). Relying on the dual variational
inequality, we prove the convergence of the proposed method. We also give an example to support our
results. Condition (A3), widely used in literatures, is removed in our work. Unfortunately, unlike the
work of [2, 11], it is somewhat difficult to analyze the rate of convergence of the proposed method under
the same conditions. As pointed in the last part of Sect. 4, if assumptions (A1)-(A3) are true, then we
have SOL(F,C) = SOLD(F,C). Thus, as long as the same or stronger assumptions are used, we can
assert that the sequence generated by those methods is also convergent to an element of SOLD(F,C) (see,
for example, [2, 5, 11]). While the absence of SOL(F,C) = SOLD(F,C) in this paper, Theorem 4.4 only
says that the sequence produced by our algorithm converges to a solution of GVI(F,C). More precisely,
now we wonder whether the limit point of the sequence is an element of SOLD(F,C) or not because of
SOLD(F,C) ⊆ SOL(F,C) (see Proposition 4.7). If the answer is affirmative, we can ensure that the rate of
convergence of Algorithm 3.1 is sublinear at least by deduction similar to those [2, 5, 11, 16].
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