Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 48224833

Research Article

ISSN : 2008-1898

o0t SCienceg
S 2

f/vo

Journas
7.
§
S
)
s 08¢
uopeoW

Journal of Nonlinear Sciences and Applications

PuEicanoss
Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

An accelerated Newton method of high-order convergence for solving a class
of weakly nonlinear complementarity problems

Ya-Jun Xie?®, Na Huang®¢, Chang-Feng Ma®*

4College of Mathematics and Informatics, Fujian Key Laboratory of Mathematical Analysis and Applications, Fujian Normal University,
Fuzhou 350117, P. R. China.

bpepartment of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, P. R. China.
¢Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Communicated by Y.-Z. Chen

Abstract

In this paper, by extending the classical Newton method, we investigate an accelerated Newton iteration method (ANIM)
with high-order convergence for solving a class of weakly nonlinear complementarity problems which arise from the discretiza-
tion of free boundary problems. Theoretically, the performance of high-order convergence is analyzed in details. Some numerical
experiments demonstrate the efficiency of the presented method. (©2017 All rights reserved.
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1. Introduction

In this paper we discuss the following weakly nonlinear complementarity problems, to find a vector
u € R™ such that

u=0,
w:=Au+®(u) >0, (1.1)

wlu =0,

where A € R™ ™ is given large, sparse and real matrix, ®(u) : R™ — R™ is a Lipschitz continuous
nonlinear function.

The weakly nonlinear complementarity problems have been investigated extensively owing to various
scientific and engineering applications, such as operations research, economic equilibrium, and engineer-
ing design. When @ (u) = q in formula (1.1), the weakly nonlinear complementarity problems reduce to
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the following linear complementarity problems:

u=0,

wi=Au+q =0, (1.2)

wlu=0,
where A € R™*™ and q € R™ are given real matrix and real vector, respectively. The problems are often
abbreviated as LCP(q, A). As the special case, it frequently arises in Nash equilibrium point of a bimatrix
game, the contract problem, and the free boundary problem for journal bearings, see [11, 21, 23]. For
examples, in [21], Lemke investigated firstly a solution for linear complementarity problem. Moreover,
Scarf obtained the approximation of fixed points of a continuous mapping [26]. The relationships between
the linear complementarity problem and the fixed points problem are well described by Eaves et al.
[14, 15].

A variety of efficient methods were proposed to solve (1.2), especially, when the system matrix A is
large and sparse. Such as, the projected successive over-relaxation iteration [12] and the general fixed-
point iterations [28]. In recent years, there has been an increasing interest in solving (1.2) by applying the
so-called non-interior continuation smoothing methods. About the matrix splitting iterations approaches,
Bai et al. have established many fruitful research results [3, 5, 7, 9]. Especially, in [3], Bai presented the
Modulus-based matrix splitting iteration scheme which is a powerful method for solving (1.2). On matrix
multisplitting iteration aspects, also, there are many useful papers were introduced to solve (1.2), see [1, 2,
4, 6, 8] for more details. Many kinds of accelerated modulus-based matrix splitting iteration versions are
also developed, see [30, 31]. Moreover, the Modulus-based synchronous multisplitting iteration methods
for (1.2) are considered in [9]. Inspired by [9], Cvetkovi¢ and Kosti¢ did not depend on the assumption
of parameter constraint, however, ameliorated the field of convergence [13]. Recently, Foutayeni et al.
proposed an efficient hybrid method for solving (1.2) by using the vector divisions and the secant method
in [16].

For the weakly nonlinear complementarity problems, Sun and Zeng in [27] presented a monotone
semismooth Newton type method for these problems. Under some appropriate conditions, the method
reduces to semismooth Newton method. As is known that semismooth (or smooth) Newton method is
pretty effective for some nonsmooth (or smooth) equations, which arises from the complementarity prob-
lem, the nonlinear programming problem, the maximal monotone operator problem, the discretization
problem of partial differential equations, and the variational inequality problem, etc, see [10, 20, 25] for a
more detailed discuss. These approaches are attractive due to the rapid convergence for any sufficiently
right initial guess. Some merit functions, such as squared norm merit function, are often exploited in or-
der to ensure that the global convergence of semismooth Newton method, see [24] and references therein.
Recently, in [18], Huang and Ma investigated a modulus-based matrix splitting algorithms for a class of
weakly nonlinear complementarity problems, which is shown as a quite valid technique for the problems
(1.1).

Motivated by these works, via introducing a smooth equation and some reasonable equivalent re-
formulations, we present an accelerated Newton iteration method with high-order convergence rate for
solving a class of large-scale weakly nonlinear complementarity problem, which make full use of the
superiority of second-order convergence rate of the classical Newton method.

To characterize the contexts, the following notations are introduced throughout the paper: let Ny =
{1,2,---,k} stand for the set of first k positive integers. For x € R™, ||x| denotes the Euclidean norm.
Given two real n x m matrices A = (ayj) and B = (byj), we write A > B (or A > B) if ai; > by; (or
aij > byj) holds for all i € N, and j € N;,. We use |A| and p(A) to refer to the absolute value and
spectral radius of the matrix A € R™*™, respectively. For the differentiable function F(x), F'(x) is referred
to the Jacobi matrix of the function F(x). For a nonsingular matrix A, A~ stands for the inverse matrix. In
addition, the matrix Diag{a;, a2, ---, an} denotes the diagonal matrix, where a; (i € Ny, ) is the element
of the principal diagonal.
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The remainder of this paper is organized as follows. In Section 2, an accelerated Newton iteration
method (ANIM) with high-order convergence rate is proposed for solving a class of weakly nonlinear
complementarity problems (1.1). A detailed discussion on the performance and rate of convergence of
the ANIM is given in Section 3. In Section 4, some numerical tests are provided to demonstrate the
superiority of the presented method to some current efficient approaches. Finally, some concluding
remarks are given in Section 5.

2. The accelerated Newton method

In this section, we first give some valuable conclusions which are important to the equivalent reformu-
lation for the weakly nonlinear complementarity problem. Moreover, these results contribute significantly
to the analysis of the convergence rate of the accelerated Newton iteration method.

Lemma 2.1. The formula (1.1) is equivalent to the system of nonlinear equation
(I+A)x+(I—-A)x|—D(x] —x) =0, (2.1)

where A and ®(-) are given matrix and Lipschitz continuous nonlinear function in (1.1), respectively, 1 is the
identity matrix with appropriate dimension, and x € R™ is the vector to be determined.

Proof. First, let x be the solution of Eq. (2.1). Then we get
Ix| +x = A([x] —x) + @ (|x] —x). (2.2)
Set
w=|x|+x%x, u:=|x—x. (2.3)
It follows from (2.2) and (2.3) that
w=Au+®u), w>0, u=0, wu=0,

it implies that u is the solution of (1.1).
In addition, we assume that u is the solution of (1.1). It is evidently that

T

w>=0, u>20 wu=0,

where w = Au + @ (u).
Analogously, we can set

wi=|x|+x%x, u:=|x—x.

It yields that
x==(w—1u)

satisfies the Eq. (2.1). O]

Next, we introduce the smooth function F: R™*1 — R™ by
F(z) = (I-A)Vx2+e2e+ (I+A)x — D(Vx2 + e2e —x), (2.4)
where z = (¢, x")T e R"*, ¢ isa positive variable, e = (1,1, - -, 1)T e R,
-
VX2 + g2e = [\/x% + €2, \/x% €2, 0 /X2 + 82} e R™ (2.5)

Furthermore, we define the nonlinear and differentiable function

W(z) = ( F(ez) ) e R™1, (2.6)
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Lemma 2.2. The formula (1.1) is equivalent to the nonlinear system

Y(z) =0, (2.7)
where Y(z) is defined by (2.6), z = (¢,x")T € R™*1,
Proof. This result can be obtained easily from the formula (2.4) and Lemma 2.1. So we omit it. O

Lemma 2.3. The Jocabian matrix of formula (2.6) is

1 0
Y (z) = _ _ _ R (1) x (n+1)
(=) ((I—A—‘{/é(z))gs (I—A—W%(Z))Dx—i—‘l’%(z)—i—/\—i—l>€ /
where 95 — (91; 92/"' /gn)T S Rn, gi == \/ﬁ/ DX - Diag(dll dZI"' ,dn) € ]I{TLXTII di = 7):;1;&2

(1€ Np), and zZ .= VX2 + e2e — x, 0 € R™ denotes the zero vector.

Proof. By implementing derivative for variable z on both sides of the Eq. (2.6), we have

V(z) = ( . )

It follows from formulas (2.4) and (2.5) that

£ £ £
F;_:(I_A)( 7 7Tt )T
\/x%—i— ¢2 \/x%+£2 VX2 + €2
£ £ £

)T =(1-A—-V¥(2)g..

\/x%—i—sz/ \/x%—l—ez’.“ VG el
As z] = Dy — 1, we get

Fi,=(I—-ADx+A+1-Yi(2) -z, = (I - A—YL(Z))Dx + Yi(2) + I+ A,
which completes the proof. O

Next, we will give the accelerated Newton iteration method for the nonlinear smooth system (2.7).
The detailed description is shown as follows.

Algorithm 2.4 (The Accelerated Newton iteration method (ANIM) for (2.7)).
Step 1. Give the initial guess 20 = (g9, (x")T)T, the matrix A, vector q and any small positive numbers
o1, 02 € (0,1), and preset a positive integer m > 2. Set k := 0.

Step 2. Calculate ¥(z¥), the Jacobian matrix ¥’(z¥), and the inverse matrix Ay := (W’/(z*))~1.

Step 3. Let kil =k j=1

Step 4. Compute ¥(z*), update the vector sequence
Zk,j+1 — Zk,j _ Akb,

then evaluate ¥(z*J 1), where b = W(zJ).

Step 5. Let j := j+1, z = 291 W(zMI) .= Y(ZH), y .= Ayb. When j = m, return to Step 6,
otherwise go to Step 4.

Step 6. When ||y|| < o7 or [¥(z*™)|| < 09, let z* = z™, otherwise put k := k + 1, return to Step 3.
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Actually, the Accelerated Newton iteration method (ANIM) can also be written with the iteration

scheme as follows:
K0 _ Sk
M =271 (W (K)o, j=1,2--- ,m, (2.8)
Ml =zkm 1 =0,1,2,---.

Remark 2.5. By Lemma 2.2, we conclude that the iteration solution z* generated by Algorithm 2.4 is also
the solution u* of formula (1.1).

Remark 2.6. The update of the parameter ¢ can be selected with ¢, = ¢* ;. Because the positive integer
m is chosen at least greater than or equal to 2 in Algorithm 2.4, the positive sequence {¢; }5° monotonically
decreases and tends to zero.

Remark 2.7. 1If we set m = 1, then the ANIM will retrograde to the classical Newton iterative method.

3. The analysis of convergence

In this section, we will give the analysis of convergence of the accelerated Newton iteration method
(ANIM). To this end, we first give a major definition and some significant lemmas.

Definition 3.1 ([19]). Let F: D ¢ R™ — R™, x* € D be the solution of system F(x) = 0. There is a region
S C D for the point x*. For any initial approximation x° € S, if the iteration sequence {x*, k = 0,1,---}
is always well-defined and converges to the solution x*, we call it an attractive point of the iteration
sequence.

In view of the classical Newton iteration at least has two-order convergence rate, we have the following
results. For more details see [19] and references therein.

Lemma 3.2. Assume F: D C R™ — R™ is Fréchet differentiable on the open interval of So € D and F'(x*) is
nonsingular, where x* is the solution of system F(x) = 0. Then, the mapping G(x) = x — F/(x)1F(x) is well-defined
on S for the closed sphere S = S(x*,8) C So. Moreover, if the inequality

IIF" () = F/(x™) | < Bl —x7

holds, where B is a constant and x € S, then the classical Newton iteration method has at least the two-order
convergence rate.

Lemma 3.3. Assume F: D C R™ — IR™ is Fréchet differentiable on the fixed point x* € int(D) and the spectral
radius

p(F/(x*) =0<1.

Then x* is the attractive point of the iterative sequence x**1 = F(x*) (k = 0,1,---) for the open sphere S =
S(x*,8) C D and any initial guess x° € S.

Lemma 3.4. Assume F: D C R™ — R™ is continuous and differentiable on the convex set Dy C D and it
satisfies

IF'(w)—F V)| < Bllu—v||P, u, veDy.

Then there holds

B

—~||1*+P
X , X, Yy € Dy,
ol —x y €Dy

IF(y) —F(x) = F'(x)(y =x)|| <

where 3 > 0, p > 0 are constants.
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Next, we will give the convergence of the accelerated Newton iteration method. The detailed result
and the proof process are shown as follows.

Theorem 3.5. Let ¥ : D C R™"! — R™*! be Fréchet differentiable on the circle region of S(z*,8) € D and
Y'(z*) be nonsingular. There is 3 > 0 for each z € S such that

W' (z) =W (z") ]| < Bllz—2"]|
holds. Then z* is the attractive point of the iterative sequence {z*)$° generated by Algorithm 2.4 and
12540 — 25| < Lo|2% — 2% ™+, 3.1)
where z* is the solution of ¥(z) = 0, and Ly is a constant independent of iteration number k.
Proof. Firstly, we consider the iterative formula (2.8) with the case m = 2. That is to say,

2 = 2R (W (2R) T W) — W (R (2N W), k=010 (3.2)

According to Lemma 3.2, P(z) := z— (¥/(z)) ~'¥(z) is well-defined on S; := S(z*,8;) C S and
IP(z) = 2|l < Ellz—2*[?, z€ Sy,

where £ is a positive constant. Therefore, the mapping M(z) = P(z) — (¥/(z)) ~'¥(P(z)) is well-defined on
the closed sphere S, = S(z*,8,) C S1, where &, < % . Notice that ¥(z*) = 0, so P(z*) = z*. By simple
calculation, we have

P/(z) =1+ (¥'(2)) ¥ (2)¥(z) — (¥'(2)) "W (2) = (¥'(2)) ¥ (2)¥(2),
hence P’(z*) = 0. Moreover,
M'(z*) = P/(z") + (V'(z*) 2¥" (z")¥(P(z*)) — (W'(z*)) " "W'(P(z*))P'(z*) =0,

where the last equality holds due to ¥(P(z*)) = W(z*) = 0. This implies p(M’(z*)) = 0 < 1. Then, by
Lemma 3.3, it yields that z* is the attractive point of (3.2).

In addition, notice that the nonsingularity of ¥'(z*), so ||(¥/(z)) || < ¢ for z € S. Then it follows
from Lemma 3.4 and the hypothesis that

IM(2) —2*[| < [|[(¥'(2)) || [|[¥'(2)[P(2) — 2*] =¥ (P(2)) ]|
<C|[¥(P@) — ¥ — ¥ ) (Pl) — )| + || (¥'(2") — ¥'(2)) (P(z) — )|

1 (12 * *
<¢[5B[P@ =" +Bllz— =" IP(z) — 2" (63)
1
< BC[58z— ="+ &]lz— ="
1
< BCE[E&SZ —|—1] |z —z*|°.

Set Lo := BCE [%562 + 1] , obviously, it is a constant independent of the iteration number k.

If we select zK*1 = M(z*) for the left side of the inequality (3.3), then by some simple manipulations,
it gives

121 — 2| < Lollz* — 2",

which implies (3.1) holds for m = 2.
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Here, we state that the iterative scheme (2.8) at least has m + 1 order convergence rate. The conclusion
will be confirmed by mathematical induction.
Observing that (3.3), it has the result

1252 = 27| < Loflz* — 2| = O(l|z" — 2"°)
Moreover, we suppose that
I =2 < Lyl =27 ™ = O(flz" — 2*||™) (3.4)

holds. Next, we will show the statement

I —2*|| < Lal2* — 2™ = O([|2* — 2| ™)

7

where L;, L, are the constants independent of iteration number k.
Combining Lemma 3.4 and (3.4), and also noting that (2.8), we have

2% — 27| < |9/ (D7) [ — () - ) 2|
(') - ) -2
< C[5Bllmt = 2| + Bl — 2o < - 2]
< B [LA* — 2 L
CB[ o+ Ly [||2% — 2™

= Lof|z* — 2™+ = O(f|2* —z*| ™),

where L, := (3 [%L%é;“‘l + Ll} . This concludes the proof of the theorem. O

4. Numerical experiments

In this section, some numerical examples are discussed to illustrate the effectiveness and advantages of
the proposed ANIM for solving the weakly nonlinear complementarity problem. We compare the perfor-
mance of the ANIM against the Fischer-based semismooth Newton method which we denote FBSN (see
[17, 22]), the cosh-based smoothing Newton method which we name CBSN (see [29]), the modulus-based
matrix splitting algorithms which we call MMSA (see [18]) by the iteration step (denoted as 'IT”), elapsed
CPU time in seconds (denoted as 'CPU’), and residual error (denoted as 'RES’). In actual computations,
all runs are terminated when the current iteration satisfies

RES := ||[W(z")|| < 1071

or if the number of iteration exceeds the prescribed iteration steps ki ax. The numerical experiments have
been carried out by MATLAB R2011b 7.1.3 on a PC equipped with an Intel(R) Core(TM) i7-2670QM, CPU
running at 2.20GHZ with 8 GB of RAM in Windows 7 operating system.

After the previous analysis, we know that the ANIM can be considered as the acceleration version
on the basis of the smoothing Newton method. Hence, high order convergence is the advantage of the
ANIM. In fact, if we set m = 1, the ANIM will reduce to the classical Newton method. We know, however,
the larger m may lead to consume more CPU time on account of increasing the number of inner iterations.
We usually only select m = 2 in concrete examples, which also can ensure the rapid convergence rate in
Algorithm 2.4. To further confirm this judgment, we will put into effect by the following examples.

In these examples, we choose m = 2 for the ANIM and p = 0.15, p = 0.25, p = 3.0 for the FBSN (for
more details, see [22]). Especially, the RES will be regarded as 0 if RES < 10717 in our numerical results.
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The initial guess will be selected with 7‘(()1) = [eo, q"1T, Z(()z) =(0,0,---,0)" and Z((’3) =(1,1,---,1)". Firstly,
for Example 4.1, we compare the performance of numerical results of the ANIM with the FBSN and
the CBSN by arranging different n. From Tables 1-2, we find the ANIM, the FBSN and the CBSN are
reliably effective methods. However, from the aspects of iteration number (refer to the overall number of
iterations) or CPU, the FBSN and the CBSN do not stand comparison with the ANIM. We also notice that
the superiority of convergence performance of the ANIM is distinct as the increase of the problem scale.

Example 4.1 ([27]). We first consider w := Au + q, i.e., the special form of the weakly nonlinear comple-
mentarity problem with

A = tridiag(—1,4, 1),

’ _1)T'

Table 1: Numerical results for Example 4.1.

Initials z(()l ) z(()l ) Z(()z) Z((Jz)
Methods ANIM FBSN ANIM FBSN
It 2 11 3 11
n=500 CPU 0.1032 0.3788 0.1511 0.4340
RES 6.1815e — 016  6.6613e — 016 5.6610e — 016 1.1047e — 015
It 2 11 3 11
n=1000 CPU 0.5880 1.1551 0.8808 1.3629
RES 6.1815e — 016  6.6613e — 016 5.6610e — 016 1.1047e — 015
It 2 11 3 11
n=2000 CPU 3.2900 4.2802 5.1104 5.2537
RES 6.1815e — 016  6.6613e — 016 5.6610e — 016 1.1047e — 015
It 2 11 3 11
n=2500 CPU 59151 6.4952 6.0723 8.0709
RES 6.1815e — 016  6.6613e — 016 5.6610e — 016 1.1047e — 015
Table 2: Numerical results for Example 4.1.
Initials 2(81 ) 7‘(()1 ) 7.(()2) Z(()z)
Methods ANIM CBSN ANIM CBSN
It 2 3 3 4
n=800 CPU 0.3332 0.4838 0.4840 0.6879
RES 6.1815e — 016  2.1678e — 016 5.6610e — 016 2.7616e — 016
It 2 3 3 4
n=1500 CPU 1.5395 2.3335 2.3196 3.0597
RES 6.1815e— 016 2.1678e — 016 5.6610e — 016 2.7616e — 016
It 2 3 3 4
n=3000 CPU 10.4229 15.6110 15.6472 20.6621
RES 6.1815e — 016  2.1678e — 016 5.6610e — 016 2.7616e — 016
It 2 3 3 4
n=5000 CPU 45.8406 65.4892 69.7337 89.2019
RES 6.1815e— 016  2.1678e — 016 5.6610e — 016 2.7616e — 016

Example 4.2. This problem arises from the discretization of free boundary problems. Let QO = (0,1) x (0, 1)
and function g satisfy g(0,y) = y(1—vy), g(x,y) =0ony =0,y =1 or x = 1. Consider the following
problem: find t such that

t>0, in Q,
—At+f(x,y,t)—8(y—05) >0, inQ,
t(—At+f(x,y,t) —8(y—05)) =0, inQ,
t=g, in 90,
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where f(x,y,t) is continuously differentiable and % >00onQ x{t:t>0

The numerical results of Example 4.2 are shown by Tables 3-6 and Figures 1-2 for different nonlinear
functions and the matrix dimensions. From these tables and figures, we observe that the ANIM is com-
petitive to the FBSN and MMSA for large-scale weakly nonlinear complementarity problems. To sum up,
from the results of numerical examples, we demonstrate the efficiency of the ANIM.

Table 3: Numerical results for Example 4.2 with f(x,y,t) = 2.

Initials z(y) z(y Z(y) Z(y)
Methods n=225 n=961 n=2209 n=3969
It 151 151 151 151
FBSN CPU 4.7936 29.2284 254.8708 1458.9
RES 8.2364e —002 8.3124e — 002 8.342¢ — 002 8.333e — 002
It 104 393 853 401
MMSA CPU 0.0326 2.3810 26.8192 40.3858
RES 8.7282e —013 9.9680e — 013 9.7832e — 013 9.8603e — 013
It 9 9 2 2
ANIM CPU 0.0617 2.1585 3.3131 16.6964
RES 0 0 0 0
Table 4: Numerical results for Example 4.2 with f(x,y,t) =t +sint.
Initials z(()l) z((’l) Z(()z) Z(()z)
Methods n=225 n=961 n=2209 n=3969
It 151 151 151 151
FBSN CPU 4.8202 31.4063 305.5803 1539.5
RES 9.1410e—002 9.2369e — 002 9.231e — 002 9.261e — 002
It 105 396 314 404
MMSA CPU 0.0317 2.3881 8.3169 36.5056
RES  8.0910e — 013  9.4929e — (013 9.2611e — 013 9.8210e — 013
It 7 7 2 2
ANIM CPU 0.0498 1.5487 2.1063 11.0249
RES 1.1757e — 015 1.0710e — 016 0 0
Table 5: Numerical results for Example 4.2 with f(x,y, t) = H—Lt
Initials 2?3) Z((’3) Z(()z) Z(()z)
Methods n=225 n=961 n=2209 n=3969
It 151 151 151 151
FBSN CPU 4.8505 31.2633 263.0305 1266.1
RES 9.1410e — 002 9.2369e — 002 4.1121e — 002 4.2001e — 002
It 105 227 299 388
MMSA CPU 0.0244 1.4172 9.3599 37.8653
RES 8.0910e — 013 9.9726e — 013 9.0592e — 013 9.7484e — 013
It 2 2 2 2
ANIM CPU 0.0157 0.3998 2.2060 10.6302
RES 0 0 0 0
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Table 6: Numerical results for Example 4.2 with f(x,y,t) = In(1+t).
Initials 0 0 0 0

Z(3) Z(3) Z(2) Z(2)
Methods n=225 n=961 n=2209 n=3969
It 8 9 10 10
FBSN CPU 0.0534 1.4129 13.8041 81.8000
RES 1.3059¢ —008 1.5371e —007  7.4532¢ —008  4.8048e — 007
It 114 222 297 388
MMSA CPU 0.0273 1.3339 9.3883 41.4062
RES 8963le—013 9.6913e —013  9.9131e — 013  9.2350e — 013
It 2 2 2 2
ANIM  CPU 0.0156 0.3238 2.1165 12.1649
RES 0 0 0 0
10° :
FBSN
HSSC
—&— ANIM

Residual

2 4 6 8 10 12 14 16 18 20
Iterative number k

Figure 1: The residuals for Example 4.2 with n =225, f(x,y, t) = 2.

FBSN
MMSA
—S— ANIM

o

=}

o

7]

o}

o

8 10 12 14 16 18 20

Iterative number k

Figure 2: The residuals for Example 4.2 with n = 225, f(x,y,t) = t+sint.
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5. Conclusion

In this paper, an accelerated Newton iteration method (ANIM) is proposed for solving a class of large-
scale weakly nonlinear complementarity problem. Under appropriate assumptions, the ANIM possesses
at least m + 1 order convergence rate. The new technique will remarkably improve the convergence
efficiency to solve large-scale weakly nonlinear complementarity problem, which has been shown by
the theoretical analysis section in details. As a matter of fact, the strategy can also be deemed as an
accelerated process for the classical Newton method. The proposed approach is illustrated by some
numerical examples and compared with other popular iteration solvers at present. Numerical test results
demonstrate that the method works quite well in practical problem.
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