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Abstract

The aim of this paper is to introduce the notion of generalized Hausdorff distance function on Gb-cone metric spaces and
exploit it to study some fixed point results in the setting of Gb-cone metric spaces without the assumption of normality. These
results improve and generalize some important known results. Some illustrative examples are also furnished to highlight the
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1. Introduction and preliminaries

The theory of multi-valued mappings is a branch of mathematics which has received a great attention
in the last decades and has various applications in convex optimization, optimal control theory, and
differential inclusions. Therefore, it lies at the junction of topology, theory of functions, and nonlinear
functional analysis. Nadler [32] was the author who first time introduced the notion of multivalued
contraction and established some fixed point theorems. One of real generalization of Nadler’s theorem
was given by Mizoguchi and Takahashi in this way.

Theorem 1.1 ([29]). Let (X,d) be a complete metric space and let T : X→ CB(X) be multivalued mapping. If there
exists a function ϕ : (0,∞)→ [0, 1) such that

lim sup
r→t+

ϕ(r) < 1

for all t ∈ [0,∞) and if
H(Tx, Ty) 6 ϕ(d(x,y))(d(x,y))

for all x,y ∈ X, then T has a fixed point in X.
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On the other hand, Huang and Zhang [16] introduced the concept of cone metric space with normal
cone with constant K, which is generalization of metric space. After that Rezapour and Hamlbarani [34]
generalized cone metric space with non-normal cone. Afterwords many researchers studied fixed point
results in cone metric spaces.

Mustafa et al. in [31] generalized the metric space and introduced the notion of G-metric space which
recovered the flaws of Dhage’s generalization [12, 13] of metric space. In 2010, Beg et al. [9] combined
G-metric space and cone metric space and gave the notion of G-cone metric space to obtain some fixed
point theorems on this space.

Azam et al. [8] utilized the concept of G-cone metric space and established a fixed point theorem for
multivalued mapping using the concept of generalized Hausdorff distance function which was first given
by Cho and Bae [11] in 2011. Very recently, Ughade et al. [39] introduced the concept of Gb-cone metric
space as a generalization of G-cone metric space and obtained some fixed point results. For more details,
we refer the reader to [1–41]. In this paper, we introduce the concept of generalized Hausdorff distance
function in Gb-cone metric spaces and present some fixed point theorems for multivalued mappings.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non empty and P 6= {θ};
(b) a,b ∈ R,a,b > 0, x,y ∈ P implies ax+ by ∈ P, more generally if a,b, c ∈ R, a,b, c > 0, x,y, z ∈ P then

ax+ by+ cz ∈ P;
(c) P ∩ (−P) = {θ}.

Given a cone P ⊂ E, we define a partial ordering 4 with respect to P by x 4 y if and only if y− x ∈ P.
A cone P is called normal if there is a number K > 0 such that for all x,y ∈ E, θ 4 x 4 y implies

‖x‖ 6 K ‖y‖ .
The least positive number satisfying the above inequality is called the normal constant of P, while

x� y stands for y− x ∈ int(P) (interior of P). While x ≺ y means x 4 y and x 6= y.
Rezapour et al. [34] proved that there are no normal cones with normal constants K < 1 and for each

k > 1 there are cones with normal constants K > 1.

Remark 1.2 ([22]). The results concerning fixed points and other results, in case of cone spaces with non-
normal solid cones, cannot be provided by reducing to metric spaces, because in this case neither of the
conditions of the lemmas 1-4 in [16] hold. Further, the vector cone metric is not continuous in the general
case, i.e., from xn → x, yn → y it need not follow that d(xn,yn)→ d(x,y).

For the case of non-normal cones we have the following properties.

(PT1) If u 4 v and v� w, then u� w.
(PT2) If u� v and v 4 w, then u� w.
(PT3) If u� v and v� w, then u� w.
(PT4) If θ 4 u� c for each c ∈ int(P), then u = θ.
(PT5) If a 4 b+ c for each c ∈ int(P), then a 4 b.
(PT6) If E is a real Banach space with a cone P, and if a 4 λa, where a ∈ P and 0 6 λ < 1, then a = θ.
(PT7) If c ∈ int(P), an ∈ E and an → θ, then there exists an n0 such that, for all n > n0, we have an � c.

In the following we shall always assume that the cone P is solid and non-normal.

Definition 1.3 ([39]). Let X be a nonempty set and E be a real Banach space equipped with the partial
ordering 4 with respect to the cone P. A vector-valued function G : X × X × X → E is said to be a
generalized cone b-metric function on X with the constant r > 1 if the following conditions are satisfied:

(G1) G(x,y, z) = θ if x = y = z;
(G2) θ ≺ G(x, x,y), whenever x 6= y, for all x,y ∈ X;
(G3) G(x, x,y) 4 G(x,y, z), whenever y 6= z;
(G4) G(x,y, z) = G(x, z,y) = G(y, x, z) = · · · (symmetric in all three variables);
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(G5) G(x,y, z) 4 r(G(x,a,a) +G(a,y, z)) for all x,y, z,a ∈ X.

Then (X,G) is called a generalized cone b-metric space or more specifically a Gb-cone metric space.

The concept of a Gb-cone metric space is more general than that of a Gb-metric spaces and cone metric
spaces.

Definition 1.4 ([39]). A Gb-cone metric space X is symmetric if G(x,y,y) = G(y, x, x) for all x,y ∈ X.

Proposition 1.5 ([39]). Let X be a Gb-cone metric space, define dGb
: X×X→ E by

dGb
(x,y) = G(x,y,y) +G(y, x, x).

Then (X,dGb
) is a cone b-metric space.

It can be noted that G(x,y,y) 4 2r
2r+1dGb

(x,y). If X is a symmetric Gb-cone metric space, then dGb
(x,y) =

2G(x,y,y) for all x,y ∈ X.

Definition 1.6 ([39]). Let X be a Gb-cone metric space and {xn} be a sequence in X. We say that {xn} is

(1) Cauchy sequence if for every c ∈ Ewith θ� c, there is N such that for all n,m, l > N,G(xn, xm, xl)�
c;

(2) convergent sequence if for every c in Ewith θ� c, there isN such that for allm,n> N,G(xm, xn, x)�
c for some fixed x in X. Here x is called the limit of a sequence {xn} and is denoted by lim

n→∞xn = x or
xn → x as n→∞.

Definition 1.7 ([39]). A Gb-cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X.

Proposition 1.8. Let X be a Gb-cone metric space, then the following are equivalent:

(i) {xn} converges to x.
(ii) G(xn, xn, x)→ θ, as n→∞.

(iii) G(xn, x, x)→ θ, as n→∞.
(iv) G(xm, xn, x)→ θ, as m,n→∞.

Lemma 1.9 ([39]). Let {xn} be a sequence in a Gb-cone metric space X and if {xn} converges to x ∈ X, then
G(xm, xn, x)→ θ as m,n→∞.

Lemma 1.10 ([39]). Let {xn} be a sequence in a Gb-cone metric space X and x ∈ X. If {xn} converges to x ∈ X,
then {xn} is a Cauchy sequence.

Lemma 1.11 ([39]). Let {xn} be a sequence in a Gb-cone metric space X and if {xn} is a Cauchy sequence in X,
then G(xm, xn, xl)→ θ, as m,n, l→∞.

2. Main results

Denote N (X), C(X), B (X) , and CB (X) the set of nonempty, closed, bounded, sequentially closed
bounded subset of a Gb-cone metric space, respectively.

Let (X,G) be a Gb-cone metric space, we denote (see [8, 11])

s (p) = {q ∈ E : p 4 q} for q ∈ E,

and
s (a,B) = ∪

b∈B
s (dGb

(a,b)) = ∪
b∈B

{x ∈ E : dGb
(a,b) 4 x}

for a ∈ X and B ∈ N (X) .
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For A,B ∈ B (X) we denote

s (A,B) = ∪
a∈A,b∈B

s(dGb
(a,b)),

s (a,B,C) = s (a,B) + ŝ (B,C) + s (a,C) = {u+ v+w : u ∈ s (a,B) , v ∈ ŝ (B,C) ,w ∈ s (a,C)},
and

s (A,B,C) =
(
∩

a∈A
s (a,B,C)

)
∩
(
∩

b∈B
s (b,A,C)

)
∩
(
∩

c∈C
s (c,A,B)

)
.

Lemma 2.1. Let (X,G) be a Gb-cone metric space, and P be a cone in Banach space E.

(i) Let p,q ∈ E. If p 4 q, then s(q) ⊂ s(p).
(ii) Let x ∈ X and A ∈ N (X) . If 0 ∈ s (x,A) , then x ∈ A.

(iii) Let q ∈ P and let A,B,C ∈ B (X) and a ∈ A. If q ∈ s (A,B,C), then q ∈ s (a,B,C) .

Remark 2.2. Recently, Kaewcharoen and Kaewkhao [25] (see also [38]) introduced the following concepts.
Let X be a G-metric space and CB(X) the family of all nonempty closed bounded subsets of X. Let H(., ., .)
be the Hausdorff G-distance on CB(X), i.e.,

HG(A,B,C) = max{sup
a∈A

G(a,B,C), sup
b∈B

G(b,A,C), sup
c∈C

G(c,A,B)},

HdG
(A,B) = max{sup

a∈A
dG(a,B), sup

b∈B
dG(b,A)},

where

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C),
dG(x,B) = inf{dG(x,y),y ∈ B},
dG(A,B) = inf{dG(a,b),a ∈ A,b ∈ B},
G(a,b,C) = inf{G(a,b, c), c ∈ C}.

The above expressions show a relation between HG and HdG
. Moreover, note that if (X,G) is a Gb-

cone metric space, E = R, and P = [0,∞), then (X,G) is a Gb-metric space. Also for A,B,C ∈ CB(X),
HG(A,B,C) = inf s(A,B,C).

Remark 2.3. Let (X,G) be a Gb-cone metric space. Then

(i) s ({a}, {b}) = s (dGb
(a,b)) for all a,b ∈ X;

(ii) if x ∈ s (a,B,B), then x ∈ 2s (dGb
(a,b)) .

Proof.

(i). By definition

ŝ ({a}, {b}) = ∪
a∈{a},b∈{b}

s(dGb
(a,b)) = s (dGb

(a,b)) .

(ii). Let

x ∈ s (a,B,B)
⇒ x ∈ s (a,B,B) = s (a,B) + ŝ (B,B) + s (a,B)
⇒ x ∈ 2s (a,B) + ŝ (B,B)
⇒ x ∈ 2s (dGb

(a,b)) + s (θ) .

Let x = y+ z for y ∈ 2s (dGb
(a,b)) and z ∈ s (θ) . Then by definition θ 4 z and 2dGb

(a,b) 4 y, which
implies θ+ 2dGb

(a,b) 4 y+ z = x. Hence 2dGb
(a,b) 4 x, so x ∈ 2s (dGb

(a,b)) .
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In our main theorem we will use the concept of generalized Hausdorff distance on Gb-cone metric
spaces to find fixed points of a multivalued mapping.

Theorem 2.4. Let (X,G) be a complete Gb-cone metric space with the coefficient r > 1 and let T : X −→ C (X) be
multivalued mapping. If there exists a function ϕ : P → [0, 1

r) such that

lim sup
n→∞ϕ(un) <

1
r

for any decreasing sequence {un} in P, and if

ϕ(G (x,y, z))G (x,y, z) ∈ s (Tx, Ty, Tz) (2.1)

for all x,y, z ∈ X, then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point, then Tx0 6= ∅. Let x1 ∈ Tx0. From (2.1), we have

ϕ(G (x0, x1, x1))G (x0, x1, x1) ∈ s (Tx0, Tx1, Tx1) .

Thus by Lemma 2.1 (iii), we get

ϕ(G (x0, x1, x1))G (x0, x1, x1) ∈ s (x1, Tx1, Tx1) .

By Remark 2.3, we can take x2 ∈ Tx1 such that

ϕ(G (x0, x1, x1))G (x0, x1, x1) ∈ 2s (dGb
(x1, x2)) = s (2dGb

(x1, x2)) .

Thus,
2dGb

(x1, x2) 4 ϕ(G (x0, x1, x1))G (x0, x1, x1) .

Again, by (2.1), we have
ϕ(G (x1, x2, x2))G (x1, x2, x2) ∈ s (Tx1, Tx2, Tx2) ,

and by Lemma 2.1 (iii)
ϕ(G (x1, x2, x2))G (x1, x2, x2) ∈ s (x2, Tx2, Tx2) .

By Remark 2.3, we can take x3 ∈ Tx2 such that

ϕ(G (x1, x2, x2))G (x1, x2, x2) ∈ 2s (dGb
(x2, x3)).

Thus,
2dGb

(x2, x3) 4 ϕ(G (x1, x2, x2))G (x1, x2, x2) .

It implies that

2dGb
(x2, x3) 4 ϕ(G (x1, x2, x2))G (x1, x2, x2)

4 ϕ(G (x1, x2, x2))G (x1, x2, x2) +ϕ(G (x1, x2, x2))G (x2, x1, x1)

4 ϕ(G (x1, x2, x2))[G (x1, x2, x2) +G (x2, x1, x1)]

= ϕ(G (x1, x2, x2))dGb
(x1, x2)

⇒ dGb
(x2, x3) 4

1
2
ϕ(G (x1, x2, x2))dGb

(x1, x2).

By induction we can construct a sequence {xn} in X such that

dGb
(xn, xn+1) 4

1
2
ϕ(G (xn−1, xn, xn))dGb

(xn−1, xn) , (2.2)
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xn+1 ∈ Txn for all n = 1, 2, 3 . . .. Assume that xn+1 6= xn for all n ∈ N. From (2.2) the sequence
{dGb

(xn, xn+1)}n∈N is decreasing sequence in P. So there exists l ∈ (0, 1) such that

lim sup
n→∞ ϕ(G (xn−1, xn, xn)) = l.

Thus there exists n0 ∈ N such that for all n > n0, ϕ(G (xn−1, xn, xn)) ≺ l0 for some l0 ∈ (l, 1). We have

dGb
(xn, xn+1) 4

1
2
ϕ(dGb

(xn−1, xn))dG (xn−1, xn) ≺ l0dGb
(xn−1, xn) ≺ (l0)

ndGb
(x0, x1)

for all n > n0. Moreover for m > n > n0, we have

dGb
(xn, xm) 4 r[dGb

(xn, xn+1) + dGb
(xn+1, xm)]

4 rdGb
(xn, xn+1) + r

2[dGb
(xn+1, xn+2) + dGb

(xn+2, xm)]

...

4 rdGb
(xn, xn+1) + r

2dGb
(xn+1, xn+2) + · · ·+ rm−ndGb

(xm−1, xm).

Thus we have

dGb
(xn, xm) 4 rln0 dGb

(x0, x1) + r
2ln+1

0 dGb
(x0, x1) + · · ·+ rm−nlm−1

0 dGb
(x0, x1)

= rln0 (1 + rl0 + · · ·+ rm−n−1lm−n−1
0 )dGb

(x0, x1)

4
rln0

1 − rl0
dGb

(x0, x1) .

According to (PT1) and (PT7) it follows that {xn} is a Cauchy sequence in X, by the completeness of X
there exists x∗ ∈ X such that xn → x∗. Assume k1 ∈ N such that dGb

(xn, x∗)� c
2r for all n > k1.

We now show that x∗ ∈ Tx∗. Using (2.1) for xn, x∗ ∈ X, we have

ϕ(G (xn, x∗, x∗))G (xn, x∗, x∗) ∈ s(Txn, Tx∗, Tx∗).

By Lemma 2.1 (iii) we have

ϕ(G (xn, x∗, x∗))G (xn, x∗, x∗) ∈ s(xn+1, Tx∗, Tx∗).

Thus there exists vn ∈ Tx∗, such that

ϕ(G (xn, x∗, x∗))G (xn, x∗, x∗) ∈ 2s(dGb
(xn+1, vn)).

It implies that

2dGb
(xn+1, vn) 4 ϕ(G (xn, x∗, x∗))G (xn, x∗, x∗) ,

2dGb
(xn+1, vn) 4 ϕ(G (xn, x∗, x∗))G (xn, x∗, x∗) +ϕ(G (xn, x∗, x∗))G (x∗, xn, xn)

4 ϕ(G (xn, x∗, x∗))[G (xn, x∗, x∗) +G (x∗, xn, xn)] = ϕ(G (xn, x∗, x∗))dGb
(xn, x∗).

Thus we have
dGb

(xn+1, vn) 4
1
2
ϕ(G (xn, x∗, x∗))dGb

(xn, x∗).

Now consider

dGb
(x∗, vn) 4 rdGb

(xn+1, x∗) + rdGb
(xn+1, vn)

4 rdGb
(xn+1, x∗) +

r

2
ϕ(G (xn, x∗, x∗))dGb

(xn, x∗)

≺ rdGb
(xn+1, x∗) + rdGb

(xn, x∗)
≺ rdGb

(xn+1, x∗) + rϕ(G (xn, x∗, x∗))dGb
(xn, x∗) ,

dG(x∗, vn)�
rc

2r
+
rc

2r
= c,

for all n > k1. Therefore lim
n→∞vn = x∗. Since Tx∗ is closed so x∗ ∈ Tx∗.



A. E. Al-Mazrooei, J. Ahmad, J. Nonlinear Sci. Appl., 10 (2017), 4866–4875 4872

Corollary 2.5. Let (X,G) be a complete Gb-cone metric space with the coefficient r > 1 and let T : X −→ C (X) be
multivalued mapping. If there exists a constant k ∈ [0, 1

r) such that

kG (x,y, z) ∈ s (Tx, Ty, Tz)

for all x,y, z ∈ X, then T has a fixed point.

Corollary 2.6. Let (X,G) be a complete Gb-metric space with the coefficient r > 1 and let T : X −→ CB (X) be
multivalued mapping. If there exists a function ϕ : P → [0, 1

r) such that

lim sup
n→∞ ϕ(un) <

1
r

for any decreasing sequence {un} in P, and if

H (Tx, Ty, Tz) 6 ϕ(G (x,y, z))G (x,y, z)

for all x,y, z ∈ X, then T has a fixed point.

Corollary 2.7. Let (X,G) be a complete Gb-metric space with the coefficient r > 1 and let T : X −→ CB (X) be
multivalued mapping. If there exists a constant k ∈ [0, 1) such that

H (Tx, Ty, Tz) 6 kG (x,y, z)

for all x,y, z ∈ X, then T has a fixed point.

Next corollary is Nadler’s multivalued contraction theorem in G-cone metric space.

Corollary 2.8. Let (X,G) be a complete G-cone metric space and let T : X −→ CB (X) be multivalued mapping. If
there exists a constant k ∈ [0, 1) such that

kG (x,y, z) ∈ s (Tx, Ty, Tz)

for all x,y, z ∈ X, then T has a fixed point in X.

Corollary 2.9 ([8]). Let (X,G) be a complete G-cone metric space and let T : X −→ C (X) be multivalued mapping.
If there exists a function ϕ : P → [0, 1) such that

lim sup
n→∞ ϕ(un) < 1

for any decreasing sequence {un} in P, and if

ϕ(G (x,y, z))G (x,y, z) ∈ s (Tx, Ty, Tz)

for all x,y, z ∈ X, then T has a fixed point.

By Remark 2.2, we have the following results of [38].

Corollary 2.10 ([38]). Let (X,G) be a complete G-metric space and let T : X −→ CB (X) be multivalued mapping.
If there exists a function ϕ : [0,+∞)→ [0, 1) such that

lim sup
r→t+

ϕ(r) < 1

for any t > 0, and if
HG (Tx, Ty, Tz) 6 ϕ(G (x,y, z))G (x,y, z)

for all x,y, z ∈ X, then T has a fixed point in X.
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Corollary 2.11 ([38]). Let (X,G) be a complete G-metric space and let T : X −→ CB (X) be multivalued mapping.
If there exists a constant k ∈ [0, 1) such that

HG (Tx, Ty, Tz) 6 kG (x,y, z)

for all x,y, z ∈ X , then T has a fixed point in X.

In the following we formulate an illustrative example regarding our main theorem.

Example 2.12. Let X = [0, 1], E = C[0, 1] be endowed with the strongly locally convex topology τ(E,E∗),
and let P = {x ∈ E : 0 6 x(t), t ∈ [0, 1]}. Then the cone is τ(E,E∗)-solid, and non-normal with respect to
the topology τ(E,E∗). Define G : X×X×X→ E by

G(x,y, z)(t) = max{|x− y|p , |y− z|p , |x− z|p}et,

where p > 1. Then G is a Gb-cone metric on X.

Consider a mapping T : X → C(X) defined byTx = [0, 1
3x]. Let ϕ (t) = 2

3P for all t ∈ P, where p > 1.
The contractive condition of main theorem is trivial for the case when x = y = z = 0. Suppose without
any loss of generality that all x,y and z are nonzero and x < y < z. Then

G(x,y, z) = |x− z|p et,

and
dGb

(x,y) = 2 |x− y|p et.

Now

s(x, Ty) =
{

0, if x 6 y
3 ,∣∣x− y

3

∣∣p et, if x > y
3 ,

s(y, Tz) =
{

0, if y 6 z
3 ,∣∣y− z

3

∣∣p et, if y > z
3 .

Now for s(x, Ty) = 0 = s(y, Tz), we have

s (x, Ty, Tz) = ∩
x∈Tx

s (x, Ty, Tz) = s(x, Ty) + ŝ(Ty, Tz) + s(x, Tz) = s(0)

and
s (y, Tx, Tz) = s(y, Tx) + ŝ(Tx, Tz) + s(y, Tz) = s(2

∣∣∣y− x
3

∣∣∣p et)
and

∩
y∈Ty

s (y, Tx, Tz) = s(2
∣∣∣y
3
−
x

3

∣∣∣p et).
Similarly

s (z, Tx, Ty) = s(z, Tx) + ŝ(Tx, Ty) + s(z, Ty) = s(2
∣∣∣z− (

x

3
+
y

3
)
∣∣∣p et),

and
∩

z∈Tz
s (z, Tx, Ty) = s(2

∣∣∣z
3
− (
x

3
+
y

3
)
∣∣∣p et) = s(2 ∣∣∣z

3
−
x

3
−
y

3

∣∣∣p et).
So we have

s (Tx, Ty, Tz) =
(
∩

x∈Tx
s (x, Ty, Tz)

)
∩
(
∩

y∈Ty
s (y, Tx, Tz)

)
∩
(
∩

z∈Tz
s (z, Tx, Ty)

)
= (s(0))∩

(
s(2

∣∣∣y
3
−
x

3

∣∣∣p et))∩ (s(2 ∣∣∣z
3
−
x

3
−
y

3

∣∣∣p et)) .

Now we discuss the following three possible cases.
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(i). If s (Tx, Ty, Tz) = s(2
∣∣z

3 − x
3 − y

3

∣∣p et), then we have

2
∣∣∣z
3
−
x

3
−
y

3

∣∣∣p et 6 2
∣∣∣z
3
−
x

3

∣∣∣p et for t ∈ [0, 1]

=
2

3p
|z− x|p et =

2
3p

max{|x− y|p , |y− z|p , |x− z|p}et =
2

3p
G(x,y, z).

So by definition we have

2
3p
G(x,y, z) ∈ s(2

∣∣∣z
3
−
x

3
−
y

3

∣∣∣p et) = s (Tx, Ty, Tz) .

(ii). If s (Tx, Ty, Tz) = s(2
∣∣ y

10 −
x
10

∣∣ et), then we have

2
∣∣∣y
3
−
x

3

∣∣∣p et 6 2
∣∣∣z
3
−
x

3

∣∣∣p et for t ∈ [0, 1]

=
2

3p
|z− x| et =

2
3p

max{|x− y|p , |y− z|p , |x− z|p}et =
2

3p
G(x,y, z).

So by definition we have
2

3p
G(x,y, z) ∈ s (Tx, Ty, Tz) .

(iii). If s (Tx, Ty, Tz) = s(0), then

0 6 2
∣∣∣z
3
−
x

3

∣∣∣ et = 2
3p

|z− x|p et =
2

3p
max{|x− y|p , |y− z|p , |x− z|p}et =

2
3p
G(x,y, z).

So by definition we have
2

3p
G(x,y, z) ∈ s (Tx, Ty, Tz) .

Hence, all the conditions of main theorem are obviously satisfied and 0 is a fixed point of mapping T .
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