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Abstract
In this paper, we establish new cycle inequalities for convex-star bodies, which are joint improvements of the cycle inequality

for convex bodies and the dual cycle inequality for star bodies. c©2017 All rights reserved.
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1. Introduction

It is well-known that the cycle inequality for convex bodies can be stated below (see [6, p.401]).
If K is convex body and 0 6 i < j < k 6 n, then

Wj(K)
k−i >Wi(K)

k−jWk(K)
j−i, (1.1)

with equality if and only if K is an n-ball centered at the origin.
Here, Wi(K) denotes the quermassintegral of convex body K, i.e., Wi(K) = V(K, . . . ,K︸ ︷︷ ︸

n−i

,B, . . . ,B︸ ︷︷ ︸
i

), the

letter B stands for the unit ball centered at the origin, and V(K1, . . . ,Kn) is the mixed volume of convex
bodies K1, . . . ,Kn, defined by (see e.g. [1])

V(K1, . . . ,Kn−1,K) =
1
n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1;u). (1.2)

Here Sn−1 denotes the unit sphere in Rn, and

h(K,u) = max{u · x : x ∈ K,u ∈ Sn−1}

denotes the support function of K, and u · x denotes the usual inner product u and x in Rn, and where
S(K1, . . . ,Kn−1; ·) is a Borel measure, called the mixed surface area measure of K1, . . . ,Kn−1 (see [4]). In
fact, the measure S(K1, . . . ,Kn−1; ·) can be defined by (1.2) for all convex bodies K.
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The classical dual cycle inequality for star bodies can be stated below (see [3] or [2]). If K is star body
and i < j < k, then

W̃j(K)
k−i 6 W̃i(K)

k−jW̃k(K)
j−i, (1.3)

with equality if and only if K is an n-ball centered at the origin.
Here, W̃i(K) denotes the dual quermassintegral of star body K, i.e., W̃i(K) = Ṽ(K, . . . ,K︸ ︷︷ ︸

n−i

,B, . . . ,B︸ ︷︷ ︸
i

), and

Ṽ(K1, . . . ,Kn) is the dual mixed volume of star bodies K1, . . . ,Kn, defined by (see e.g., [3])

Ṽ(K1, . . . ,Kn) =
1
n

∫
Sn−1

ρ(K1,u) · · · ρ(Kn,u)dS(u),

where
ρ(K,u) = max{λ > 0 : λu ∈ K,u ∈ Sn−1}

is the radial function of star body K.
The aim of this paper is to establish mixed cycle inequalities for convex and star bodies, which are

joint improvements of the cycle inequality and the dual cycle inequality.

Theorem 1.1. Let K be convex body, and D star body in Rn, and D ⊆ K. If 0 6 i < j < k 6 n, then

(Wj(K) − W̃j(D))k−i > (Wi(K) − W̃i(D))k−j(Wk(K) − W̃k(D
′))j−i, (1.4)

with equality if and only if K and D are n-balls centered at the origin.

Remark 1.2. Let D be single point in (1.4), then (1.4) becomes the cycle inequality (1.1) for convex bodies.

Theorem 1.1 is just a special case of Theorem 3.6 established in Section 3.

Theorem 1.3. Let K be star body, and D convex body in Rn such that W̃m(K) > Wm(D),m = i, j,k. If
0 6 i < j < k 6 n, then

(W̃j(K) −Wj(D))k−i 6 (W̃i(K) −Wi(D))k−j(W̃k(K) −Wk(D
′))j−i, (1.5)

with equality if and only if K and D are n-balls centered at the origin.

Remark 1.4. Let D be single point in (1.5), then (1.5) becomes the dual cycle inequality (1.3) for star bodies.

Theorem 1.3 just is a special case of Theorem 3.9 established in Section 3.
In the following, we also establish cycle inequality for sum of the dual quermassintegrals of star

bodies.

Theorem 1.5. Let K and D be star bodies in Rn. If i < j < k, then

(W̃j(K) + W̃j(D))k−i 6 (W̃i(K) + W̃i(D))k−j(W̃k(K) + W̃k(D
′))j−i, (1.6)

with equality if and only if K and D are n-balls centered at the origin.

Remark 1.6. Let K or D be single point in (1.6), then (1.6) becomes the dual cycle inequality (1.3) for star
bodies.

Theorem 1.5 just is a special case of Theorem 3.10 established in Section 3.

2 Notations and definitions

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn denote the set of convex
bodies (compact, convex subsets with non-empty interiors) in Rn. We reserve the letter u for unit vectors.
The surface of B is Sn−1. We use V(K) for the n-dimensional volume of convex body K.
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Let δ denote the Hausdorff metric on Kn, i.e., for K,L ∈ Kn,

δ(K,L) = |h(K,u) − h(L,u)|∞,

where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1) (see, e.g., [6]).
Associated with a compact subset K of Rn, which is star-shaped with respect to the origin. If ρ(K, ·)

is positive and continuous, K will be called a star body. Let Sn denote the set of star bodies in Rn. Let δ̃
denote the radial Hausdorff metric as follows, if K,L ∈ Sn, then (see, e.g., [2])

δ̃(K,L) = |ρ(K,u) − ρ(L,u)|∞.

2. Mixed volumes

If Ki ∈ Kn(i = 1, 2, . . . , r) and λi(i = 1, 2, . . . , r) are nonnegative real numbers, then of fundamental
importance is the fact that the volume of

∑r
i=1 λiKi is a homogeneous polynomial in λi given by (see e.g.,

[1])

V(

r∑
i=1

λiKi) =
∑
i1,...,in

λi1 . . . λinVi1...in , (2.1)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding r. The coefficient
Vi1,...,in depends only on the bodies Ki1 , . . . ,Kin , and is uniquely determined by (2.1), it is called the mixed
volume of Ki1 , . . . ,Kin , and is written as V(Ki1 , . . . ,Kin). Let K1 = · · · = Kn−i = K and Kn−i+1 = · · · =
Kn = L, then the mixed volume V(K1, . . . ,Kn) is usually written Vi(K,L). If L = B, then Vi(K,B) is the ith
projection measure (quermassintegral) of K and is written as Wi(K).

2.1. Dual mixed volumes
If x1, . . . , xr ∈ Rn, then x1+̃ . . . +̃xr is defined to be the usual vector sum of x1, . . . , xr, provided

x1, . . . , xr all lie in a 1-dimensional subspace of Rn, and as the zero vector otherwise.
If K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ∈ R, then their radial Minkowski linear combination, is defined by

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki}. For K1, . . . ,Kr ∈ Sn and λ1, . . . , λr > 0, the volume of the
radial Minkowski linear combination λ1K1+̃ . . . +̃λrKr is a homogeneous nth-degree polynomial in the λi,

V(λ1K1+̃ . . . +̃λrKr) =
∑

Ṽi1,...,inλi1 · · · λin , (2.2)

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are positive integers not exceeding r.
If we require the coefficients of the polynomial in the above identity to be symmetric in their arguments,
then they are uniquely determined by (2.2) . The coefficient Ṽi1,...,in is nonnegative and depends only on
the bodies Ki1 , . . . ,Kin . It is written as Ṽ(Ki1 , . . . ,Kin) and is called the dual mixed volume of Ki1 , . . . ,Kin .
If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the dual mixed volume is written as Ṽi(K,L). The dual
mixed volume Ṽi(K,B) is written as W̃i(K) and is called dual quermassintegral of star body K (see e.g.,
[2]).

3. The cycle inequalities for convex-star bodies

Lemma 3.1 ([6, p.401]). If K,L ∈ Kn, and 0 6 i < j < k 6 n, then

Vj(K,L)k−i > Vk(K,L)j−iVi(K,L)k−j,

with equality if and only if K and L are homothetic.
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Lemma 3.2 ([3]). If K,L ∈ Sn and i < j < k, then

Ṽj(K,L)k−i 6 Ṽk(K,L)j−iṼi(K,L)k−j,

with equality if and only if K and L are dilates.

Lemma 3.3 ([3]). If K,L ∈ Kn, then for 0 < i < n,

Ṽi(K,L) 6 Vi(K,L), (3.1)

with equality if and only if K and L are dilates.

Lemma 3.4 ([5, p.58], Popoviciu’s inequality). Let p > 0,q > 0, 1/p+ 1/q = 1, and a = {a1, . . . ,an} and
b = {b1, . . . ,bn} be two series of positive real numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Then(

a
p
1 −

n∑
i=2

a
p
i

)1/p(
b
q
1 −

n∑
i=2

b
q
i

)1/q

6 a1b1 −

n∑
i=2

aibi, (3.2)

with equality if and only if a = µb, where µ is a constant.

Lemma 3.5 ([9]). Let a,b > 0, c,d > 0, 0 < α < 1, 0 < β < 1 and α+β = 1, then

aαcβ + bαdβ 6 (a+ b)α(c+ d)α, (3.3)

with equality if and only if a/b = c/d.

Theorem 3.6. Let K,L ∈ Kn, D,D ′ ∈ Sn, D ⊆ K, and D ′ ⊆ L. If 0 6 i < j < k 6 n, then(
Vj(K,L) − Ṽj(D,D ′)

)k−i
>
(
Vk(K,L) − Ṽk(D,D ′)

)j−i(
Vi(K,L) − Ṽi(D,D ′)

)k−j
, (3.4)

with equality if and only if K and L are homothetic,D andD ′ are dilates, and
(
Vk(K,L), Ṽk(D,D ′)

)
= µ

(
Vi(K,L),

Ṽi(D,D ′)
)

, where µ is a constant.

Proof. From Lemmas 3.1 and 3.2, for K,L ∈ Kn and 0 6 i < j < k 6 n

Vj(K,L)k−i > Vk(K,L)j−iVi(K,L)k−j,

with equality if and only if K and L are homothetic, and for D,D ′ ∈ Sn and i < j < k

Ṽj(D,D ′)k−i 6 Ṽk(D,D ′)j−iṼi(D,D ′)k−j,

with equality if and only if D and D ′ are dilates. Hence for 0 6 i < j < k 6 n,

Vj(K,L) − Ṽj(D,D ′)

> Vk(K,L)(j−i)/(k−i)Vi(K,L)(k−j)/(k−i) − Ṽk(D,D ′)(j−i)/(k−i)Ṽi(D,D ′)(k−j)/(k−i),
(3.5)

with equality if and only if K and L are homothetic, and D and D ′ are dilates.
Noticing that D ⊆ K and D ′ ⊆ L, and from (3.1), we have

Vk(K,L) > Ṽk(K,L) > Ṽk(D,D ′), (3.6)

and

Vi(K,L) > Ṽi(K,L) > Ṽi(D,D ′). (3.7)
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Noting that (3.5), (3.6), and (3.7), by using (3.2) in Lemma 3.4, we obtain(
Vj(K,L) − Ṽj(D,D ′)

)k−i
>
(
Vk(K,L) − Ṽk(D,D ′)

)j−i(
Vi(K,L) − Ṽi(D,D ′)

)k−j
,

with equality if and only if K and L are homothetic, D and D ′ are dilates, and
(
Vk(K,L), Ṽk(D,D ′)

)
=

µ
(
Vi(K,L), Ṽi(D,D ′)

)
, where µ is a constant.

Remark 3.7. Putting L = D ′ = B in (3.4), then (3.4) becomes the cycle inequality (1.4) for the mixed volumes
difference stated in the introduction.

Putting i = 0, j = n− i and k = n in (3.4), we have the following.

Corollary 3.8. Let K,L ∈ Kn, D,D ′ ∈ Sn, and D ⊆ K and D ′ ⊆ L. If 0 < i < n, then(
Vi(L,K) − Ṽi(D ′,D)

)n
>
(
V(L) − V(D ′)

)n−i(
V(K) − V(D)

)i
, (3.8)

with equality if and only if K and L are homothetic, D and D ′ are dilates, and
(
V(L),V(D ′)

)
= µ

(
V(K),V(D)

)
,

where µ is a constant.

Putting i = 1 in (3.8), (3.8) becomes(
V1(L,K) − Ṽ1(D

′,D)
)n

>
(
V(L) − V(D ′)

)n−1(
V(K) − V(D)

)
, (3.9)

with equality if and only if K and L are homothetic, D and D ′ are dilates, and
(
Vk(K,L), Ṽk(D,D ′)

)
=

µ
(
Vi(K,L), Ṽi(D,D ′)

)
, where µ is a constant.

Let D and D ′ be single point in (3.9), then (3.9) becomes the classical Minkowski inequality for convex
bodies: if K,L ∈ Kn, then

V1(L,K)n > V(L)n−1V(K),

with equality if and only if K and L are homothetic.

Theorem 3.9. Let K,L ∈ Sn, D,D ′ ∈ Kn such that Ṽm(K,L) > Vm(D,D ′) and m = i, j,k. If 0 6 i < j < k 6
n, then (

Ṽj(K,L) − Vj(D,D ′)
)k−i

6
(
Ṽk(K,L) − Vk(D,D ′)

)j−i(
Ṽi(K,L) − Vi(D,D ′)

)k−j
, (3.10)

with equality if and only if K and L are dilates,D andD ′ are homothetic, and
(
Ṽk(K,L),Vk(D,D ′)

)
= µ

(
Ṽi(K,L),

Vi(D,D ′)
)

, where µ is a constant.

The proof of Theorem 3.9 can be completed by following the same steps as in the proof of Theorem
3.6 with suitable changes and note the use of reverse Popoviciu’s inequality instead of using Popoviciu’s
inequality. Here, we omit the details.

Putting L = D ′ = B in (3.10), (3.10) becomes the cycle inequality (1.5) for the dual quermassintegrals
difference stated in the introduction.

Theorem 3.10. If K,L,D,D ′ ∈ Sn and i < j < k, then(
Ṽj(K,L) + Ṽj(D,D ′)

)k−i
6
(
Ṽk(K,L) + Ṽk(D,D ′)

)j−i(
Ṽi(K,L) + Ṽi(D,D ′)

)k−j
, (3.11)

with equality if and only if K and L are dilates, D and D ′ are dilates, and(
Ṽk(K,L), Ṽk(D,D ′)

)
= µ

(
Ṽi(K,L), Ṽi(D,D ′)

)
,

where µ is a constant.
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Proof. From Lemma 3.2, for K,L,D,D ′ ∈ Sn and i < j < k, we have

Ṽj(K,L)k−i 6 Ṽk(K,L)j−iṼi(K,L)k−j,

with equality if and only if K and L are dilates, and

Ṽj(D,D ′)k−i 6 Ṽk(D,D ′)j−iṼi(D,D ′)k−j,

with equality if and only if D and D ′ are dilates. Hence for i < j < k,

Ṽj(K,L) + Ṽj(D,D ′)

6 Ṽk(K,L)(j−i)/(k−i)Ṽi(K,L)(k−j)/(k−i) + Ṽk(D,D ′)(j−i)/(k−i)Ṽi(D,D ′)(k−j)/(k−i),
(3.12)

with equality if and only if K and L are dilates, and D and D ′ are dilates.
Noting that (3.12), by using (3.3), we obtain(

Ṽj(K,L) + Ṽj(D,D ′)
)k−i

6
(
Ṽk(K,L) + Ṽk(D,D ′)

)j−i(
Ṽi(K,L) + Ṽi(D,D ′)

)k−j
,

with equality if and only if K and L are dilates, D and D ′ are dilates, and
(
Ṽk(K,L), Ṽk(D,D ′)

)
=

µ
(
Ṽi(K,L), Ṽi(D,D ′)

)
, where µ is a constant.

Remark 3.11. Putting L = D ′ = B in (3.11), then (3.11) becomes the cycle inequality (1.6) for dual mixed
volumes sum stated in the introduction.

Putting i = 0, j = n− i, and k = n in (3.11), we have the following.

Corollary 3.12. Let K,L,D,D ′ ∈ Sn. If i < n− 1, then(
Ṽi(L,K) + Ṽi(D ′,D)

)n
6
(
V(L) + V(D ′)

)n−i(
V(K) + V(D)

)i
, (3.13)

with equality if and only if K and L are dilates, D andD ′ are dilates, and
(
V(L),V(D ′)

)
= µ

(
V(K),V(D)

)
, where

µ is a constant.

Putting i = 1 in (3.13), (3.13) becomes(
Ṽ1(L,K) + Ṽ1(D

′,D)
)n

6
(
V(L) + V(D ′)

)n−1(
V(K) + V(D)

)
, (3.14)

with equality if and only if K and L are dilates, D andD ′ are dilates, and
(
V(L),V(D ′)

)
= µ

(
V(K),V(D)

)
,

where µ is a constant.
Let D and D ′ be single point in (3.14), (3.14) becomes the classical dual Minkowski inequality for

convex bodies: if K,L ∈ Sn, then
Ṽ1(L,K)n 6 V(L)n−1V(K),

with equality if and only if K and L are dilates.
What is worth mentioning here is that in recent years, the study of new type of cyclic inequalities has

become a hot issue. For references to the study of the cyclic Brunn-Minkowski inequalities, please see [8]
and [7].
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