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Abstract

With a pair of conjugate connections∇ and∇∗, we derive optimal Casorati inequalities with the normalized scalar curvature
on submanifolds of a statistical manifold of constant curvature. c©2017 All rights reserved.
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1. Introduction

In 1985, Amari [1] introduced the notion of statistical manifolds in his treatment of statistical inference
problems in information geometry. The geometry of such manifolds is closely related to affine geometry
and Hessian geometry. In such manifolds, we have the fundamental equations such as Gauss formula,
Weingarten formula and the equations of Gauss, Codazzi, and Ricci in submanifolds of a statistical man-
ifold [18]. Furuhata [5] derived a condition for the curvature of a statistical manifold to admit a kind of
standard hypersurfaces.

On the other hand, it is known that the Casorati curvature of a submanifold in a Riemannian manifold
is an extrinsic invariant defined as the normalized square of the length of the second fundamental form
and it was preferred by Casorati over the traditional Gauss curvature ([2, 8]). Geometric meaning and
the importance of such curvature were found in visual perception of shape and appearance ([7, 14, 17]).
Some optimal inequalities involving Casorati curvatures were proved in [3, 4, 6, 9–13, 15, 19, 20] for
several submanifolds in real, complex, and quaternionic space forms with various connections. These
optimizations investigated the scalar curvature was bounded above only by Casorati curvatures.

In our paper, we establish the normalized scalar curvature is bounded by Casorati curvatures of
submanifolds in a statistical manifold of constant curvature as follows.

Theorem 1.1. Let Mn be a statistical submanifold of a statistical space form M
m
(c). Then, the normalized δ-
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Casorati curvatures δC(n− 1) and δ∗C(n− 1) satisfy

ρ 6 2δ0
C(n− 1) +

1
n− 1

C0 −
2n
n− 1

‖H0‖2 +
n

(n− 1)
g(H,H∗) + c,

where 2δ0
C(n− 1) = δC(n− 1) + δ∗C(n− 1) and 2C0 = C+ C∗.

Theorem 1.2. Let Mn be a statistical submanifold of a statistical space form M
m
(c). Then, the normalized δ-

Casorati curvatures δC(n− 1) and δ∗C(n− 1) satisfy

ρ > −
1
2
δ0
C(n− 1) +

2n
n− 1

‖H0‖2 −
2

n− 1
C0 + c,

where 2δ0
C(n− 1) = δC(n− 1) + δ∗C(n− 1) and 2C0 = C+ C∗.

2. Preliminaries

Let (M
m,g) be an m-dimensional Riemannian manifold with an affine connection ∇. Let T be the

torsion tensor field of type (1, 2) of ∇.

Definition 2.1. A pair
(
∇,g

)
is called a statistical structure on M if

(1)
(
∇Xg

)
(Y,Z) −

(
∇Yg

)
(X,Z) = g

(
T(X, Y),Z

)
for vector fields X, Y, and Z on M, and

(2) T = 0.

Definition 2.2. A statistical manifold (M
m,g,∇) is a Riemannian manifold, endowed with a pair of torsion-

free affine connections ∇ and ∇∗ satisfying

Zg (X, Y) = g
(
∇ZX, Y

)
+ g

(
X,∇∗ZY

)
for any vector fields X, Y, and Z. The connections ∇ and ∇∗ are called dual connections.

Remark 2.3.

(a)
(
∇∗
)∗

= ∇.

(b) If
(
∇,g

)
is a statistical structure, then so is

(
∇∗,g

)
.

(c) Any torsion-free affine connection ∇ has always a dual connection satisfying

∇+∇∗ = 2∇0,

where ∇0 is the Levi-Civita connection for M.

Let R and R∗ be the curvature tensor fields of ∇ and ∇∗, respectively.

Definition 2.4. A statistical structure
(
∇,g

)
is said to be of constant curvature c ∈ R if R (X, Y)Z =

c {g (Y,Z)X− g (X,Z) Y} for any vector fields X, Y, and Z. A statistical structure
(
∇,g

)
with constant

curvature 0 is called a Hessian structure.

By direct calculation, the curvature tensor fields R and R∗ satisfy

g
(
R
∗
(X, Y)Z,W

)
= −g

(
Z,R (X, Y)W

)
.

Therefore, if
(
∇,g

)
is a statistical structure of constant curvature c, so is

(
∇∗,g

)
.
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For submanifolds in statistical manifolds, we have pairs of induced connections ∇,∇∗, second funda-
mental forms h,h∗, shape operators A,A∗, and normal connections D,D∗ satisfying equations analogous
to the Gauss and the Weingarten ones for ∇ and ∇∗, respectively. Moreover, the induced metric g is
unique, and (∇,g) and (∇∗,g) are induced dual statistical structures on the submanifolds. The funda-
mental equations for statistical submanifolds are given by Vos ([18]).

Let M be an n-dimensional submanifold of a statistical manifold
(
M,g

)
and g the induced metric on

M. Then for any vector fields X, Y, the Gauss formulas are given respectively by

∇XY = ∇XY + h(X, Y), ∇∗XY = ∇∗XY + h∗(X, Y).

Let R and R be the curvature tensor fields of ∇ and ∇, respectively. Then, we have Gauss formula given
by

g
(
R (X, Y)Z,W

)
= g (R (X, Y)Z,W) + g (h (X,Z) ,h∗ (Y,W)) − g (h∗ (X,W) ,h (Y,Z)) . (2.1)

If {e1, . . . , en} is an orthonormal basis of the tangent space TpM and {en+1, . . . , em} is an orthonormal
basis of the normal space T⊥pM, then the scalar curvature τ at p is defined as

τ(p) =
∑

16i<j6n

g
(
R(ei, ej)ej, ei

)
and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
.

We denote by H and H∗ the mean curvature vectors, that is

H(p) =
1
n

n∑
i=1

h(ei, ei), H∗(p) =
1
n

n∑
i=1

h∗(ei, ei), (2.2)

and we also set
hαij = g(h(ei, ej), eα), h∗ij

α = g(h∗(ei, ej), eα),

i, j ∈ {1, . . . ,n}, α ∈ {n+ 1, . . . ,m}.
Then it is well-known that the squared mean curvatures of the submanifold M in M are defined by

‖H‖2 =
1
n2

m∑
α=n+1

(
n∑
i=1

hαii

)2

, ‖H∗‖2 =
1
n2

m∑
α=n+1

(
n∑
i=1

h∗ii
α

)2

,

and the squared norms of h and h∗ over dimension n are denoted by C and C∗ are called the Casorati
curvatures of the submanifold M, respectively. Therefore we have

C =
1
n

m∑
α=n+1

n∑
i,j=1

(
hαij
)2 and C∗ =

1
n

m∑
α=n+1

n∑
i,j=1

(
h∗ij
α
)2 .

Suppose now that L is a k-dimensional subspace of TpM, k > 2 and let {e1, . . . , ek} be an orthonormal
basis of L. Then, the Casorati curvatures C (L) and C∗ (L) of L are defined as

C (L) =
1
k

n∑
α=n+1

k∑
i,j=1

(
hαij
)2 , and C∗ (L) =

1
k

n∑
α=n+1

k∑
i,j=1

(
h∗αij

)2 .

The normalized δ-Casorati curvatures δC(n− 1) and δ̂C(n− 1) of the submanifold Mn are defined as

[δC(n− 1)]p =
1
2
Cp +

(n+ 1)
2n

inf{C(L)|L a hyperplane of TpM},
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and [
δ̂C(n− 1)

]
p
= 2Cp −

(2n− 1)
2n

sup{C(L)|L a hyperplane of TpM}.

Moreover, the dual normalized δ∗-Casorati curvatures δ∗C(n− 1) and δ̂∗C(n− 1) of the submanifold
Mn are defined as

[δ∗C(n− 1)]p =
1
2
C∗p +

(n+ 1)
2n

inf{C∗(L)|L a hyperplane of TpM},

and [
δ̂∗C(n− 1)

]
p
= 2C∗p −

(2n− 1)
2n

sup{C∗(L)|L a hyperplane of TpM}.

The following lemma plays a key role in the proof of our theorem.

Lemma 2.5 ([16]). Let
Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}

be a hyperplane of Rn, and f : Rn −→ R a quadratic form given by

f(x1, x2, · · · , xn) = a
n−1∑
i=1

(xi)
2 + b (xn)

2 − 2
∑

16i<j6n

xixj, a > 0, b > 0.

Then, by the constrained extremum problem, f has a global solution as follows,

x1 = x2 = · · · = xn−1 =
k

a+ 1
, xn =

k

b+ 1
=
k(n− 1)
(a+ 1)b

= (a−n+ 2)
k

a+ 1
,

provided that

b =
n− 1

a−n+ 2
.

3. The proofs of main theorems

proof of Theorem 1.1. Let p ∈ M and the set {e1, e2, . . . , en} and {en+1, en+2, . . . , em} be orthonormal bases
of TpM and T⊥pM, respectively. From (2.1), we have

n(n− 1)c = 2τ(p) −n2g(H,H∗) +
n∑
i,j=1

g(h∗(ei, ej),h(ei, ej)), (3.1)

where H and H∗ are the mean curvature vector fields defined by (2.2).
Since 2H0 = H+H∗ and the definition of Casorati curvature, 4‖H0‖2 = ‖H‖2 + ‖H∗‖2 + 2g(H,H∗), it

follows that

n(n− 1)c = 2τ(p) − 2n2‖H0‖2 +
n2

2
(
‖H‖2 + ‖H∗‖2)+ 2nC0 −

n

2
(C+ C∗) .

We consider now the following quadratic polynomial in the components of the second fundamental
form:

P = n(n− 1)C0 + (n− 1)(n+ 1)C0(L) +
1
2
n (C+ C∗) −

n2

2
(
‖H‖2 + ‖H∗‖2)− 2τ(p) +n(n− 1)c,

where L is a hyperplane of TpM. Without loss of generality, we can assume that L is spanned by
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e1, . . . , en−1. Using (3.1), we derive

1
2
P =

m∑
α=n+1

n−1∑
i=1

[
n
(
h0α
ii

)2
+ (n+ 1)

(
h0α
in

)2
]

+

m∑
α=n+1

2(n+ 1)
n−1∑

1=i<j

(
h0α
ij

)2
− 2

n∑
16i<j

h0α
ii h

0α
jj +

n− 1
2

(
h0α
nn

)2


>

m∑
α=n+1

n−1∑
i=1

n
(
h0α
ii

)2
+
n− 1

2
(
h0α
nn

)2
− 2

n∑
16i<j

h0α
ii h

0α
jj

 .

For α = n+ 1, · · · ,m, let us consider the quadratic form fα : Rn −→ R defined by

fα
(
h0α

11 , · · · ,h0α
nn

)
=

n−1∑
i=1

n
(
h0α
ii

)2
+
n− 1

2
(
h0α
nn

)2
− 2

n∑
16i<j

h0α
ii h

0α
jj , (3.2)

and the constrained extremum problem
min fα,

subject to the component of traceH0:

F : h0α
11 + · · ·+ h0α

nn = kα,

where kα is constant. Comparing (3.2) with the quadratic function in Lemma 2.5, we see that

a = n, b =
n− 1

2
.

Therefore, we have the critical point
(
h0α

11 , . . . ,h0α
nn

)
, given by

h0α
11 = h0α

22 = · · · = h0α
n−1n−1 =

kα

n+ 1
, h0α

nn =
2kα

n+ 1
,

is a global minimum point by Lemma 2.5. Moreover, fα
(
h0α

11 , . . . ,h0α
nn

)
= 0. Therefore, we have

P > 0

and this implies

2τ(p) 6 n(n− 1)C0 + (n− 1)(n+ 1)C0(L) +
1
2
n (C+ C∗) −

n2

2
(
‖H‖2 + ‖H∗‖2)+n(n− 1)c.

Therefore, we derive

1
2
ρ 6 δ0

C(n− 1) +
1

4(n− 1)
(C+ C∗) −

n

4(n− 1)
(
‖H‖2 + ‖H∗‖2)+ 1

2
c.

The proof of Theorem 1.2. We consider a quadratic polynomial in the components of the second fundamen-
tal form:

Q = −
n(n− 1)

4
(C+ C∗) −

(n− 1)(n+ 1)
4

(C(L) + C∗(L)) − 2τ(p) + 2n2‖H0‖2 − 2nC0 +n(n− 1)c,
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where L is a hyperplane of TpM. Without loss of generality, we can assume that L is spanned by
e1, . . . , en−1. Using (3.1), we derive

−2Q =

m∑
α=n+1

n−1∑
i=1

[
n (hαii)

2 + (n+ 1) (hαin)
2
]

+

m∑
α=n+1

2(n+ 1)
n−1∑

16i<j

(
hαij
)2

− 2
n∑

16i<j

hαiih
α
jj +

n− 1
2

(hαnn)
2


+

m∑
α=n+1

n−1∑
i=1

[
n (h∗αii )

2 + (n+ 1) (h∗αin )
2
]

+

m∑
α=n+1

2(n+ 1)
n−1∑

16i<j

(
h∗αij

)2
− 2

n∑
16i<j

h∗αii h
∗α
jj +

n− 1
2

(h∗αnn)
2


>

m∑
α=n+1

n−1∑
i=1

n (hαii)
2 +

n− 1
2

(hαnn)
2 − 2

n∑
16i<j

hαiih
α
jj


+

m∑
α=n+1

n−1∑
i=1

n (h∗αii )
2 +

n− 1
2

(h∗αnn)
2 − 2

n∑
16i<j

h∗αii h
∗α
jj

 .

For α = n+ 1, . . . ,m, let us consider the quadratic form gα : R2n −→ R defined by

gα (hα11, · · · ,hαnn,h∗α11 , · · · ,h∗αnn) =
n−1∑
i=1

n (hαii)
2 +

n− 1
2

(hαnn)
2 − 2

n∑
16i<j

hαiih
α
jj

+

n−1∑
i=1

n (h∗αii )
2 +

n− 1
2

(h∗αnn)
2 − 2

n∑
16i<j

h∗αii h
∗α
jj ,

and the constrained extremum problem mingα, subject to G : hα11 + · · ·+hαnn = kα and h∗α11 + · · ·+h∗αnn =
lα, where kα and lα are constant. From Lemma 2.5, we have the critical point

(
hα11, . . . ,hαnn,h∗α11 , . . . ,h∗αnn

)
,

given by

hα11 = · · · = hαn−1n−1 =
kα

n+ 1
, hαnn =

2kα

n+ 1
,

h∗α11 = · · · = h∗αn−1n−1 =
lα

n+ 1
, h∗αnn =

2lα

n+ 1
,

is a global minimum point. Moreover, gα
(
hα11, . . . ,hαnn,h∗α11 , . . . ,h∗αnn

)
= 0. Therefore, we have

− 2Q > 0 ⇒ Q 6 0,

and this implies

2τ(p) > −
n(n− 1)

4
(C+ C∗) −

(n− 1)(n+ 1)
4

(C(L) + C∗(L)) + 2n2‖H0‖2 − 2nC0 +n(n− 1)c.

Therefore we derive

2ρ > −δC(n− 1) − δ∗C(n− 1) +
4n
n− 1

‖H0‖2 −
4

n− 1
C0 + 2c

for every tangent hyperplane L of M.



C. W. Lee, D. W. Yoon, J. W. Lee, J. Nonlinear Sci. Appl., 10 (2017), 4908–4914 4914

Remark 3.1.

(1) Theorem 1.1 shows the normalized scalar curvature is bounded above by Casorati curvatures.
(2) Theorem 1.2 shows the normalized scalar curvature is bounded below by Casorati curvatures.

Remark 3.2. The normalized scalar curvature is bounded by the normalized Casorati curvatures δ̂C(n− 1)
and δ̂∗C(n− 1) with similar proof of Theorems 1.1 and 1.2.
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