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Abstract
In this paper, we investigate the small energy solutions for a coupled fractional Schrödinger system with critical growth.
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1. Introduction

In the present paper, we consider the following coupled Schrödinger system involving fractional p-
Laplacian {

(−∆)αu(x) + V1(x)u = Fu(x,u, v) + |u|2
∗
α−2u, x ∈ RN,

(−∆)αv(x) + V2(x)v = Fv(x,u, v) + |v|2
∗
α−2v, x ∈ RN,

(1.1)

where 0 < α < 1, 2α < N, 2∗α = 2N
N−2α , V1,V2 ∈ C(RN, R), F ∈ C(RN ×R2, R), (−∆)α is the so-called

fractional Laplacian operator of order α and can be either defined pointwise for x ∈ RN by

(−∆)αu(x) := P.V.
∫
RN

u(x) − u(y)

|x− y|N+2αdy,

where P.V. stands for the principal value, or be characterized as by (−∆)αu(x) = F−1(|ξ|2αFu), F denotes
the usual Fourier transform in RN, for the detail, see [12]. The nonlinearities Fu(x,u, v) and Fv(x,u, v) de-
note the partial derivatives of the function F(x,u, v), which satisfies some assumptions that are necessary
for the main results and will be stated in the sequence.

∗Corresponding author
Email addresses: lpllpl_lpl@163.com (Peiluan Li), yyuan@mun.ca (Yuan Yuan), 949014655@qq.com (Yuanxian Hui)

doi:10.22436/jnsa.010.09.33

Received 2017-06-06

http://dx.doi.org/10.22436/jnsa.010.09.33


P. L. Li, Y. Yuan, Y. X. Hui, J. Nonlinear Sci. Appl., 10 (2017), 4930–4939 4931

Over the past decades, with the aid of different methods, the existence and multiplicity of the nontriv-
ial solutions for the integer order Schrödinger equation have been extensively investigated. The fractional
(−∆)α reduces to the standard Laplacian operator −∆ as α → 1, which was proved in [12]. Hence the
results in this paper are also valid for α→ 1.

Fractional calculus provides a powerful tool for the description of hereditary properties of various
materials and memory processes. Fractional differential equations have played an important role in many
fields such as engineering, science, electrical circuits, diffusion, and applied mathematics, see [17, 19, 26,
31] and so on. For more details about the linear and nonlinear fractional partial differential equations and
their use to the description of a series of phenomena in applied sciences, see [1–3, 8, 18, 25, 35, 37].

Recently, a great attention has been focused on the study of problems involving the fractional Lapla-
cian. (−∆)α may be viewed as the infinitesimal generators of a Levy stable diffusion processes (see
[5]). This operator arises in the description of various phenomena in the applied sciences, such as phase
transitions, materials science, conservation laws, minimal surfaces, water waves, optimization, plasma
physics and so on, see [12] and references therein. The fractional Schrödinger equation is a funda-
mental equation in the field of fractional quantum mechanics. It was discovered by Laskin [20, 21]
as a result of extending the Feynman path integral. In recent few years, may researchers have in-
vestigated the existence and multiplicity of (critical) fractional Schrödinger equations, see for instance
[6, 9, 13, 15, 24, 27, 29, 30, 32, 33, 36, 38]. In some work, the nonlinearity satisfies the Ambrosetti-
Rabinowitz (A-R) condition, i.e., there exists θ > 2 such that 0 < θF(x, t) < tf(x, t). But in some other
papers, the authors obtained their results without A-R condition.

On the other hand, the coupled quasi-linear Schrödinger system involving Laplacian appears in sev-
eral branches of physics. It can accurately describe the multiplicate chemical reaction catalyzed by the
catalyst grains under constant or variant temperature, and a correspondence of the stable station of the
dynamical system determined by the reactiondiffusion system. It also arises in non-Newtonian fluids,
flow through porous media, nonlinear elasticity, glaciology, quasi-regular and quasi-conformal mappings.
When the potentials a(x) and b(x) are coercive in RN, Costa [11] studied a class of coupled semilinear
Schrödinger system: {

−∆u+ a(x)u = Fu(x,u, v), x ∈ RN,

−∆v+ b(x)v = Fv(x,u, v), x ∈ RN,
(1.2)

where F ∈ C1(RN ×R2, R). By applying the generalized mountain pass lemma, the author established
the existence of one nontrivial solution of (1.2). From then on, the coupled quasi-linear Schrödinger
system had attracted more and more attention, see [4, 10, 14, 22, 23, 28] and the references therein. But for
the coupled quasi-linear Schrödinger system involving fractional Laplacian, there are very few work. In
[16], the authors considered the following coupled quasi-linear Schrödinger system involving fractional
Laplacian: {

(−∆)su+ u = (|u|2p + b|u|p−1
|v|p+1)u, x ∈ RN,

(−∆)sv+ω2sv = (|v|2p + b|v|p−1
|u|p+1)v, x ∈ RN,

(1.3)

where

0 < s < 1, 2 < 2p+ 2 < 2∗s :=
{

+∞ if N 6 2s,
2N
N−2s if N > 2s.

By use of the s-harmonic extension technique, they established the existence of a nontrivial least energy
solution of the system via variational methods. Especially, in the autonomous case, i.e., b(x) = b, a
positive least energy solution with both nontrivial components was obtained.

Motivated by the works above, in the present article, we investigate the system (1.1). The existence
criteria of infinitely many energy solutions are established without A-R condition by fountain theorem.
Obviously, the form of (1.1) is more general than that of (1.2)–(1.3). Hence our results can be viewed as
an extension to the results in [4, 10, 11, 14, 16, 22, 23, 28].

To state our main results, we make the following assumptions.
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(G1) Vi is bounded from below by a positive constant, for i = 1, 2;

(G2) there exists a positive constant R such that lim
|y|→∞meas({x ∈ BR(y) : Vi(x) 6 c}) = 0 for any c > 0 and

i = 1, 2, where BR(y) = {x ∈ RN : |x− y| < R};

(H0) F ∈ C1(RN ×R2, R) such that F(x,u, v) > 0 if (u, v) 6= (0, 0), F(x, 0, 0) = 0;

(H1) there exist two positive constants r ∈ [1, 2) and a > 0 such that

|Fz(x, z)| 6 a(1 + |z|r−1), ∀ (x, z) ∈ RN ×R2, z = (u, v),

where Fz(x, z) = (Fu(x, z), Fv(x, z)), |z| = |(u, v)| =
√
u2 + v2;

(H2) lim
|(u,v)|→0

F(t,u,v)
|(u,v)|2

= 0 uniformly in x ∈ RN, where |(u, v)| =
√
u2 + v2;

(H3) there exist two constants σ ∈ [1, r) and b > 0 such that lim
|(u,v)|→∞ F(x,u,v)

|(u,v)|σ > b uniformly for x ∈ RN.

It is easy to see that (G2) is weaker that the coercivity assumption that V(x) → ∞, as |x| → ∞, which
was first given in [7] to overcome the lack of compactness.

The main result of this paper is the following.

Theorem 1.1. Assume that (G1)–(G2), (H0)–(H3) hold, and F(x,−u,−v) = F(x,u, v) for all (x,u, v) ∈ RN×R2,
then (1.1) has infinitely many small energy solutions (u(k), v(k)) ∈ X \ {0}, for every k ∈ N, in the sense that

‖(u(k), v(k))‖2
X

2
−

[ ∫
RN

F(x,u(k), v(k))dx+
1

2∗α

∫
RN

(|u(k)|2
∗
α + |v(k)|2

∗
α)dx

]
→ 0−, as k→∞.

The rest of this paper is organized as follows. In Section 2, some lemmas which are essential to prove
our main results are stated. In Section 3, we give the main results.

2. Preliminaries

First, we review some related lemmas, which will be used further in this paper.
For any fixed t ∈ RN and 1 < q 6∞, we define the following norms:

‖u‖∞ = max
t∈RN

|u(t)|, ‖u‖q = ‖u‖Lq(RN) =

( ∫
RN

|u(s)|qdx

) 1
q

.

For m ∈ (1,∞), let Dα(RN) denote the completion of C∞0 (RN) with respect to the Gagliardo(semi) norm

[u]α =

( ∫
RN

∫
RN

|u(x) − u(y)|2

|x− y|N+2α dxdy

) 1
2

.

We define the space

Eω =

{
u ∈ Dα(RN) :

∫
RN

ω(x)|u(x)|2dx < +∞},

with the norm ‖u‖Eω := ([u]2α + ‖u‖2
ω)1/2, where ‖u‖2

ω =
( ∫
RN
ω(x)|u(x)|2dx

)1/2 . It is easy to see the

embedding Eω 7−→ L2(RN) is continuous.
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Denote
X := EV1 × EV2 ,

with the norm ‖(u, v)‖2
X := ‖u‖2

EV1
+ ‖v‖2

EV2
, for u ∈ EV1 , v ∈ EV2 .

Similar to the discussion in [27, 36], we can get the following Lemmas 2.1–2.4.

Lemma 2.1. X = (X, ‖·‖X) is a separable and reflexive Banach space.

Lemma 2.2. The embedding X 7−→ Lp(RN)× Lp(RN) is continuous, for p ∈ [2, 2∗α], and there exists a positive
constant Cp such that

‖u‖Lp 6 Cp‖u‖EV1
, ‖v‖Lp 6 Cp‖v‖EV2

, and ‖(u, v)‖Lp 6
√

2Cp‖(u, v)‖X,

where ‖(u, v)‖Lp(RN) = ‖
√
u2 + v2‖Lp(RN).

Lemma 2.3. Let {(un, vn)}n ⊂ X be such that (un, vn) ⇀ (u, v) weakly in X as n → ∞. Then there exists a
subsequence, which we also label it as (un, vn), such that (un, vn)→ (u, v) a.e. in RN as n→∞.

Lemma 2.4. Assume the assumptions (G1)-(G2) hold. Then the embeddings EV1 7−→ Lp(RN) and EV2 7−→
Lp(RN) are compact. Moreover, the embedding X 7−→ Lp(RN)× Lp(RN) is compact for p ∈ [2, 2∗α).

We consider the functionals A,B,ϕλ : X→ R, defined by

A(u, v) =
1
2

[ ∫
RN

∫
RN

|u(x) − u(y)|2

|x− y|N+2α dxdy+

∫
RN

V1(x)|u(x)|
2dx

]

+
1
2

[ ∫
RN

∫
RN

|v(x) − v(y)|2

|x− y|N+2α dxdy+

∫
RN

V2(x)|v(x)|
2dx

]
=
‖(u, v)‖2

X

2
,

B(u, v) =
∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx,

ϕλ(u, v) = A(u, v) − λB(u, v)

=
‖(u, v)‖2

X

2
− λ

[ ∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx

]
(2.1)

for all (u, v) ∈ X and λ ∈ [1, 2]. Then A,B,ϕλ is well-defined and continuously differentiable under the
assumption (H0)–(H3), and we have

〈ϕ ′λ(u, v), (t, z)〉 =
∫
RN

∫
RN

[u(x) − u(y)][t(x) − t(y)]

|x− y|N+2α dxdy+

∫
RN

V1(x)utdx

+

∫
RN

∫
RN

[v(x) − v(y)][z(x) − z(y)]

|x− y|N+2α dxdy+

∫
RN

V2(x)vzdx

− λ

[ ∫
RN

(
Fu(x,u, v)t+ Fv(x,u, v)z

)
dx+

∫
RN

(
|u(x)|2

∗
α−2ut+ |v(x)|2

∗
α−2vz

)
dx

] (2.2)

for all (t, z) ∈ X. Hence the critical point of ϕ1 is the weak solution of problem (1.1). Next, we only
consider the critical point of ϕ1.

Let {ej} be a total orthonormal basis of X. We define

Xj := span{ej}, Yk :=
⊕k

j=1
Xj, Zk :=

⊕∞
j=k+1

Xj, k ∈N,
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and
Bk = {u ∈ Yk : ‖u‖ 6 ρk}, Sk = {u ∈ Zk : ‖u‖ = rk}

for ρk > rk > 0. Clearly, X = Yk
⊕
Zk with dim Yk <∞.

The following variant fountain theorem will be used to prove the existence of infinitely many nontriv-
ial small energy solutions of the system (1.1).

Lemma 2.5 ([39]). Let X be a Banach space, assume that ϕλ(u) satisfies:

(A1) ϕλ(u) maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and

ϕλ(−u) = ϕλ(u), ∀ λ ∈ [1, 2];

(A2) B(u) > 0 for all u ∈ X, and B(u)→∞ as ‖u‖ →∞ on any finite dimensional subspace of X;

(A3) there exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

ϕλ(u) > 0 > bk(λ) := max
u∈Yk,‖u‖=rk

ϕλ(u), ∀λ ∈ [1, 2],

and
ck(λ) := inf

u∈Zk,‖u‖6ρk
ϕλ(u)→ 0, as k→∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1,u(λn) ∈ Yn such that

ϕ ′λn |Yn(u(λn)) = 0, and ϕλn(u(λn))→ ωk ∈ [ck(2),bk(1)], as n→∞.

In particular, if {u(λn)} has a convergent subsequence for every k ∈ N, then ϕ1 has infinitely many nontrivial
critical points {uk} ∈ X \ {0} satisfying ϕ1(uk)→ 0− as k→∞.

3. Main results

Without loss of generality, we use the same notation {un} for a sequence {un} and any of its subse-
quence when it is needed.

Lemma 3.1. Assume (G1)-(G2), (H0)-(H3) hold. Then, there exist ρk > rk > 0 such that

ak(λ) := inf
(u,v)∈Zk,‖(u,v)‖X=ρk

ϕλ(u) > 0 > bk(λ) := max
(u,v)∈Yk,‖(u,v)‖X=rk

ϕλ(u), ∀λ ∈ [1, 2],

and
ck(λ) := inf

(u,v)∈Zk,‖(u,v)‖X6ρk
ϕλ(u)→ 0, as k→∞ uniformly for λ ∈ [1, 2].

Proof. (H0)-(H3) imply that for arbitrary δ > 0 with C2
2δ <

1
24 , there exists a constant dδ such that

F(x,u, v) 6 δ|(u, v)|2 + dδa|(u, v)|r, ∀ (x,u, v) ∈ RN ×R2, (3.1)

F(x,u, v) > b|(u, v)|σ − δ|(u, v)|2 − dδa|(u, v)|r, ∀ (x,u, v) ∈ RN ×R2, (3.2)

where C2 was defined in Lemma 2.2.
From Lemma 2.2, (2.1), (3.1), for any (u, v) ∈ Zk, r ∈ [1, 2), λ ∈ [1, 2], we have

ϕλ(u, v) =
‖(u, v)‖2

X

2
− λ

[ ∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx

]
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>
‖(u, v)‖2

X

2
− λ
[
δ2C2

2‖(u, v)‖2
X + dδa2

r
2Crr‖(u, v)‖rX

]
−
λ

2∗α

∫
RN

(|u(x)|2 + |v(x)|2)
2∗α
2 dx (3.3)

>
‖(u, v)‖2

X

3
− dδa21+ r

2Crr‖(u, v)‖rX −
2

2∗α
‖(u, v)‖2∗α

L2∗α
.

Let
αk = sup

(u,v)∈Zk,‖(u,v)‖X=1
‖(u, v)‖Lp , for p ∈ [2, 2∗α).

By Lemma 2.5, similar to the argument of [34, Lemma 3.8], we can deduce that αk → 0 as k→∞. Then,
it follows from (3.3) that

ϕλ(u) >
‖(u, v)‖2

X

3
− dδa21+ r

2Crr‖(u, v)‖rX −
2

2∗α
α

2∗α
k ‖(u, v)‖2∗α

X .

Assume ρk >
(7

2dδa21+ r
2Crr

) 1
2−r , then for any λ ∈ [1, 2], r ∈ [1, 2), we have

ak(λ) := inf
(u,v)∈Zk,‖(u,v)‖X=ρk

ϕλ(u) > ‖(u, v)‖rX
[1

3
‖(u, v)‖2−r

X − dδa21+ r
2Crr

]
−

2
2∗α
α

2∗α
k ‖(u, v)‖2∗α

X

>
(7

2
dδa21+ r

2Crr
) r

2−r

[
dδa21+ r

2Crr
6

−
2‖(u, v)‖2∗α−r

X

2∗α
α

2∗α
k

]
> 0, as k→∞.

(3.4)

Moreover, from (3.4), for any (u, v) ∈ Zk, ‖(u, v)‖X 6 ρk, λ ∈ [1, 2], one has

ϕλ(u, v) > −
2

2∗α
‖(u, v)‖2∗α

X α
2∗α
k → 0+, as k→∞.

Hence, from (2.1), for (u, v) ∈ Zk, ‖(u, v)‖X → 0, and αk → 0+, as k→∞ it follows that

ck(λ) := inf
(u,v)∈Zk,‖(u,v)‖X6ρk

ϕλ(u, v)→ 0, as k→∞ uniformly for λ ∈ [1, 2].

Next we will verify bk(λ) := max
(u,v)∈Yk,‖(u,v)‖X=rk

ϕλ(u, v) < 0, for all λ ∈ [1, 2]. From (2.1), (3.2), for any

(u, v) ∈ Yk with dim Yk <∞, λ ∈ [1, 2], we have

ϕλ(u, v) =
‖(u, v)‖2

X

2
− λ

[ ∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx

]
,

6
‖(u, v)‖2

X

2
− λ

∫
RN

(b|(u, v)|σ − δ|(u, v)|2 − dδa|(u, v)|r)dx.

By the equivalence of any norm in finite dimensional space Yk, it follows that

ϕλ(u, v) 6
‖(u, v)‖2

X

2
+ e1‖(u, v)‖2

X + e2‖(u, v)‖rX − e3‖(u, v)‖σX

= ‖(u, v)‖σX
[
(
1
2
+ e1)‖(u, v)‖2−σ

X + e2‖(u, v)‖r−σX − e3

]
,

where e1, e2, e3 are positive constants. Then for r ∈ [1, 2), we can easily choose 0 < ‖(u, v)‖X = rk < ρk
small enough such that

bk(λ) := max
(u,v)∈Yk,‖(u,v)‖X=rk

ϕλ(u, v), ∀λ ∈ [1, 2].

We complete the proof of Lemma 3.1.
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Lemma 3.2. Assume that (G1)–(G2), (H0)–(H3) hold. Then, for λn ∈ [1, 2], λn → 1 and (u(λn), v(λn)) ∈ Yn
with

ϕ ′λn |Yn(u(λn), v(λn)) = 0, and ϕλn(u(λn), v(λn))→ ωk ∈ [ck(2),bk(1)], as n→∞,

{(u(λn), v(λn))} has a convergent subsequence in X for every k ∈ N.

Proof. Assume that for each k ∈ N, λ ∈ [1, 2], there exist a subsequence λn → 1, and (u(λn), v(λn)) ∈ Yn
such that

ϕ ′λn |Yn(u(λn), v(λn)) = 0, and ϕλn(u(λn), v(λn))→ ωk ∈ [ck(2),bk(1)], as n→∞.

From (2.1), (3.1), (H3) and the condition C2
2δ <

1
24 , for λn ∈ [1, 2], λn → 1, as n→∞ and r ∈ [1, 2), one

has

‖(u, v)‖2
X

2
= ϕλ(u, v) + λ

[ ∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx

]

6 (ωk + 1) + λn

[ ∫
RN

(δ|(u, v)|2 + dδa|(u, v)|r)dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx

]

6 (ωk + 1) +
‖(u, v)‖2

X

6
+ 21+ r

2dδaC
r
r‖(u, v)‖rX +

21+ 2∗α
2

2∗α
C

2∗α
2∗α
‖(u, v)‖2∗α

X ,

which shows that {(u(λn), v(λn))} is bounded in X. Then we can obtain a weakly convergent subsequence
of {(u(λn), v(λn))}. Assume that {(u(λn), v(λn))} ⇀ (u, v) weakly in X. By Lemma 2.3, we know that
(u(λn), v(λn)) → (u, v) strongly in RN, as n → ∞. Then we have |(u(λn) − u, v(λn) − v)| → 0 as n → ∞,
which implies

|u(λn) − u|→ 0 and |v(λn) − v|→ 0, as n→∞. (3.5)

Next we prove that (u(λn), v(λn))→ (u, v) in X. By (2.1)-(2.2), we have

‖(u(λn) − u, v(λn) − v)‖2
X 6

〈
ϕ ′λn(u(λn), v(λn)) −ϕ

′
1(u, v), (u(λn) − u, v(λn) − v)

〉
+

∫
RN

(|u(λn) − u|
2∗α−2

|u(λn) − u|
2 + |v(λn) − v|

2∗α−2
|v(λn) − v|

2)dx

+

∫
RN

[λnFu(x,u(λn), v) − Fu(x,u, v)](u(λn) − u)dx

+

∫
RN

[λnFv(x,u, v(λn)) − Fv(x,u, v)](v(λn) − v)dx.

(3.6)

It is easy to see that 〈
ϕ ′λn(u(λn), v(λn)) −ϕ

′
1(u, v), (u(λn) − u, v(λn) − v)

〉
, n→∞. (3.7)

From (3.5), one has∫
RN

(|u(λn) − u|
2∗α−2

|u(λn) − u|
2 + |v(λn) − v|

2∗α−2
|v(λn) − v|

2)dx→ 0, n→∞. (3.8)

From (H1), λm → 1, {(u(λn), v(λn))} is bounded in X, and (u(λn), v(λn)) → (u, v) strongly in RN, we
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have ∫
RN

[λnFu(x,u(λn), v) − Fu(x,u, v)](u(λn) − u)dx+
∫
RN

[λnFv(x,u, v(λn)) − Fv(x,u, v)](v(λn) − v)dx

6
∫
RN

[
|2Fu(x,u(λn), v)|+ |Fu(x,u, v)||u(λn) − u|

]
dx

+

∫
RN

[
|2Fv(x,u, v(λn))|+ |Fv(x,u, v)||v(λn) − v|

]
dx

6 3a(1 + |z|r−1)[|u(λn) − u|+ |v(λn) − v|]→ 0, n→∞.

(3.9)

Equations (3.6), (3.7), (3.8), (3.9) show ‖(u(λn)−u, v(λn)− v)‖2
X → 0, which implies that (u(λn), v(λn))→

(u, v) in X. The proof is completed.

Proof of Theorem 1.1. Obviously, from (H0), we know B(u) > 0 and

B(u, v) =
∫
RN

F(x,u(x), v(x))dx+
1

2∗α

∫
RN

(|u(x)|2
∗
α + |v(x)|2

∗
α)dx→∞, as ‖(u, v)‖X →∞,

on any finite dimensional subspace of X, which implies (A2) of Lemma 2.5 is satisfied
From (H0), (2.1) and the condition F(x,−u,−v) = F(x,u, v), we can verify ϕλ(u, v) maps bounded sets

into bounded sets uniformly for λ ∈ [1, 2], and

ϕλ(−u,−v) = ϕλ(u, v), ∀ (λ,u) ∈ [1, 2]×X,

which shows (A1) of Lemma 2.5 holds. Lemma 3.1 implies that (A3) is also satisfied. In view of Lemma
2.5, we know that for each k ∈ N, there exist λn → 1, (u(λn), v(λn)) ∈ Yn such that

ϕ ′λn |Yn(u(λn), v(λn)) = 0, and ϕλn(u(λn), v(λn))→ ωk ∈ [ck(2),bk(1)], as n→∞.

By Lemma 3.2, we know {(u(λn), v(λn))} has a convergent subsequence in X. Owing to Lemma 2.5,
ϕ1(u, v) has infinitely many nontrivial critical points (u(k), v(k)) ∈ X \ {0} satisfying that

‖(u(k), v(k))‖2
X

2
−

[ ∫
RN

F(x,u(k), v(k))dx+
1

2∗α

∫
RN

(|u(k)|2
∗
α + |v(k)|2

∗
α)dx

]
→ 0−, as k→∞

for every k ∈ N, which implies (1.1) possesses infinitely many small energy solutions.

Remark 3.3. If the sublinear case for the nonlinearity Fz turns to the following superlinear case:

(H ′1) There exist two constants a0 > 0, v ∈ [2, 2∗α) such that

|Fz(x, z)| 6 a0(1 + |z|v−1), ∀ (x, z) ∈ RN ×R2, z = (u, v),

where Fz(x, z) = (Fu(x, z), Fv(x, z)), |z| = |(u, v)| =
√
u2 + v2.

(H2) lim
|(u,v)|→0

F(t,u,v)
|(u,v)|2

= 0 uniformly in x ∈ RN.

(H ′3) lim
|(u,v)|→∞ F(t,u,v)

|(u,v)|2
=∞ uniformly in t ∈ [0, T ].

By using another variant fountain theorem in [39], we can also establish the existence criteria of infinitely
many high energy solutions of the problem (1.1).
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Remark 3.4. As we know, the coupled quasilinear Schrödinger system appears in several branches of
physics. For example, it can be used as a model for propagation of polarized laser beams in birefringent
Kerr medium in nonlinear optics. Physically, the two functions u and v denote the components of the
slowly varying envelope of the electrical field, x are the orthogonal variables and (−∆)α is the diffraction
operator. The focusing nonlinear terms in (1.1) describe the dependence of the refraction index of the
material on the electric field intensity and the birefringence effects. The existence of nonstandard small
energy solutions of (1.1), that is, solutions with minimal energy on the set of solutions (u, v) to the system
such that u 6≡ 0, v 6≡ 0, implies that the speed of the components of the varying envelope in the electrical
field may be very slowly. Hence, the obtained results can describe the specific condition of the propagation
of polarized laser beams in birefringent Kerr medium very clearly. In the other branches of physics, our
main results represent other physical meaning.

4. Conclusion

In this paper, we study the existence of infinitely many small energy solutions for a coupled fractional
Schrödinger system (1.1) with critical growth, which can describe the multiplicate chemical reaction cat-
alyzed by the catalyst grains under constant or variant temperature, and a correspondence of the stable
station of the dynamical system determined by the reactiondiffusion system very well. It should be noted
that the coupled fractional Schrdinger system which we discuss is with critical growth and fractional
order Laplacian. By the variational methods, the existence criteria of infinitely many small energy so-
lutions for the problem (1.1) are established without A-R condition. Recent results in the literature are
generalized and improved.
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