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Abstract
In this paper, for a continuous semi-flow θ on a compact metric space E with the asymptotic average-shadowing property

(AASP), we show that if the almost periodic points of θ are dense in E then θ is multi-sensitive and syndetically sensitive. Also,
we show that if θ is a Lyapunov stable semi-flow with the AASP, then the space E is trivial. Consequently, a Lyapunov stable
semi-flow with the AASP is minimal. Furthermore, we prove that for a syndetically transitive continuous semi-flow on a compact
metric space, sensitivity is equivalent to syndetical sensitivity. As an application, we show that for a continuous semi-flow θ

on a compact metric space E with the AASP, if the almost periodic points of ϕ are dense in E then θ is syndetically sensitive.
Moreover, we prove that for any continuous semi-flow θ on a compact metric space, it has the AASP if and only if so does its
inverse limit (Ẽ, θ̃), and if only if so does its lifting continuous semi-flow (Ê, θ̂). Also, an example which contains two numerical
experiments is given. Our results extend some corresponding and existing ones. c©2017 All rights reserved.

Keywords: The asymptotic average-shadowing property, strong ergodicity, minimal point, multi-sensitivity, syndetical
sensitivity, Lyapunov stable.
2010 MSC: 54H20, 37B40, 37D45.

1. Introduction

It is well-known from [46] that it is very interesting and important in dynamical systems theory to
find the minimal set. In [19] we can see a brief summarization on this subject. The research on shadowing
theory is a very important topic in dynamical systems and ergodic theory [2, 7, 51, 58, 59]. Up to now,
there have been many results on the pseudo-orbit tracing property which were published (see [2, 5, 7, 10–
14, 19, 22, 27–30, 41, 42, 44, 45, 51, 58, 59]). It is well-known that this kind of property is closely related
to stability and chaos in dynamical systems (see [51, 58, 59]). So, it is an important part of stability in
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dynamical systems and ergodic theory (see [2, 7]). From the numerical point of view, we can understand
it as follows: for a map e (resp. a semi-flow θ) with the pseudo orbit tracing property (POTP), the orbits
which are generated in the process of numerical computations can completely reflect its real dynamical
behavior. In [6] the author introduced the concept of the average shadowing property, which is a good
tool to characterize Anosov diffeomorphisms in the chaotic theory (see [43]). Kato [25] showed that every
Lyapunov stable (LS) flow with the POTP is minimal. Komuro [26] proved that any equidistant flow with
the POTP is minimal. He and Wang [19] obtained that each distal flow with the POTP is minimal. Mai [37]
established that all pointwise recurrent flows with the POTP are minimal. Gu and Guo [15] considered the
relation between the average shadowing property (ASP) and topological ergodicity for flows, and got that
any LS flow with the ASP is topologically ergodic. The authors [16] showed that any continuous flow with
the ASP is chain transitive, and any LS continuous flow with the ASP is minimal. In [14] Gu introduced
the asymptotic average-shadowing property (AASP) for flows, and investigated the relationships between
this property and transitivity for flows. He proved that any flow on a compact metric space is chain
transitive if it has the positively (or negatively) AASP and any positively (resp. negatively) LS flow is
positively (resp. negatively) topologically transitive provided it has positively (resp. negatively) AASP.
Furthermore, he gave two conditions under which any flow is minimal. In [4], the authors proved that for
a nonsingular (fixed point free) C1 flow over a smooth closed 3-dimensional manifold M with H2(M) = 0,
if this flow has a dense orbit then there is an open dense set N ⊂M satisfying that any knotted periodic
orbit which intersects N is a nontrivial prime knot. In [28] the authors related the AASP with other
notions in topological dynamics. Kulczycki and Oprocha [29] investigated under what conditions can
nontransitivity coexist with the AASP. They also studied the limit shadowing property and its relation to
the AASP. There are many chaotic phenomena in the real world. Moreover, there exist lots of important
and possible applications of chaotic maps. In [53], by using a nonlinear coupling method the authors
discussed master-slave synchronization for the fractional difference equation. The numerical simulation
which was given by them shows that the designed synchronization method can effectively synchronize
the fractional logistic map, and that the Caputo-like delta derivative is adopted as the difference operator.
In [54], the authors presented a discrete fractional logistic map in the left Caputo discrete delta’s sense
and proved that the new model holds discrete memory. Also, they provided the bifurcation diagrams and
numerically illustrated the chaotic behaviors, which means that there exist important applications of this
map. In [55], the authors gave fractional Logistic map and fractional Lorenz maps of Riemann-Liouville
type and considered the general chaotic behaviors of these maps in comparison with the Caputo one.
Furthermore, they designed chaos synchronization according to the stability results. From the obtained
numerical results one can see the method’s effectiveness and fractional chaotic map’s potential role for
secure communication. In [23], the fractional chaotic map was applied in physics and engineering to
properly treat some real-world phenomena. A shuffling method was given based on the fractional logistic
map. Also, an image encryption scheme was presented by using the XOR operation and the security
analysis was established. Their results show that the fractional difference order can make the encryption
scheme highly secure. In [24], numerical recurrence formulae were presented to investigate the chaotic
motion of the famous Duffing system. The new Adomian polynomial was adopted to treat the cubic
nonlinear term. By using the numerical simulation of the phase portraits and the Poincare sections, the
chaotic behaviors were studied for varied frequencies, damping coefficients and forces. From the results in
[24], we can see that the numerical method is reliable to investigate chaotic systems. In [56], by researching
on the monotonic properties of the convergence factor established by applying the Fourier transform to
the error functions, Wu and Wu gave a realiable choice of the Robin parameter in the nonoverlapping case
and numerical results, which mean that the analyzed Robin parameter results in satisfactory convergence
rate. In [48], Thomine extended the corresponding result to larger classes of observables, with milder
smoothness conditions, and to larger classes of dynamical systems, which may no longer be mixing. A
special emphasis is given by him to continuous time systems: semi-flows, flows, and Zd1-extensions of
flows, where d1 > 0. The latter generalization is applied to the geodesic flow on Zd1-periodic manifolds of
negative sectional curvature. In [1], Alves et al. deduced a variational principle for impulsive semiflows
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defined on compact metric spaces. In particular, they generalized the classical notion of topological
entropy to their setting of discontinuous semi flows. In [49], Thomine studied Zd1-periodic semi-flows,
which are versions in continuous time of Zd1-extensions of dynamical systems. These systems are defined
by an underlying dynamical system, a step time (the time to wait before the system makes a move), and
a step function (the displacement in Zd1 at each step). He was interested in two statistics related to these
semi-flows: the local time, i.e., the time spent in some subset, and the first return time to the origin. He
got some partial results under spectral conditions on the transfer operator of the underlying dynamical
system. If the underlying dynamics is Gibbs-Markov, and under additional constraints on the step time
and step function, he got distributional asymptotics for the local time, and an equivalent of the tail of
the first return time. In [38], Marklof explained how entry and return times can be interpreted in terms
of stationary point processes and their Palm distribution and generalized the results by Haydn et al. to
non-ergodic maps and continuous-time dynamical systems. From [1, 3, 14–17, 34, 38, 48, 49] we can see
that the generalizations of the results obtained for continuous maps over a compact metric space to semi-
flows on a compact metric space and the study on the dynamical properties of semi-flows on a compact
metric space are interesting. Inspired by the works of these references, in this paper we introduce and
study the AASP for semi-flows which is the semi-flow version of the AASP for continuous selfmaps over
a compact metric space, and show that for a continuous semi-flow θ : E× R+ → E with the AASP, if the
almost periodic points of θ are dense in E then θ is multi-sensitive. Moreover, it is shown that if θ is a LS
semi-flow with the AASP, then the space E is trivial. Consequently, any LS semi-flow with the AASP is
minimal. Furthermore, it is proven that for a syndetically transitive continuous semi-flow θ on a compact
metric space E, sensitivity is equivalent to syndetical sensitivity. As an application, it is shown that for
a continuous semi-flow θ on a compact metric space E with the AASP, if the almost periodic points of θ
are dense in E then θ is syndetically sensitive. Consequently, by our results obtained in this paper we can
easily see that the semi-flow versions of Theorem 3.1 in [40] and Proposition 1, Theorem 1, and Corollary
1 in [39] are true. Also, Theorem 3.5 is stronger than the semi-flow version of Theorem 3.1 in [40], Lemma
3.4 is stronger than the semi-flow versions of Proposition 3.3 from [40] in the case that f = g, and Lemma
3.2 is the semi-flow versions of Lemma 3.2 from [40] in the case that f = g. Moreover, inspired by [18] and
[20] we show that for any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), it has the AASP
if and only if so does its inverse limit (Ẽ, θ̃), and if and only if so does its lifting continuous semi-flow
(Ê, θ̂). These two results extend the corresponding results in [18] and [20] to the AASP. Thus, our results
extend some existing ones. We also give an example which contains two numerical experiments.

In Section 2, we will recall some concepts. Our results are obtained in Section 3.

2. Preliminaries

In this paper, a dynamical system is a given pair (E, e), where E is a compact metric space and e is a
continuous self-map on E. Let R+ = [0,+∞). For any given metric space (E,d), we define the product
metric d ′ on the product space E× E by d ′((u, v), (u ′, v ′)) = max{d(u,u ′),d(v, v ′)} for any two points
(u,u ′), (v, v ′) ∈ E× E. Let E and F be topological spaces. The space of all continuous maps from E into F
by C0(E, F).

A map θ ∈ C0(R+ × E,E) is called to be a continuous semi-flow if it satisfies that

(1) ϕ(0,y) = y for any y ∈ E;

(2) ϕ(n,ϕ(m,y)) = ϕ(n+m,y) for any y ∈ E and any n,m > 0.

For any given x ∈ E, the set {θ(n,y) : n ∈ R+} is called the orbit of θ through y. For any fixed λ > 0
and any L > 0, a bi-sequence ({yi}

b
j=a, {tj}b−1

j=a)(0 6 a < b 6 +∞) is called a (λ,L)-pseudo-orbit of θ if
tj > L and d(θ(tj,yj),yj+1) 6 λ for any a 6 j 6 b− 1, and a bi-sequence ({yj}

+∞
j=0 , {tj}+∞

j=0) is called a
(λ,L)-average-pseudo-orbit of θ if tj > L for any j > 0 and there is an integer N > 0 with
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1
n

n−1∑
j=0

d(θ(tk+j, xk+j), xk+j+1) < λ

for any n > N and any integer k > 0. A (λ,L)-pseudo-orbit ({yj}+∞
j=0 , {sj}+∞

j=0) of θ is called to be η-shadowed
in average by the orbit of θ through y if we have

lim sup
n→∞

1
n

n−1∑
j=0

∫tj+1

tj

d(θ(s,y),ϕ(s− tj,yj))ds < η,

where t0 = 0, tn =
n−1∑
j=0

sj and n = 1, 2, · · · .

A semi-flow θ ∈ C0(R+ × E,E) is called to have the ASP if for any η > 0 there is a λ > 0 such that any
(λ, 1)-average-pseudo-orbit of θ can be η-shadowed in average by some orbit of θ.

Definition 2.1. A bi-sequence ({yj}
+∞
j=0 , {tj}+∞

j=0) is said to be an asymptotic L-average-pseudo-orbit of θ if
tj > L for any integer j > 0, and

lim
n→∞ 1

n

n∑
j=0

d(θ(tj,yj),yj+1) = 0.

Definition 2.2. An asymptotic L-average-pseudo-orbit ({yj}+∞
j=0 , {sj}+∞

j=0) of θ is called to be asymptotically
shadowed in average by the orbit of θ through y, if we have

lim
n→∞ 1

n

n∑
j=0

∫tj+1

tj

d(θ(s,y),ϕ(s− tj,yj))ds = 0,

where t0 = 0, tn =
n−1∑
j=0

sj, and n = 1, 2, · · · .

Definition 2.3. A semi-flow θ ∈ C0(R+× E,E) is called to have the AASP if for any asymptotic 1-average-
pseudo-orbit of θ can be asymptotically shadowed in average by some orbit of θ.

A subset A ⊂ X is called to be an invariant set of θ or invariant under θ if θ(t,A) ⊂ A for any t > 0.
A subset A ⊂ X is called a minimal set of θ if it is nonempty, closed, and invariant under θ and it does

not contain any proper subset with these three properties.
A semi-flow θ ∈ C0(R+×E,E) is said to be minimal if E is a unique minimal set of θ. As E is compact,

θ is minimal if and only if the orbit of θ through the point y is dense in E for any given y ∈ E.
A semi-flow θ ∈ C0(R+ × E,E) is said to be LS if for any η > 0, there is a λ > 0 satisfying that

d(u, v) < λ (u, v ∈ E) implies that d(θ(t,u), θ(t, v)) < η for any t > 0.
A map e : E→ E (resp. a semi-flow θ : R+×E→ E) is said to be topologically transitive (TT) if for any

nonempty and open sets U,V ⊂ E, there exists n ∈ {0, 1, · · · } (resp. t ∈ R+) such that en(U)∩ V 6= ∅ (resp.
θ(t,U)∩ V 6= ∅). As E is compact, e (resp. θ) is TT if and only if there is some y ∈ E such that the orbit of
e (resp. θ) through y is dense in E.

A map e : E → E (resp. a semi-flow θ : R+ × E → E) is said to be topologically ergodic (TE) (see
[32, 33, 35]) if for any two nonempty and open sets U,V ⊂ E,

lim sup
n→∞

1
n
|{i ∈ {0, 1, · · · ,n− 1} : fi(U)∩ V 6= ∅}| > 0

(resp. lim sup
t→∞ 1

t l({s ∈ R
+ : θ(s,U)∩ V 6= ∅}∩ [0, t]) > 0).
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A set J ⊂ {0, 1, · · · } (resp. J ⊂ R+) is said to be syndetic if there is a positive integer N such that
[n,n+N]∩ J 6= ∅ (resp. [t, t+N]∩ J 6= ∅) for any integer n > 0 (resp. any t > 0).

A map e : E → E (resp. a semi-flow θ : R+ × E → E) is said to be topologically strongly ergodic
or syndetically transitive (TSE or ST) if for any two nonempty and open sets U,V ⊂ E, {n ∈ {0, 1, · · · } :
en(U)∩ V 6= ∅} (resp. {s ∈ R+ : θ(s,U)∩ V 6= ∅}) is syndetic.

A map e : E → E (resp. a semi-flow θ : R+ × E → E) is said to be topologically weakly mixing
(TWM) if e× e (resp. θ× θ) is topologically transitive, where θ× θ : R+ × E× E → E× E is defined by
θ× θ(t, (u, v)) = (θ(t,u), θ(t, v)) for any (u, v) ∈ E× E and any t > 0.

It is easy to see that both TE and TWM imply TT, and TSE implies TE.
For a semi-flow θ on a metric space (E,d), if there is λ > 0 such that for any u ∈ E and any neigh-

borhood U of u, there exist v ∈ U and t > 0 with d(θ(t,u), θ(t, v)) > λ, then the semi-flow θ is said to be
sensitive.

A flow θ on a metric space (E,d) is said to be uniformly almost periodic if for any η > 0 there exist
H = H(η) > 0 and a countable real number set {sj : 0 6 j < ∞} with {sj} ∩ (s, s+H(ε)) 6= ∅ for any s > 0
and d(θ(s, x), θ(s+ sj, x)) < η for any x ∈ E, s > 0, and 0 6 j <∞.

Let E be a topological space and θ : R+ × E → E be a semi-flow. A point u ∈ E is called an almost
periodic point of θ if for any neighborhood U of u, there is a syndetic set A ⊂ R+ with θ(tu) ∈ U for any
t ∈ A. Denote the set of almost periodic points of θ by AP(θ). It is known that u ∈ AP(θ) if and only if it
is a minimal point of θ (that is, it is a point of some minimal set of θ).

3. Main results

Let (E,d) be a metric space, θ be a semi-flow on E. For V ⊂ E and λ > 0, denote

Nθ(V , λ) := {t ∈ R+ : there exist x,y ∈ V with d(θt(x), θt(y)) > λ}.

(1) θ is sensitive if there is a constant λ > 0 with Nθ(V , λ) 6= ∅ for any nonempty open subset V ⊂ E;

(2) θ is cofinitely sensitive if there is a constant λ > 0 with Nθ(V , λ) ⊃ [t,+∞) for some t > 0 and any
nonempty open subset V ⊂ E;

(3) θ is multi-sensitive if there is a constant λ > 0 with
⋂k
i=1Nθ(Vi, λ) 6= ∅ for each k > 1 and any

nonempty open sets V1,V2, · · · ,Vk ⊂ E;

(4) θ is syndetically sensitive if there is a constant λ > 0 such that the set Nθ(V , δ) is syndetic for any
nonempty open set V ⊂ E.

It is noted that if θ is cofinitely sensitive or multi-sensitive or syndetically sensitive then it is sensitive,
and that if θ is cofinitely sensitive then it is multi-sensitive and syndetically sensitive.

Lemma 3.1 ([35]). If a semi-flow θ on a nontrivial metric space satisfies that θ× θ× · · · × θ︸ ︷︷ ︸
l

is TT for each l > 1,

then it is multi-sensitive.

Lemma 3.2. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), θ× θ has the AASP if and
only if so does θ.

Proof. If θ has the AASP, then, by the definition every asymptotic 1-average-pseudo-orbit of θ can be
asymptotically shadowed in average by some orbit of θ. Let ({(xi,yi)}∞i=0, {si}∞i=0) be an asymptotic 1-
average-pseudo-orbit of θ× θ. That is, there exists a positive integer N such that

lim
n→∞ 1

n

n∑
i=0

d ′((θ× θ)(si, (xi,yi)), (xi+1,yi+1)) = 0.
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Hence, we have

lim
n→∞ 1

n

n∑
i=0

d(θ(si, xi), xi+1) = 0,

and

lim
n→∞ 1

n

n∑
i=0

d(θ(si,yi),yi+1) = 0.

So, both ({xi}
∞
i=0, {si}∞i=0) and ({yi}

∞
i=0, {si}∞i=0) are asymptotic 1-average-pseudo-orbits of θ. Hence, there

exist z1, z2 ∈ E such that

lim
n→∞ 1

n

n∑
i=0

∫ti+1

ti

d(θ(s, z1), θ(s− ti, xi))ds = 0 (3.1)

and

lim
n→∞ 1

n

n∑
i=0

∫ti+1

ti

d(θ(s, z2), θ(s− ti,yi))ds = 0, (3.2)

where t0 = 0, tn =
n−1∑
i=0

si, and n = 1, 2, · · · . By (3.1) and (3.2), we get

lim
n→∞ 1

n

n−1∑
i=0

∫ti+1

ti

(d(θ(s, z1), θ(s− ti, xi)) + d(θ(s, z2), θ(s− ti,yi)))ds = 0,

where t0 = 0, tn =
n−1∑
i=0

si, and n = 1, 2, · · · . So, we obtain

lim
n→∞ 1

n

n∑
i=0

∫ti+1

ti

d ′((θ× θ)(s, (z1, z2)), (θ× θ)(s− ti, (xi,yi)))ds = 0,

where t0 = 0, tn =
n−1∑
i=0

si, and n = 1, 2, · · · . Thus, θ× θ has the AASP.

Similarly, one can prove that if θ× θ has the AASP, then so does θ.

Lemma 3.3. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), θ× θ is LS if and only if θ is
LS.

Proof. The proof is very easy and is omitted.

Lemma 3.4. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), AP(θ) = E if and only if
AP(θ× θ) = E× E.

Proof. Clearly, AP(θ× θ) = E× E means AP(θ) = E.
Let AP(θ) = E. By the definition, x ∈ AP(θ) if and only if Orbθ(x) is minimal. So, one can quickly

deduce to the case that θ is minimal. It is known that there exists an (x,y) ∈ AP(θ× θ). One can easily
verify that for any t, s > 0, ϕt×ϕs is a factor map from θ× θ to θ× θ. This implies that (θ(t, x), θ(s,y)) ∈
AP(θ× θ). As θ is minimal, Orbθ(x) and Orbθ(y) are dense in E. Therefore, for any nonempty and
open subsets U,V ⊂ E, there are t, s > 0 with (θ(t, x), θ(s,y)) ∈ U× V . This means (θ(t, x), θ(s,y)) ∈
(U× V)∩AP(θ× θ). This shows AP(θ× θ) = E× E.
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Theorem 3.5. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), if θ has the AASP and
AP(θ) = E, then θ× θ is TSE (or ST).

Proof. By Lemmas 3.2 and 3.4, it is enough to show that if θ has the AASP and AP(θ) = E, then θ is TSE
(or ST). Let U and V be two nonempty open subsets of E. For a ∈ E and any t > 0, we write B(a, t) = {b ∈
E : d(a,b) < t}. As AP(θ) = E, one can choose x ∈ U∩AP(θ), y ∈ V ∩AP(θ), and ε > 0 with B(x, ε) ⊂ U
and B(y, ε) ⊂ V . Since x,y ∈ AP(θ), Jx = {r > 0 : θr(x) ∈ B(x, 1

2ε)} and Jy = {r > 0 : θr(y) ∈ B(y, 1
2ε)} are

syndetic, which implies that there exist N1,N2 ∈N with [t, t+N1]∩ Jx 6= ∅ and [t, t+N2]∩ Jy 6= ∅ for any
t > 0. Let N = max{N1,N2}. By compactness and continuity, there is δ > 0 such that d(u, v) < δ (u, v ∈ X)
implies d(θt(u), θt(v)) < 1

2ε for any t ∈ [0,N]. Write D = sup{d(a,b) : a,b ∈ X}.
Since θ has the AASP, by the definition, every asymptotic 1-average-pseudo-orbit is asymptotic shad-

owed in average by some point in E. Now one can define a bi-sequence sequence ({ui}
∞
i=0, {ti}∞i=0) with

ti = 1 for any integer i > 0 as follows. Let

u0 = x, y = u1,
u2 = x, y = u3,
u4 = x, θ(1, x), θ(1,y), y = u7,

...

u2k = x, θ(1, x), · · · , θ(2k−1 − 1, x), θ(2k−1 − 1,y), · · · , θ(1,y), y = u2k+1−1,
....

It is easily seen that for any 2k 6 n < 2k+1,

1
n

n∑
i=0

d(θ(1,ui),ui+1) <
k+ 1
n

D 6
log2 n

n
D.

So,

lim
n→∞ 1

n

n∑
i=0

d(θ(1,ui),ui+1) = 0.

Consequently, ({ui}∞i=0, {ti}∞i=0) is an asymptotic 1-average-pseudo-orbit of θ. So, it can be asymptotically
shadowed in average by some u ∈ E, that is,

lim
n→∞ 1

n

n∑
i=0

∫ i+1

i

d(θ(t,u), θ(t− i,ui))dt = 0.

We have the following claim.

Claim. The following hold:

(1) there exist infinite i ∈N such that

ui ∈ {x, θ(1, x), · · · , θ(2i − 1, x)} and
∫ i+1

i

d(θ(t,u), θ(t− i,ui))dt < δ;

(2) there exist infinite i ∈N such that

ui ∈ {y, θ(1,y), · · · , θ(2i − 1,y)} and
∫ i+1

i

d(θ(t,u), θ(t− i,ui))dt < δ.
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Proof of Claim. Without loss of generality, we only prove (1). If there exists M ∈ N such that for all
i >M, if

ui ∈ {x, θ(1, x), · · · , θ(2i − 1, x)},

then ∫ i+1

i

d(θ(t,u), θ(t− i,ui))dt > δ.

This implies that

lim
n→∞ 1

n

n∑
i=0

∫ i+1

i

d(θ(t,u), θ(t− i,ui))dt >
1
2
δ.

It is a contradiction.
By Claim, there exist i0 > N, k0 ∈ [0, 2i0 − 1], j0 > i0 +N, and l0 ∈ [0, 2j0 − 1] such that

ui0 = θ(k0, x),
∫ i0+1

i0

d(θ(t,u), θ(t− i0,ui0))dt < δ

and

uj0 = θ(l0,y),
∫ j0+1

j0

d(θ(t,u), θ(t− j0,uj0))dt < δ.

This implies that

ui0 = θ(k0, x), d(θ(ti0 ,u), θ(ti0 − i0,ui0)) < δ (3.3)

for some ti0 ∈ [i0, i0 + 1] and

uj0 = θ(l0,y), d(θ(tj0 ,u), θ(tj0 − j0,uj0)) < δ (3.4)

for some tj0 ∈ [j0, j0 + 1].
As [k0 + 1,k0 + 1 +N]∩ Jx 6= ∅ and [l0 + 1, l0 + 1 +N]∩ Jy 6= ∅, there exist k ′, l ′ ∈ [0,N] such that

θk0+1+k ′(x) ∈ B(x,
1
2
ε) and θl0+1+l ′(y) ∈ B(y,

1
2
ε).

This means that
θk0+k(x) ∈ B(x,

1
2
ε) and θl0+l(y) ∈ B(y,

1
2
ε),

where k = 1 + k ′ and l = 1 + l ′. By (3.3) and (3.4), we get

d(θti0+k−(ti0−i0)(u), θk0+ti0−i0+k−(ti0−i0)(x)) <
1
2
ε

and
d(θtj0+l−(tj0−j0)

(u), θl0+tj0−j0+l−(tj0−j0)
(y)) <

1
2
ε.

That is,

d(θi0+k(u), θk0+k(x)) <
1
2
ε and d(θj0+l(u), θl0+l(y)) <

1
2
ε.

So, we have
θi0+k(u) ∈ B(x, ε) ⊂ U and θj0+l(u) ∈ B(y, ε) ⊂ V .
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Let n0 = j0 + l− i0 − k > 0. Then U ∩ θ−1
n0

(V) 6= ∅. This means that θ is topologically transitive. Let
Q = U ∩ θ−1

n0
(V). Then there is p ∈ AP(θ) ∩Q. Write J = {t > 0 : θ(t,p) ∈ Q}. By [49], J is syndetic.

Clearly, Q∩ θ−1
r (Q) 6= ∅ for all r ∈ J. This implies

∅ 6= U∩ θ−1
n0

(V)∩ θ−1
r (U∩ θ−1

n0
(V)) ⊂ U∩ θ−1

n0+r
(V).

Therefore,
Nθ(U,V) ⊃ {n0 + r : r ∈ J}.

Consequently, Nθ(U,V) is syndetic. As U,V are arbitrary, θ is TSE or ST.

Theorem 3.6. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), if θ has the AASP and
AP(θ) = E, then it is multi-sensitive.

Proof. By Lemmas 3.2 and 3.4, and Theorem 3.5 and its proof, θ× θ× · · · × θ︸ ︷︷ ︸
m

is TT for any m > 1. By

Lemma 3.1, θ is multi-sensitive.

Theorem 3.7. For any LS semi-flow θ ∈ C0(R+ × E,E) on a nontrivial and compact metric space (E,d), if
AP(θ) = E, then it does not have the AASP.

Proof. If θ has the AASP, then it is multi-sensitive by Theorem 3.6. This is a contradiction.

In [15], the authors established that any LS flow with the ASP on a compact metric space is TE. For
continuous semi-flows, we get the following similar result.

Theorem 3.8. For any LS semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), if it has the AASP, then
it is TE.

Proof. By using the argument similar to the proof of Theorem 1 in [15] one can easily obtain the proof of
Theorem 3.8.

The authors [15] showed that for any LS flow θ on a compact metric space E, if it has the ASP, then it is
a uniformly almost periodic minimal flow. However, For continuous semi-flows, we obtain the following
corollary.

Corollary 3.9. For any LS semi-flow θ ∈ C0(R+× E,E) on a compact metric space (E,d), if it has the AASP, then
it is a uniformly almost periodic minimal flow. Consequently, such a semi-flow is TSE.

Proof. The proof is directly obtained from Theorem 3.2 of [17], Theorem 3.4 and Lemma 2.1 in [57].

Corollary 3.10. Any LS semi-flow θ ∈ C0(R+ × E,E) on a nontrivial and compact metric space (E,d) does not
have the AASP.

Proof. By Corollary 3.9, Theorem 3.7, and Lemma 3.3, this corollary is true.

Remark 3.11. Corollary 3.10 shows that if θ ∈ C0(R+×E,E) is an LS semi-flow with the AASP on a compact
metric space E, then this space E is trivial.

Proposition 3.12. For any sensitive semi-flow θ ∈ C0(R+× E,E) on a compact metric space (E,d), if AP(θ) = E,
then it is syndetically sensitive.

Proof. Suppose that θ is sensitive with sensitivity constant δ > 0, and that V ⊂ E is nonempty and open.
Let l ∈ Nϕ(V , δ). As AP(θ) = E, by Lemma 3.4, AP(θ× θ) = E× E. So, one may choose y, z ∈ V with
(y, z) ∈ AP(θ× θ) and d(θl(y), θl(z)) > δ. Let U,Q ⊂ E be small enough open sets such that θl(y) ∈ U,
θl(z) ∈ Q and d(u,w) > δ for any u ∈ U, and any w ∈ Q. It is clear that U×Q is nonempty and open,
and that (θl(y), θl(z)) ∈ U×Q. Hence, Nθ((θl(y), θl(z)),U×Q) is syndetic. By the above argument, we
can see that Nθ((θl(y), θl(z)),U×Q) + l ⊂ Nθ(V , δ). Consequently, Nθ(V , δ) is syndetic. This implies θ
is syndetically sensitive.
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Remark 3.13. Proposition 3.12 extends Proposition 1 in [45] to continuous semi-flows.

Proposition 3.14. For any sensitive semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), if it is ST but
not minimal, then it is syndetically sensitive.

Proof. Let b ∈ E be such that of Oθ(b) = {θt(b) : t > 0} 6= E. Let c ∈ (E \ Oϕ(b)), and set δ =
1
5d(c,Oϕ(b)) > 0. Write V = B(c, δ). By the definition, for any nonempty open set U ⊂ E, Nθ(U, δ)
is syndetic with some bound M1 ∈ {1, 2, · · · } for the gaps. Choose an open subset Q ⊂ E such that b ∈ Q
and x ∈ Q imply that d(θi(b), θi(x)) < δ for any i ∈ {0, 1, · · · ,M1}. It is easily seen that d(θi(Q),V) > 2δ
for any i ∈ {0, 1, · · · ,M1}. By hypothesis, Nθ(U,Q) is syndetic with some bound M2 ∈ {1, 2, · · · } for the
gaps. For any t > 0, we can choose j ∈ {1, 2, · · · ,M2} and u ∈ U with θt+j(u) ∈ Q. By the choice of
Q, we have d(θt+j+i(u),V) > 2δ for any i ∈ {1, 2, · · · ,M1}. Take i ∈ {1, 2, · · · ,M1} and u ′ ∈ U with
θt+j+i(u) ∈ V . Then d(θt+j+i(u), θt+j+i(u ′)) > 2δ > δ. As j+ i 6 M1 +M2, Nθ(U, δ) is a syndetic set
with M1 +M2 as a bound for the gaps.

Remark 3.15. Proposition 3.14 extends Theorem 1 in [39] to continuous semi-flows.

Corollary 3.16. For a ST continuous semi-flow on a compact metric space (E,d), sensitivity is equivalent to
syndetical sensitivity.

Proof. It follows from Propositions 3.12 and 3.14.

Remark 3.17. Corollary 3.16 extends Corollary 1 in [39] to continuous semi-flows.

Theorem 3.18. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), if it has the AASP and
AP(θ) = E, then θ is syndetically sensitive.

Proof. By Theorem 3.6 and Corollary 3.16, this theorem holds.
Let θ ∈ C0(R+ × E,E) on a compact metric space (E,d) be a semi-flow such that θt is an onto map for

any t > 0 and R = (−∞,+∞). Write

Ẽ = {x̃ = (xt)t∈R : xt ∈ E, xt = θt−s(xs), s 6 t}.

Define a metric d̃ on the space Ẽ by

d̃(x̃, ỹ) =
∫+∞
−∞ e−|t|d(xt,yt)dt

for any x̃, ỹ ∈ Ẽ. Let θ̃ : R× Ẽ→ Ẽ be defined as θ̃t(x̃) = θ̃(t, x̃) = (xt+s)s∈R for any x̃ ∈ Ẽ and any t ∈ R.
Clearly, θ̃ ∈ C0(R× Ẽ, Ẽ). The flow (Ẽ, θ̃) is called the inverse limit of the semi-flow (E, θ). Define a map
π : Ẽ → E by π((xt)t∈R) = x0 for any (xt)t∈R ∈ Ẽ. Then π is a continuous onto map with π ◦ θ̃ = θt for
any t > 0. The following lemma is needed.

Lemma 3.19 ([52]). Let N0 = {0, 1, 2, · · · } and {bi}
∞
i=0 ⊂N0 be a bounded sequence. Then

lim
m→∞ 1

m

m−1∑
j=0

bj = 0

if and only if there is a subset S ⊂ N0 with density zero (that is, lim
m

1
m ·Card(S ∩ {0, 1, , · · · ,m− 1}) = 0) such

that lim
m/∈S,m→∞bm = 0 where Card(A) is the cardinality of a set A.

Remark 3.20. According to [47], we can only consider the pseudo orbits ((ti, xi)∞i=0) of θ with 1 6 ti < 2
for every integer i > 0 when we study the shadowing property of a semi-flow or flow θ on a metric space
(E,d). So, for the AASP, one can only consider the asymptotic-average pseudo orbits ((ti, xi)∞i=0) of θ
with 1 6 ti < 2 for every integer i > 0.
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From Theorem 2.7 in [20] we know that a semi-flow θ ∈ C0(R+×E,E) on a compact metric space (E,d)
has the shadowing property if and only if so does its inverse limit (Ẽ, θ̃). For the AASP and continuous
semi-flow, we have the following result.

Theorem 3.21. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), it has the AASP if and
only if so does its inverse limit (Ẽ, θ̃).

Proof. By Remark 3.20, Lemma 3.19, and the method used in the proof of Theorem 2.7 in [20], the proof
of Theorem 3.21 is easily obtained and is omitted.

Form the proofs of Proposition and Theorem 1 in [18] one can see that a semi-flow θ ∈ C0(R+ × E,E)
on a compact metric space (E,d) has the shadowing property if and only if so does its lifting continuous
semi-flow. For the notions of a lifting continuous semi-flow and a projecting continuous semi-flow we
refer to [18]. For the AASP, we have a similar result (see Theorem 3.22).

Theorem 3.22. For any semi-flow θ ∈ C0(R+ × E,E) on a compact metric space (E,d), it has the AASP if and
only if so does its lifting continuous semi-flow (Ê, θ̂).

Proof. The proof of Theorem 3.22 is similar to that of Theorem 1 in [18] and is omitted.

Remark 3.23. Similarly, one can prove the results in this paper are valid for the average-shadowing prop-
erty on continuous semi-flows.

Let a self-map f of a compact metric space (E,d) be continuous. One can define an equivalence relation
∼ in the product space [0, 1]× E as follows (see [21]).

For any (s1, x1), (s2, x2) ∈ [0, 1]×E, (s1, x1) ∼ (s2, x2) if and only if one of the following conditions hold.

(1) (s1, x1) = (s2, x2);

(2) s1 = 1, s2 = 0 and x2 = g(x1).

Let W = ([0, 1]×E)/ ∼. By [8], W is compact and metrizable. Then the suspended semi-flow ϕ(f) induced
by it on W is defined as ϕ(f)(a, [(b, x)]) = [a+ b−m, fm(x)] for any a > 0 and any [(b, x)] ∈ W with
m 6 a+b < m+ 1 and m ∈ {0, 1, 2, · · · }. In [34] we proved that a continuous self-map of a compact metric
space is chaotic in the sense of Devaney if and only if so is its suspended semi-flow, and that a continuous
self-map of a compact metric space is mixing (in the sense of statistics) if and only if so is its suspended
semi-flow.

Lemma 3.24. A continuous self-map of a compact metric space has the AASP if and only if so does its suspended
semi-flow.

Proof. By the definitions and the method in [21], the proof is easily obtained and is omitted.

Lemma 3.25. A continuous self-map of a compact metric space is multi-sensitive or syndetically sensitive or
cofinetly sensitive if and only if so does its suspended semi-flow.

Proof. By the definitions and the proof of Theorem 2.2 from [21], we easily obtain the proof of this lemma.

Example 3.26. Let f : [0, 1] → [0, 1] be the tent map defined by f(x) = 1 − |1 − 2x| for any x ∈ [0, 1]. Then
the map and its suspended semi-flow has the AASP. Consequently, its suspended semi-flow have all
the properties which are discussed in this paper. So, by Lemmas 3.24 and 3.25 we can see the chaotic
complexities of this suspended semi-flow by the chaotic complexities and one numerical experiment of
the tent map.
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In fact, for every continuous self-map on the unit interval, it is well-known from [9] that if it is
topologically mixing, then it has the specification property. Since it is well-known that the tent map is
topologically mixing, it has the specification property. By Theorem 3.8 in [28], the tent map has the AASP.
By Lemma 3.24, its suspended semi-flow has the AASP. Also, we know that the tent map is sensitive. By
Theorem 2 in [39], the tent map is cofinitely sensitive. Consequently, it is multi-sensitive and syndetically
sensitive. The chaotic figure of the iterative system xn+1 = f(xn) for any n ∈ {0, 1, · · · } is in Fig. 2 from [31]
for the tent map f, where the initial value is taken at random, say, x0 = 0.7851, the iterative times n = 1000.
So, Fig. 2 from [31] shows that the chaotic figure of the tent map f. For the figure of the tent map, we can
see Fig. 1 from [31]. Let Q(X) = 1

2 − 4x2 for any x ∈ [− 1
2 , 1

2 ]. By [50], the logistic map F(x) = 4x(1 − x)
is topologically conjugate to Q(X). We know that the logistic map F(x) = 4x(1 − x) is topologically
conjugate to the tent map f. Choose Q(x0) = 0.41857322657198 and Q(x ′) = 0.41857322657197 which
have only 10−14 different to test the sensitivity. The result is shown in Table 1 from [50]. This also
shows that Q(X) has very strong chaotic property which implies the tent map f has very strong chaotic
property. Moreover, we can easily show that 1

2 is a sensitive constant of the tent map with respect to
cofinite sensitivity. Therefore, by the definition, for any δ ∈ (0, 1

2), δ is a sensitive constant of the tent map
with respect to cofinite sensitivity. Now, we take x0 = 0.00001 and x1 = 0.000011. Then f8(x0) = 0.00256,
f8(x1) = 0.002816, f15(x0) = 0.32768, f15(x1) = 0.360448, f16(x0) = 0.65536, f16(x1) = 0.720896, f17(x0) =
0.68928, f17(x0) = 0.558208, f18(x0) = 0.62144, f18(x1) = 0.883584, f19(x0) = 0.75712, and f19(x1) = 0.232832.
Consequently, |f19(x0) − f

19(x1)| >
1
2 . Let x2 = 0.5 and x3 = 0.5000001. Then f(x2) = 0, f(x3) = 0.9999998,

f2(x2) = 0, f2(x3) = 0.0000004, f3(x2) = 0, f3(x3) = 0.0000008, f16(x2) = 0, f16(x3) = 0.0065536, f22(x2) = 0,
f22(x3) = 0.4194304, and f23(x2) = 0, f23(x3) = 0.8388608. So, |f23(x2) − f

23(x3)| >
1
2 . By the definitions and

the proof of Theorem 2.2 from [21], we can see that δ > 0 is a sensitive constant of f with respect to the
corresponding sensitive forms if and only if δ > 0 is a sensitive constant of the suspended semi-flow ϕ(f)
induced by f with respect to the same sensitive forms. Thus, the above proof and numerical experiments
can show the tent map f and the suspended semi-flow ϕ(f) induced by f have all the properties which
are discussed in this article.

4. Conclusion

From [3, 14–17, 20, 34, 36] we can see that research on chaotic properties in continuous semi-flows
is very difficult. Especially, we know very little about various shadowing properties of semi-flows. In
this paper we define and consider the AASP for semi-flows which is the semi-flow version of the AASP
for continuous self-maps over a compact metric space, and show that for a continuous semi-flow θ :
E× R+ → E with the AASP, if the almost periodic points of θ are dense in E then θ is multi-sensitive.
This is a very strong result. Also, it is proven that if θ is an LS semi-flow with the AASP, then the space
E is trivial. This means that any LS semi-flow with the AASP is minimal. Moreover, it is proven that for
a syndetically transitive continuous semi-flow θ on a compact metric space E, sensitivity is equivalent to
syndetical sensitivity. As an application, we show that for a continuous semi-flow θ on a compact metric
space E with the AASP, if the almost periodic points of θ are dense in E then θ is syndetically sensitive.
Thus, from our results obtained in this paper we can easily see that the semi-flow versions of Theorem
3.1 in [40] and Proposition 1, Theorem 1 and Corollary 1 in [39] are true. Also, Theorem 3.5 is stronger
than the semi-flow version of Theorem 3.1 in [40], Lemma 3.4 is stronger than the semi-flow versions of
Proposition 3.3 from [40] in the case that f = g, and Lemma 3.2 is the semi-flow versions of Lemma 3.2
from [40] in the case that f = g. Furthermore, motivated by [18] and [20] we show that for any semi-flow
θ ∈ C0(R+ × E,E) on a compact metric space (E,d), it has the AASP if and only if so does its inverse
limit (Ẽ, θ̃), and if only if so does its lifting continuous semi-flow (Ê, θ̂). These two results extend the
corresponding results in [18] and [20] to the AASP. Consequently, our main results extend some existing
ones. We also present an example which contains two numerical experiments. Note that the shadowing
property is closely related to chaos. In the near future we will continue to analyze and study other chaotic
properties in continuous semi-flows.
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