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Abstract
In this paper, we introduce the concepts of multivalued cyclic α-F contraction and triangular α-orbital admissible mappings.

We use these concepts to find global best approximation solutions in a metric space with proximally complete property. We also
provide some nontrivial examples to support our results. As an application, we obtain best proximity point results in partially
ordered metric spaces and best proximity point theorems for single-valued mappings. We also prove fixed point results for
multivalued and single-valued α-type F-contractions. c©2017 All rights reserved.
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1. Introduction and preliminaries

Let (X,d) be a metric space. 2X denotes the family of all nonempty subsets of X, C(X) denotes
the family of all nonempty, closed subsets of X, CB(X) denotes the family of all nonempty, closed, and
bounded subsets of X, and K(X) denotes the family of all nonempty compact subsets of X. It is clear that,
K(X) ⊆ CB(X) ⊆ C(X) ⊆ P(X). For A,B ∈ C(X), let

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,

where D(x,B) = inf {d(x,y) : y ∈ B}. Then H is called generalized Pompeiu Hausdorff distance on C(X).
It is well-known that H is a metric on CB(X), which is called Pompeiu Hausdorff metric induced by d.
For detail see ([4, 12, 29]). Define d∗(x,y) = d(x,y) − dist(A,B), D∗(x,B) = D(x,B) − dist(A,B), and
H∗(A,B) = H(A,B) − dist(A,B), where

dist(A,B) = inf{d(x,y) : x ∈ A,y ∈ B}.

Observe that if C ⊆ B, then D(x,B) 6 D(x,C) for all x ∈ X. This implies

dist(A,B) 6 D(a,C), ∀a ∈ A. (1.1)
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In fixed point theorems, we find a solution of the equation Tx = x, where T is a self-mapping on a subset
A of a metric space X. However, a mapping T : A → B, where A and B are disjoint subset of X and T

is a mapping sending A into B and B into A; the aforementioned equation does not necessarily has a
solution. Then one can determine an element x ∈ A in the sense that the distance d(x,Tx) is minimum. A
best approximation theorem introduced by Fan [18] asserts that if K is a nonempty compact and convex
subset of a normed space X and T : K → X is a continuous mapping, then there exists an element x
satisfying the condition d(x,Tx) = inf ||y − Tx||,y ∈ K. A best approximation theorem guarantees the
existence of an approximate solution, while a best proximity point theorem provides the possibility of
finding an approximate solution which is optimal in the sense that there exists an element x such that
d(x,Tx) = dist(A,B); the element x is called a best proximity point of T. If T : A→ CB(B) is a multivalued
mapping, then x ∈ A satisfying D(x,Tx) = dist(A,B) is called a best proximity point of T. The existence
of best proximity points is an interesting aspect of optimization theory and it has attracted the attention of
many authors (see [1, 2, 6, 8, 16, 24, 42] and references therein). Moreover, best proximity point theorems
for several classes of multivalued mappings have been proved in [3, 11, 15, 19, 46].

In 2012, Samet et al. [41] defined α-admissible mappings and established fixed point theorems. After
this, Popescu [37] proposed the concept of α-orbital admissible and triangular α-orbital admissible.

Definition 1.1 ([37]). Let T : X→ X be a mapping and α : X×X→ [0,∞) be a function, then T is said to
be α-orbital admissible if

α(z,Tz) > 1 implies that α(Tz,T2z) > 1, z ∈ X.

Moreover, T is called a triangular α-orbital admissible if T is α-orbital admissible and

α(z,y) > 1 and α(y,Ty) > 1 implies that α(z,Ty) > 1, z,y ∈ X.

Note that each α-admissible (triangular α-admissible) mapping is an α-orbital admissible (triangular
α-orbital admissible). For examples and details in this direction see [22, 30, 37, 40].

On the other hand Asl et al. [9] extended concept of α-admissible mapping to multivalued mappings.

Definition 1.2 ([26]). Let T : X→ 2X be a multivalued map on a metric space (X,d), and α : X×X→ [0,∞)
be a function, then T is an α∗-admissible mapping if

α(y, z) > 1 implies that α∗(Ty,Tz) > 1, y, z ∈ X,

where

α∗(A,B) = inf
y∈A,z∈B

α(y, z).

Further, Ali et al [5] generalized the Definition 1.2 in the following way:

Definition 1.3 ([5]). Let T : X→ 2X be a multivalued map on a metric space (X,d) and α : X×X→ [0,∞)
be a function. We say that T is generalized α∗-admissible mapping if

α(y, z) > 1 implies that α(u, v) > 1 for all u ∈ Ty, v ∈ Tz.

One of the interesting generalization of the Banach contraction principle is given by Wardowski [44],
he defined F-contraction and proved fixed point results for these contractions. Many authors did work
in this direction (see [7, 23, 25, 28, 35, 45] and references therein). Following Wardowski, we denote by F,
the set of all functions F : R+ → R satisfying following conditions:

(F1) F is strictly increasing;

(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;
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(F3) there exists 0 < k < 1 such that limα→0+ α
kF(α) = 0.

Definition 1.4 ([44]). A mapping T : X → X is said to be an F-contraction if there exist F ∈ F and τ > 0
such that for all x,y ∈ X

d(Tx, Ty) > 0 implies that F(d(Tx, Ty)) 6 F(d(x,y)).

Theorem 1.5 ([44]). Let (X,d) be a complete metric space and let T : X → X be an F-contraction. Then T has a
unique fixed point in X.

Note that, in general, F is not continuous. However, by (F1) and the properties of the monotone
functions, we have the following proposition.

Proposition 1.6 ([43]). Let F : R+ → R be a function satisfying (F1) and (F2), then there exists a countable subset
∆(F) ⊆ (0,∞) such that

F(t− 0) = F(t) = F(t+ 0) for each t ∈ (0,∞) \∆(F).

Turinici [43] also replaced condition (F2) by the following:

(F2∗) F(t)→ −∞ when t→ 0+,

and gave the following lemma:

Lemma 1.7 ([43]). Let F : R+ → R be a function satisfying (F1) and (F2∗). Then for each sequence {tn} in (0,∞)

F(tn)→ −∞⇒ tn → 0.

Denote by F, the collection of functions F : R+ → R satisfying (F1) and (F2∗).
Very recently, Imdad et al. [27] observed that in proofs of the results on α-type F-contractions (for

example, [20, 36]), the authors assumed that F(s) 6 α(x,y)F(s), for α(x,y) > 1, which is not true in
general as F may have negative values.

Continuing in this direction, we introduce multivalued cyclic α-F-contraction and use it to obtain best
proximity points with proximally complete property. It is considered as a global optimization problem,
which seeks a solution by finding the best approximation solution of a fixed point inclusion. We also
overcome the error mentioned by Imdad et al. [27] and prove fixed point results for α-type F-contractions.

The following definitions and lemmas will be used in the sequel.

Definition 1.8 ([17]). A pair (A,B) of non-empty subsets of metric space (X,d) is said to be sharp proximal
if for each x ∈ A and y ∈ B, there exists a unique x ′ ∈ B and y ′ ∈ A such that

d(x, x ′) = d(y,y ′) = dist(A,B).

Definition 1.9 ([17]). A pair (A,B) of non-empty subsets of metric space (X,d) is said to be semi-sharp
proximal if for each x ∈ A and y ∈ B, there exists at most one point x ′ ∈ B and y ′ ∈ A such that

d(x, x ′) = d(y,y ′) = dist(A,B).

Definition 1.10 ([17]). Let A and B be two non-empty subsets of metric space (X,d).

(i) A sequence {xn} in A ∪ B, with x2n ∈ A and x2n+1 ∈ B for n > 0, is said to be cyclical Cauchy
sequence if for every ε > 0 there exists an N ∈ N such that d(xn, xm) < dist(A,B) + ε, whenever n
is even, m is odd and n,m > N.

(ii) A pair (A,B) is proximally complete if every cyclically Cauchy sequence {xn} in A∪B, the sequences
{x2n} and {x2n+1} have convergent subsequences in A and B, respectively.
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Lemma 1.11 ([17]). Every cyclical Cauchy sequence is bounded.

Remark 1.12 ([42]).

(1) If dist(A,B)=0, then cyclical Cauchy sequence in A∪B is Cauchy sequence.

(2) The cyclical Cauchy sequences may have more than one limit point.

(3) IfA and B are closed subsets of a metric space with dist(A,B) = 0, then (A,B) is proximally complete
pair.

(4) Every bounded compact pair of subsets of a metric space is proximally complete.

(5) Any non-empty, closed, and convex pair in uniformly Banach space is proximally complete.

Definition 1.13 ([39]). Let (X,d) be a metric space, T : X → X be a mapping, and ε > 0 be a given real
number. A point x0 ∈ X is said to be an ε-fixed point (approximate fixed point) of T , if

d(x0, Tx0) < ε.

The set of all ε-fixed points of T is denoted by Fε(T).

Definition 1.14 ([31]). Let (X,d) be a metric space and T : X → X be a mapping. We say that T has the
approximate fixed point property if for all ε > 0, there exists an ε-fixed point of T , that is, for all ε > 0

Fε(T) 6= ∅.

Definition 1.15 ([14]). A self-mapping T on metric space (X,d) is said to be asymptotically regular at a
point x ∈ X if

lim
n→∞d(Tnx, Tn+1x) = 0,

where Tnx denotes the n-th iterate of T at x.

Lemma 1.16 ([32]). Let (X,d) be a metric space and T : X→ X be an asymptotically regular at a point x ∈ X, then
T has the approximate fixed point property.

2. Main results

We start this section by defining the following:

Definition 2.1. Let T : X→ 2X be a multivalued map on a metric space (X,d) and α : X×X→ [0,+∞) be
a function. Then T is called a multivalued α-orbital admissible mapping if for x ∈ X and u ∈ Tx following
holds:

α(x,u) > 1 implies that α(u, v) > 1 for all v ∈ Tu.

Definition 2.2. Let T : X → 2X be a multivalued map on a metric space and α : X×X → [0,+∞) be a
function. Then T is called a multivalued triangular α-orbital admissible mapping if for x,y ∈ X following
hold:

(O1) T is multivalued α-orbital admissible;

(O2) α(x,y) > 1 and α(y,u) > 1 implies that α(x,u) > 1 for all u ∈ Ty.
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Remark 2.3. Every generalized α∗-admissible mapping is multivalued α-orbital admissible mapping but
every multivalued α-orbital admissible mapping need not to be generalized α∗-admissible mapping as
shown in example below.

Example 2.4. Let X = {0, 1, 2, 3} with d(z,y) = |z− y|, then (X,d) is a metric space. Let T : X → 2X and
α : X×X→ [0,∞) be such that

Tx =


{1, 3}, if x = 0,
{1, 2}, if x ∈ {1, 2},
{3}, if x = 3,

and

α(x,y) =
{

2, if (x,y) ∈ {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)},
0, otherwise.

Then T is multivalued α-orbital admissible. Indeed,

Case 1: x = 0. Tx = {1, 3}, in this case only α(0, 1) = 2 > 1 implies that α(1, v) > 1 for all v ∈ T1, since
α(1, 1) = α(1, 2) = 2 > 1.

Case 2: x ∈ {1, 2}. Tx = {1, 2}, in this case α(1, 1) = α(1, 2) = 2 > 1 implies that α(1, v) > 1 for all v ∈ T1
and α(2, v) > 1 for all v ∈ T2, since α(2, 1) = α(2, 2) = 2 > 1.

Case 3: x = 3. Tx = {3}, in this case α(3, 3) = 2 > 1 implies that α(3, v) > 1 for all v ∈ T3 = {3}.

On the other side α(0, 1) = 2 > 1 but α(3, 1) = α(3, 2) = 0. This shows that α(u, v) � 1 for all u ∈ T0
and v ∈ T1. So, Definition 1.3 does not hold for this mapping. Also, since α(x,y) > 1, when (x,y) ∈
{(0, 1), (0, 2), (0, 3)(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)}, this implies that T is a multivalued triangular
α-orbital admissible mapping.

Lemma 2.5. Let (X,d) be a complete metric space and T : X→ 2X be a multivalued triangular α-orbital admissible
mapping. Assume that there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1. Define a sequence {xn} in X by
xn+1 ∈ Txn. Then α(xm, xn) > 1 for all m,n ∈N with m < n.

Proof. Since there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, so from (O1) for x2 ∈ Tx1, we get
α(x1, x2) > 1. Inductively, we get

α(xn, xn+1) > 1.

Suppose that m < n. Since
α(xm, xm+1) > 1,

α(xm+1, xm+2) > 1,

}
then from (O2), we get α(xm, xm+2) > 1. Again, since

α(xm, xm+2) > 1,
α(xm+1, xm+2) > 1,

}
then from (O2), we get α(xm, xm+3) > 1. Recursively, we obtain α(xm, xn) > 1.

Firstly, we prove the following fixed point results.

Theorem 2.6. Let (X,d) be a complete metric space, α : X×X → [0,+∞), and T : X → K(X). Assume that the
following assertions hold:

(i) T is multivalued α-orbital admissible mapping;

(ii) there exist x0 ∈ X and y0 ∈ Tx0 such that α(x0,y0) > 1;

(iii) there exist F ∈ F and τ > 0 such that for all x,y ∈ X and α(x,y) > 1

H(Tx,Ty) > 0 implies τ+ F(α(x,y)H(Tx,Ty)) 6 F(d(x,y)). (2.1)
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Then T has the approximate fixed point property. Moreover, if T is multivalued triangular α-orbital admissible
mapping and satisfy

(iv) T is continuous; (or) if {xn} is a sequence in X with α(xn, xn+1) > 1 such that xn → x as n → ∞, then
there exists a subsequence {xnk} of {xn} such that α(xnk , x) > 1 for all k,

then T has a fixed point in X.

Proof. From hypothesis (ii), there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1. Since T is multi-
valued α-orbital admissible mapping, so, for a sequence {xn}n∈N in X defined by xn+1 ∈ Txn, we get
α(xn, xn+1) > 1. From closeness of Tx1, we get, 0 < D(x1,Tx1) 6 H(Tx0,Tx1). From (2.1), we have

τ+ F(α(x0, x1)H(Tx0,Tx1)) 6 F(d(x0, x1)). (2.2)

By using (F1) and (2.2), we obtain

F(D(x1,Tx1)) 6 F(H(Tx0,Tx1)) 6 F(α(x0, x1)H(Tx0,Tx1)) 6 F(d(x0, x1)) − τ. (2.3)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x2, x1) = D(x1,Tx1), so (2.3) implies

F(d(x2, x1)) 6 F(d(x1, x0)) − τ.

Recursively, we obtain a sequence {xn} in X such that xn+1 ∈ Txn and

F(d(xn+1, xn)) 6 F(d(xn, xn−1)) − τ (2.4)

for all n ∈N. Put an = d(xn+1, xn) for n ∈N, by using (2.4), we have

F(an) 6 F(a0) −nτ.

Letting limit as n → ∞ and using (F2∗), we obtain an = d(xn+1, xn) → 0. Thus, T is asymptotically
regular at x0, so by using Lemma 1.16, we conclude that T has the approximate fixed point property.

Now we prove that {xn} is a Cauchy sequence. On contrary, suppose that {xn} is not Cauchy. Then by
Proposition 1.6, there exists γ ∈ (0,∞) \∆(F) such that F is continuous at γ and for every q > 0, we have
n,m ∈N with n > m > q and d(xm, xn) > γ. Also there exists q0 ∈N such that

aq0 = d(xn−1, xn) < γ for all n > q0. (2.5)

Consider two partial subsequences xnk and xmk
of xn such that

q0 6 nk < mk < mk+1 and d(xmk
, xnk) > γ for all k. (2.6)

Observe that

d(xmk−1 , xnk) 6 γ for all k, (2.7)

where mk is chosen as a least number m ∈ {nk,nk+1,nk+2, . . .} such that (2.6) is satisfied. Also note that
because of (2.5) and (2.6), the case nk + 1 6 mk is impossible. Thus, nk + 2 6 mk for all k. It implies that

nk + 1 < mk < mk + 1 for all k.

By (2.6), (2.7) and triangular inequality, we have for all k

γ < d(xmk
, xnk) 6 d(xmk

, xmk−1) + d(xmk−1, xnk) 6 amk
+ γ. (2.8)

By letting k→∞, we get
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d(xmk
, xnk)→ γ. (2.9)

Again by using triangular inequality together with (2.8), we have

d(xmk
, xnk) − amk+1 − ank+1 6 d(xmk+1, xnk+1) 6 amk+1 + d(xmk

, xnk) + ank+1,

by letting k→∞, we get

d(xmk+1, xnk+1)→ γ. (2.10)

Moreover, since T is multivalued triangular α-orbital admissible, so by using Lemma 2.5, we have

α(xmk
, xnk) > 1.

From (2.1) with (F1), we get

0 6 F(D(xmk+1,Txnk)) 6 F(H(Txmk
,Txnk)) 6 F(α(xmk

, xnk)H(Txmk
,Txnk)) 6 F(d(xmk

, xnk)) − τ.

Compactness of Txnk gives,

d(xmk+1, xnk+1) 6 F(d(xmk
, xnk)) − τ.

By letting limit k → ∞ and using (2.9), (2.10), and the fact that F is continuous at γ, we obtain τ 6 0,
which is a contradiction. Thus, {xn} is a Cauchy sequence. Since X is a complete space, there exists u ∈ X
such that limn→∞ xn = u. Now we discuss two cases.

Case I. If T is continuous.
Since xn+1 ∈ Txn, so we have

lim
n→∞D(xn+1,Tu) 6 lim

n→∞H(Txn,Tu) = 0.

This shows that u ∈ Tu, that is, u is a fixed point of T in X.

Case II. For a sequence {xn} in X with α(xn, xn+1) > 1 such that xn → u as n → ∞, then there exists a
subsequence {xnk} of {xn} such that α(xnk ,u) > 1 for all k.

From (2.1), we get

F(D(xnk+1,Tu)) 6 F(H(Txnk ,Tu)) 6 F(α(xnk ,u)H(Txnk ,Tu)) 6 F(d(xnk ,u)),

which implies due to (F1) that

D(xnk+1,Tu) 6 d(xnk ,u). (2.11)

Letting limit k→∞ in (2.11), we obtain D(u,Tu) = 0. This completes the proof.

Following Altun et al. [7], we state fixed point result for the multivalued mapping T : X → CB(X) by
adding the following condition on F.

(F4) F(infA) = inf F(A) for all A ⊆ (0,∞) with infA > 0.

Theorem 2.7. Let (X,d) be a complete metric space and T : X → CB(X) satisfies all conditions of Theorem 2.6.
Assume that, F also satisfies (F4). Then T has a fixed point in X.

Proof. From hypothesis (ii), there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1. Since T is multi-
valued α-orbital admissible mapping, so, for a sequence {xn}n∈N in X defined by xn+1 ∈ Txn, we get
α(xn, xn+1) > 1. If x1 ∈ Tx1, then x1 is a fixed point of T and it completes the proof. Suppose x1 /∈ Tx1,
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then D(x1,Tx1) > 0. From closeness of Tx1, we get, 0 < D(x1,Tx1) 6 H(Tx0,Tx1). From (2.1), we have

τ+ F(α(x0, x1)H(Tx0,Tx1)) 6 F(d(x0, x1)). (2.12)

By using (F1) and (2.12), we obtain

F(D(x1,Tx1)) 6 F(H(Tx0,Tx1)) 6 F(α(x0, x1)H(Tx0,Tx1)) 6 F(d(x0, x1)) − τ. (2.13)

Due to (F4), we obtain

F(D(x1,Tx1)) = inf
y∈Tx

F(d(x1,y))

and from (2.13), we have

inf
y∈Tx

F(d(x1,y)) 6 F(d(x0, x1)) − τ 6 F(d(x0, x1)) −
τ

2
. (2.14)

Then, by (2.14), there exists x2 ∈ Tx such that

F(d(x1, x2)) 6 F(d(x0, x1)) −
τ

2
.

If x2 ∈ Tx2, then we have done. Otherwise, we can find x3 ∈ Tx2 such that

F(d(x2, x3)) 6 F(d(x1, x2)) −
τ

2
.

Inductively, we get a sequence {xn} in X such that xn+1 ∈ Txn for all n ∈N and

F(d(xn, xn+1)) 6 F(d(xn1 , xn)) −
τ

2
.

The rest of the proof can be completed as in Theorem 2.6.

Remark 2.8. Theorem 2.6 is proper generalization of Theorem 2.2 of [7] and Theorem 2.7 is proper gener-
alization of Theorem 2.5 of [7].

Definition 2.9. Let A and B be nonempty subsets of a metric space (X,d). A mapping T : A ∪ B →
CB(A ∪ B) is said to be multivalued cyclic α-F-contraction if T(A) ⊆ B, T(B) ⊆ A and there exist F ∈ F,
α : X×X→ [0,+∞), and τ > 0 such that for all x,y ∈ A∪B with α(x,y) > 1

τ+ F(α(x,y)H∗(Tx,Ty)) 6 F(d∗(x,y)), (2.15)

provided that H(Tx,Ty) > dist(A,B) and d(x,y) > dist(A,B).

Lemma 2.10. Let A and B be nonempty subsets of a complete metric space (X,d) and T : A ∪ B → K(A ∪ B) be
multivalued cyclic α-F-contraction. If T is multivalued α-orbital admissible mapping and there exist x0 ∈ A and
y0 ∈ Tx0 such that α(x0,y0) > 1, then, for any x0 ∈ A∪ B, d(xn, xn+1)→ dist(A,B) as n→∞, where {xn} is
a sequence in A∪B defined by xn+1 ∈ Txn for each n > 0.

Proof. If dist(A,B) = 0, then from (2.15), we have

τ+ F(α(x,y)H(Tx,Ty)) 6 F(d(x,y)).

By Theorem 2.6, T has the approximate fixed point property and d(xn, xn+1)→ 0 = dist(A,B) as n→∞.
Suppose that dist(A,B) > 0, then by hypothesis there exist x0 ∈ A and x1 ∈ Tx0 such that α(x0, x1) > 1. If
H(Tx0,Tx1) 6 dist(A,B), then D(x1,Tx1) 6 dist(A,B), that is contradiction to (1.1) because Tx1 ⊆ A. By
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similar reason, considering d(x0, x1) 6 dist(A,B) leads to contradiction. So, H(Tx0,Tx1) > dist(A,B) and
d(x0, x1) > dist(A,B). From (2.15), we have

τ+ F(α(x0, x1)H
∗(Tx0,Tx1)) 6 F(d

∗(x0, x1)). (2.16)

Since D(x1,Tx1) 6 H(Tx0,Tx1), so, D∗(x1,Tx1) 6 H∗(Tx0,Tx1). By using (F1) and (2.16), we obtain

F(D∗(x1,Tx1)) 6 F(H
∗(Tx0,Tx1)) 6 F(α(x0, x1)H

∗(Tx0,Tx1)) 6 F(d
∗(x0, x1)) − τ. (2.17)

Since Tx1 is compact, there exists x2 ∈ Tx1 such that d(x2, x1) = D(x1,Tx1), so (2.17) implies

F(d∗(x2, x1)) 6 F(d
∗(x1, x0)) − τ.

Since T is multivalued α-orbital admissible mapping, so recursively, we obtain a sequence {xn} in A ∪ B
such that xn+1 ∈ Txn, α(xn, xn+1) > 1 and

F(d∗(xn+1, xn)) 6 F(d∗(xn, xn−1)) − τ (2.18)

for all n = 1, 2, 3, . . .. Put bn = d∗(xn+1, xn) for n = 0, 1, 2, 3, . . ., by using (2.18), we have

F(bn) 6 F(b0) −nτ.

Letting limit as n→∞ and using (F2), we obtain bn = d∗(xn+1, xn)→ 0. Hence d(xn+1, xn)→ dist(A,B)
as n→∞.

Lemma 2.11. Let A and B be nonempty subsets of a complete metric space (X,d) and T : A ∪ B → K(X) be
multivalued cyclic α-F-contraction. If T is multivalued α-orbital admissible mapping and there exist x0 ∈ A and
y0 ∈ Tx0 such that α(x0,y0) > 1, then the sequence {xn} in A ∪ B defined by xn+1 ∈ Txn for each n > 0 is
bounded.

Proof. From hypothesis there exist x0 ∈ A and x1 ∈ Tx0 such that α(x0, x1) > 1. As proof of Lemma 2.10,
we get a sequence {xn} in A∪B such that xn+1 ∈ Tx0 with α(xn, xn+1) > 1 and

F(bn) 6 F(b0) −nτ,

where bn = d∗(xn, xn+1) for n = 0, 1, 2, 3, . . .. First, we show that the sequence {x2n} is bounded. Suppose
on contrary, then there exists p ∈N satisfying N < d∗(x2n, x2(n+p)+1) and d∗(x2n, x2(n+p)−1) 6 N, where
N = 2p dist(A,B). Thus, for any n ∈N, we have

N < d∗(x2n, x2(n+p)+1) = d(x2n, x2(n+p)+1) − dist(A,B)

6 b2n + b2n+1 + · · ·+ b2(n+p) + (2p− 1)dist(A,B).

Letting n→∞ and by using Lemma 2.10, we get

N < (2p− 1)dist(A,B) = N− dist(A,B),

which gives a contradiction. Similarly, we can prove that the sequence {x2n+1} is also bounded. Thus, {xn}
is bounded.

Remark 2.12. Consider T : A ∪ B → CB(A ∪ B) is a multivalued cyclic α-F-contraction, then Lemmas 2.10
and 2.11 remain true if F also satisfies (F4).

Theorem 2.13. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A ∪ B → K(A ∪ B) be multivalued cyclic α-F-contraction. Assume that T is multivalued triangular α-orbital
admissible mapping, let there exist x0 ∈ A and y0 ∈ Tx0 such that α(x0,y0) > 1 and satisfy
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(H) if {xn} is a sequence in A ∪ B with α(xn, xn+1) > 1 such that xn → x as n → ∞, then there exists a
subsequence {xnk} of {xn} such that α(xnk , x) > 1 for all k.

Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) =
dist(A,B).

Proof. Let x0 ∈ A and x1 ∈ Tx0 such that α(x0, x1) > 1, then as proof of Lemma 2.10, we get a sequence
{xn} in A∪B such that xn+1 ∈ Tx0 with α(xn, xn+1) > 1 and

F(bn) 6 F(b0) −nτ,

where bn = d∗(xn, xn+1) for n = 0, 1, 2, 3, . . .. From Lemma 2.11, we have {xn} is bounded.
Now we prove that {xn} is cyclical Cauchy sequence in A ∪ B. Since T is multivalued triangular α-

orbital admissible mapping, so by Lemma 2.5, we have α(xn, xm) > 1 for any m,n ∈ N with m > n.
Then by (2.15), we obtain

F(d∗(x2n, x2m+1)) 6 F(d
∗(x0, x2(m−n)+1)) − (2n)τ.

Letting n → ∞, we get F(d∗(x2n, x2m+1)) → −∞, so by (F2∗), we get d∗(x2n, x2m+1) → 0 as n → ∞.
Therefore, d(x2n, x2m+1)→ dist(A,B) as n→∞, which implies that the {xn} is cyclical Cauchy sequence
in A ∪ B. Since the pair (A,B) is proximally complete, we have, the sequences {x2n} and {x2n+1} have
convergent subsequence. Let {x2nk} be a subsequence of {x2n} such that x2nk → x as n → ∞ for some
x ∈ A. Note that for all k > 1

dist(A,B) 6 d(x, x2nk−1) 6 d(x, x2nk) + d(x2nk , x2nk−1). (2.19)

Letting k→∞ in (2.19) and using Lemma 2.10, we get

lim
k→∞d(x, x2nk−1) = dist(A,B). (2.20)

From (2.15), for all x,y ∈ A∪B with H∗(Tx,Ty) > 0 and α(x,y) > 1, we get

H∗(Tx,Ty) 6 d∗(x,y). (2.21)

From hypothesis (H), there exists a subsequence {x2nkq} of {x2nk} such that α(x2nkq , x2nk) > 1, then from
(2.21), we obtain

D∗(x2nkq ,Tx) 6 H∗(Tx2nkq−1,Tx) 6 d∗(x2nkq−1, x). (2.22)

Letting k → ∞ in (2.22) and using (2.20), we get D∗(x,Tx) = 0. Consequently, D(x,Tx) = dist(A,B).
Similarly, if {x2nk+1} is a subsequence of {x2n+1} that converges to y ∈ B, we can prove that D(y,Ty) =
dist(A,B). Moreover,

d(x,y) = lim
k→∞d(x2nk , x2nk+1) = dist(A,B).

As similar arguments in Theorem 2.13, we state the following.

Theorem 2.14. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A ∪ B → CB(A ∪ B) be multivalued cyclic α-F-contraction satisfying all conditions of Theorem 2.13 with F
satisfying condition (F4). Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) =
dist(A,B) with d(x,y) = dist(A,B).
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Example 2.15. Let X =
{ 1

2n−1 : n ∈N
}
∪ {0} with usual metric d. Let

A =

{
1

22n−1 : n ∈N

}
∪ {0, 1} and B =

{
1

22n : n ∈N

}
∪ {0, 1}.

Then dist(A,B) = 0 and clearly (A,B) is proximally complete pair. Define T : A ∪ B → K(A ∪ B), α :
X×X→ [0,+∞) and F : R+ → R by

Tx =

{ { 1
2n , 1
}

, if x ∈
{ 1

2n−1 : n ∈N
}

,
{0}, if x = 0,

α(x,y) =
{

1, if x,y ∈
{ 1

2n−1 : n ∈N
}

,
0, otherwise,

and F(r) = ln r. Then F ∈ F, T(A) ⊆ B and T(B) ⊆ A. Since α(x,y) > 1 when x,y ∈
{ 1

2n−1 : n ∈N
}

, so,
T is multivalued triangular α-orbital admissible. Note that α(x,y) > 1 with d(Tx, Ty) > dist(A,B) = 0,
when x = 1

2n and y = 1
2m such that m > n > 1. Let x = 1

2n and y = 1
2m such that m > n > 1, then

d∗(x,y) =
∣∣∣2m−n−1

2m

∣∣∣ and H∗(Tx,Ty) =
∣∣∣2m−n−1

2m+1

∣∣∣. This implies that

F(α(x,y)H∗(Tx,Ty)) − F(d∗(x,y)) = ln
∣∣∣∣2m−n − 1

2m+1

∣∣∣∣− ln
∣∣∣∣2m−n − 1

2m

∣∣∣∣ = ln
∣∣∣∣12
∣∣∣∣ < −

1
2

.

Therefore, T is multivalued cyclic α-F-contraction for τ = 1
2 . Hence all conditions of Theorem 2.13 are

satisfied. Moreover, we have 1 ∈ A and 1 ∈ B such that

D(1,T1) = 0 = dist(A,B) and d(1, 1) = 0 = dist(A,B).

By taking α(x,y) = 1 in Theorem 2.13 and Theorem 2.14, respectively, we get the following:

Corollary 2.16. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A∪B→ K(A∪B) be a mapping such that T(A) ⊆ B and T(B) ⊆ A. If there exists F ∈ F and τ > 0 such that
for all x,y ∈ A∪B we have

τ+ F(H∗(Tx,Ty)) 6 F(d∗(x,y))

provided that H(Tx, Ty) > dist(A,B) and d(x,y) > dist(A,B), then there exists (x,y) ∈ A × B such that
D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Corollary 2.17. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d)
and T : A ∪ B → CB(A ∪ B) be a cyclic mapping satisfying all conditions of Corollary 2.16 with F satisfying
condition (F4). Then there exists (x,y) ∈ A×B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with
d(x,y) = dist(A,B).

Considering F(r) = ln r, Corollary 2.16 and Corollary 2.17 imply the followings respectively.

Corollary 2.18. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A∪B→ K(A∪B) be a mapping satisfying

H(Tx,Ty) 6 kd(x,y) + (1 − k)dist(A,B),

where k ∈ (0, 1) with T(A) ⊆ B and T(B) ⊆ A. Then there exists (x,y) ∈ A×B such that D(x,Tx) = dist(A,B)
and D(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Corollary 2.19. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A ∪ B → CB(A ∪ B) be a mapping satisfying all conditions of Corollary 2.18 with F satisfying condition (F4).
Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) =
dist(A,B).
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Taking F(r) = − 1√
r

in Corollary 2.16 and Corollary 2.17, we get special cases of nonlinear contraction
[13, 38].

Corollary 2.20. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A∪B→ K(A∪B) be a mapping such that T(A) ⊆ B and T(B) ⊆ A and for all x,y ∈ A∪B satisfies

H∗(Tx,Ty) 6
1

(1 + τ
√
d∗(x,y))2

d∗(x,y)

provided that H(Tx, Ty) > dist(A,B) and d(x,y) > dist(A,B). Then there exists (x,y) ∈ A × B such that
D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Corollary 2.21. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A ∪ B → CB(A ∪ B) be a mapping satisfying all conditions of Corollary 2.20 with F satisfying condition (F4).
Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) =
dist(A,B).

3. Best proximity results in partially ordered metric space

Let (X,d,�) be a partially ordered metric space and T : X → 2X be a multivalued mapping. For
A,B ∈ 2X, A � B implies that a � b for all a ∈ A and b ∈ B. We say that T is monotone increasing if
Tx � Ty for all x,y ∈ X, for which x � y. The existence of best proximity points in the setting of partially
ordered metric space is discussed by many authors (see [2, 10, 33] and references therein). There are many
applications in differential and integral equations of monotone mappings in ordered metric spaces. In
this section, we derive the following new results in partially ordered metric spaces from our main results.

Theorem 3.1. Let (X,d,�) be a complete partially ordered metric space and T : X → K(X). Assume that the
following assertions hold:

(i) T is monotone increasing;
(ii) there exist x0 ∈ X and y0 ∈ Tx0 such that x0 � y0;

(iii) there exist F ∈ F and τ > 0 such that for all x,y ∈ X with x � y

H(Tx,Ty) > 0 implies τ+ F(H(Tx,Ty)) 6 F(d(x,y));

(iv) T is continuous; (or) if {xn} is a sequence in X with xn � xn+1 such that xn → x as n → ∞, then there
exists a subsequence {xnk} of {xn} such that xnk � x for all k.

Then T has a fixed point in X.

Proof. Define α : X×X→ [0,∞) by

α(x,y) =
{

1, x � y,
0, otherwise,

then for z,y ∈ X with z � y and α(z,y) > 1, we get T is multivalued triangular α-orbital admissible
mapping. Also, suppose that α(x,y) > 1 and H(Tx,Ty) > 0, then x 6 y and hypothesis (iii) implies

τ+ F(α(x,y)H(Tx,Ty)) = τ+ F(H(Tx,Ty)) 6 F(d(x,y)).

Thus, all the conditions of Theorem 2.6 hold true. Hence, T has a fixed point in X.

By similar arguments as in Theorem 3.1, from Theorem 2.7, Theorem 2.13 and Theorem 2.14, we state
the following.
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Theorem 3.2. Let (X,d,�) be a complete partially ordered metric space and T : X→ CB(X) satisfies all conditions
of Theorem 3.1. Assume that, F also satisfies (F4). Then T has a fixed point in X.

Theorem 3.3. Let (A,B) be proximally complete pair of non-empty closed subsets in a partially ordered metric
space (X,d,�) and T : A∪B→ K(A∪B) be mapping such that T(A) ⊆ B, T(B) ⊆ A and satisfying the following
assertions:

(i) T is monotone increasing;
(ii) there exist x0 ∈ X and y0 ∈ Tx0 such that x0 � y0;

(iii) if {xn} is a sequence in A∪ B with xn � xn+1 such that xn → x as n→∞, then there exists a subsequence
{xnk} of {xn} such that xnk � x for all k;

(iv) there exist F ∈ F and τ > 0 such that for all x,y ∈ A∪B with x � y

H(Tx,Ty) > dist(A,B) & dist(A,B) implies τ+ F(H∗(Tx,Ty)) 6 F(d∗(x,y)).

Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with d(x,y) =
dist(A,B).

Theorem 3.4. Let (A,B) be proximally complete pair of non-empty closed subsets in a partially ordered metric
space (X,d,�) and T : A ∪ B → CB(A ∪ B) be multivalued cyclic mapping satisfying all conditions of Theorem
3.3 with F satisfying condition (F4). Then there exists (x,y) ∈ A × B such that D(x,Tx) = dist(A,B) and
D(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Considering F(r) = ln r, Theorem 3.3 and Theorem 3.4 imply the followings respectively.

Corollary 3.5. Let (A,B) be proximally complete pair of non-empty closed subsets in a partially ordered metric
space (X,d,�) and T : A ∪ B → K(A ∪ B) be a mapping satisfying hypotheses (i)-(iii) of Theorem 3.3. Assume
that, for x � y,

H(Tx,Ty) 6 kd(x,y) + (1 − k)dist(A,B),

where k ∈ (0, 1). Then there exists (x,y) ∈ A× B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B)
with d(x,y) = dist(A,B).

Corollary 3.6. Let (A,B) be proximally complete pair of non-empty closed subsets in a partially ordered metric space
(X,d,�) and T : A ∪ B → CB(A ∪ B) be a mapping satisfying all conditions of Corollary 3.5 with F satisfying
condition (F4). Then there exists (x,y) ∈ A×B such that D(x,Tx) = dist(A,B) and D(y,Ty) = dist(A,B) with
d(x,y) = dist(A,B).

4. Application to single-valued mappings

In this section, as an application of our previous sections, we obtain best proximity point results and
fixed point results for single-valued mappings.

Theorem 4.1. Let (X,d) be a complete metric space, α : X×X→ [0,+∞), and T be a self-mapping on X. Assume
that the following assertions hold:

(i) T is α-orbital admissible mapping;
(ii) there exist x0 ∈ X and y0 = Tx0 such that α(x0,y0) > 1;

(iii) there exist F ∈ F and τ > 0 such that for all x,y ∈ X and α(x,y) > 1

d(Tx,Ty) > 0 implies τ+ F(α(x,y)d(Tx,Ty)) 6 F(d(x,y)).

Then T has the approximate fixed point property. Moreover, if T is triangular α-orbital admissible mapping and
satisfies
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(iv) T is continuous; (or) if {xn} is a sequence in X with α(xn, xn+1) > 1 such that xn → x as n → ∞, then
there exists a subsequence {xnk} of {xn} such that α(xnk , x) > 1 for all k,

then T has a fixed point in X.

Proof. Define a mapping f : X → K(X) by f(x) = {Tx} for all x ∈ X. Continuity of T implies continuity of
f. Suppose that for x ∈ X and u ∈ fx = {Tx}, α(x,u) > 1. This implies α(x,Tx) > 1. By hypothesis (i), we
get α(Tx, T 2x) > 1. Also, for x,y ∈ X with α(x,y) > 1 and α(y,u) > 1 for all u ∈ f(y) = {Ty} hypothesis
(i) implies α(x,Ty) = α(x,u) > 1.

Let H(fx, fy) > 0 for x,y ∈ X, then d(Tx,Ty) > 0. From hypothesis (iii), we get

τ+ F(α(x,y)H(fx, fy)) = τ+ F(α(x,y)d(Tx,Ty)) 6 F(d(x,y)).

Hence, f is multivalued α-orbital admissible mapping. Hence all conditions of Theorem 2.6 hold true and
f has a fixed point x∗ in X. Then x∗ ∈ f(x∗) = {Tx∗}. This implies x∗ = Tx∗, that is T has a fixed point in
X.

Remark 4.2. Corollary 3.11 of [20] is for α-type F-contraction, which is obtained by Theorem 3.8 and
Theorem 3.9 of [20], whose proofs are erroneous as mentioned by Imdad et al. [27]. While, in Theorem 4.1,
we prove fixed point result for α-type F-contraction without any ambiguity which generalizes Theorem
1.5.

Definition 4.3. Let A and B be nonempty subsets of a metric space (X,d). A mapping T : A∪ B→ A∪ B
is said to be cyclic α-F-contraction if T(A) ⊆ B, T(B) ⊆ A and there exists F ∈ F, α : X×X→ [0,+∞) and
τ > 0 such that for all x,y ∈ A∪B with α(x,y) > 1

τ+ F(α(x,y)d∗(Tx,Ty)) 6 F(d∗(x,y))

provided that d(Tx,Ty) > dist(A,B) and d(x,y) > dist(A,B).

By similar arguments as in Theorem 4.1, we state the following.

Theorem 4.4. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A ∪ B → A ∪ B be a cyclic α-F-contraction. Assume that T is triangular α-orbital admissible mapping, there
exist x0 ∈ A and y0 = Tx0 such that α(x0,y0) > 1 and satisfy condition (H). Then there exists (x,y) ∈ A× B
such that d(x,Tx) = dist(A,B) and d(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Corollary 4.5. Let (A,B) be proximally complete pair of non-empty closed subsets in a metric space (X,d) and
T : A∪B→ A∪B be a mapping satisfying

d(Tx,Ty) 6 kd(x,y) + (1 − k)dist(A,B),

where k ∈ (0, 1) with T(A) ⊆ B and T(B) ⊆ A. Then there exists (x,y) ∈ A×B such that d(x,Tx) = dist(A,B)
and d(y,Ty) = dist(A,B) with d(x,y) = dist(A,B).

Corollary 4.6 ([16, Theorem 3.4]). Let A and B be nonempty closed subsets of a complete metric space (X,d) and
T : A∪B→ A∪B be a mapping satisfying

d(Tx,Ty) 6 kd(x,y) + (1 − k)dist(A,B), (4.1)

where k ∈ (0, 1) with T(A) ⊆ B and T(B) ⊆ A. If either A or B is bounded compact, then there exists x ∈ A ∪ B
such that d(x,Tx) = dist(A,B).

Example 4.7. Let X = R2 with metric d(x, x ′) = |x1 − x2|+ |y1 − y2| for all x = (x1,y1), x ′ = (x2,y2) ∈ X.
Let

A = {(−1, 1), (1, 1), (0, 2)}

and
B = {(−4, v) : −4 6 v 6 0}∪ {(4, v) : −4 6 v 6 0}∪ {(u, v) : −4 < u < 4, v = −4}.

Then dist(A,B) = 4 and clearly (A,B) is proximally complete pair. Define T : A ∪ B → K(A ∪ B), α :



N. Hussain, I. Iqbal, J. Nonlinear Sci. Appl., 10 (2017), 5090–5107 5104

X×X→ [0,+∞) and F : R+ → R by

T(x,y) =


(−4, 0), if (x,y) = (−1, 1),
(4, 0), if (x,y) ∈ {(1, 1), (0, 2)},
(−1, 1), if (x,y) ∈ {(u, v) : −4 < u < 4, v = −4}∪ {(−4, 0)},
(1, 1), if (x,y) ∈ {(4, v) : −4 6 v 6 0},
(0, 2), if (x,y) ∈ {(−4, v) : −4 6 v 6 0} \ {(−4, 0)},

α(x,y) =
{

1, if (x,y) ∈ {(1, 1), (−4,−4), (4, 0), (0, 2)},
0, otherwise,

and F(r) = ln r. Then F ∈ F, T(A) ⊆ B and T(B) ⊆ A. Since α(x,y) > 1 when (x,y) ∈ {(1, 1), (−4,−4), (4, 0),
(0, 2)}, so, T is triangular α-orbital admissible. Let α(x,y) > 1 with d(x,y) > dist(A,B) and d(Tx, Ty) >
dist(A,B), then there arises two cases, when x = (1, 1), y = (−4,−4) and x = (−4,−4), y = (0, 2). In both
cases, d∗(x,y) = 6 and d∗(Tx, Ty) = 2, this implies

F(α(x,y)d(Tx, Ty)) − F(d(x,y)) = F(2) − F(6) = ln
(

1
3

)
< −

1
3

.

Hence T is cyclic α-F-contraction with τ = 1
3 . Thus, all conditions of Theorem 4.4 hold true. Moreover, we

have (−1, 1) ∈ A and (−4, 0) ∈ B such that

d((−1, 1), T(−1, 1)) = 4 = dist(A,B),
d((−4, 0), T(−4, 0)) = 4 = dist(A,B)

and
d((−1, 1), (−4, 0)) = 4 = dist(A,B).

Observe that, for x = (−1, 1), y = (4, 0), we have

d∗(Tx, Ty)
d∗(x,y)

= 1.

This shows that there exists no k ∈ (0, 1) such that (4.1) holds true. Therefore, Corollary 4.6 is not
applicable for this example.

Combining Theorem 2.4 of [25] with Example 2.1 of [25] gives the following corollary.

Corollary 4.8 ([25, Consequence of Theorem 2.4]). Let (X,d,�) be partially ordered metric space. Assume that
the following assertions hold true:

(i) T is non-decreasing and ordered GF-contraction;
(ii) there exists x0 ∈ X such that x0 � Tx0;

(iii) either for a given x ∈ X and a sequence {xn} with xn � xn+1 such that xn → x as n → ∞, we have
Txn → Tx; or if {xn} is a sequence in X with xn � xn+1 such that xn → x as n→∞, then either Txn � x,
or T2xn � x holds for all n ∈N.

Then T has a fixed point in X.

Theorem 4.9. Let (A,B) be proximally complete pair of non-empty closed subsets in a partially ordered metric
space (X,d,�) and T : A∪B→ A∪B be a mapping satisfying the following assertions:

(i) T(A) ⊆ B and T(B) ⊆ A;
(ii) T is monotone increasing;

(iii) there exist x0 ∈ X and y0 = Tx0 such that x0 � y0;
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(iv) if {xn} is a sequence in A∪ B with xn � xn+1 such that xn → x as n→∞, then there exists a subsequence
{xnk} of {xn} such that xnk � x for all k;

(v) there exists F ∈ F and τ > 0 such that for all x,y ∈ A∪B with x � y

d(Tx,Ty) > dist(A,B), d(x,y) > dist(A,B) implies τ+ F(d∗(Tx,Ty)) 6 F(d∗(x,y)).

Then there exists (x,y) ∈ A× B such that d(x,Tx) = dist(A,B) and d(y,Ty) = dist(A,B) with d(x,y) =
dist(A,B).

Corollary 4.10. Let (X,d,�) be a complete partially ordered metric space and T be a self-mapping on X. Assume
that the following assertions hold:

(i) T is monotone increasing;
(ii) there exist x0 ∈ X and y0 = Tx0 such that x0 � y0;

(iii) there exist F ∈ F and τ > 0 such that for all x,y ∈ X with x � y

d(Tx,Ty) > 0 implies τ+ F(d(Tx,Ty)) 6 F(d(x,y)).

(iv) for a given x ∈ X and a sequence {xn} with xn � xn+1 such that xn → x as n → ∞, we have Txn → Tx;
(or) if {xn} is a sequence in X with xn � xn+1 such that xn → x as n→∞, then there exists a subsequence
{xnk} of {xn} such that xnk � x for all k.

Then T has a fixed point in X.

Remark 4.11. In Corollary 4.10, F needs not to satisfy (F3), while in Corollary 4.8, F satisfies (F1)-(F3).
Therefore, Corollary 4.10 generalizes Corollary 4.8.

Corollary 4.12 ([34, Theorems 2.1 and 2.2]). Let (X,d,�) be a complete partially ordered metric space and T be
a self-mapping on X. Assume that the following assertions hold:

(i) T is monotone increasing;
(ii) there exist x0 ∈ X and y0 = Tx0 such that x0 � y0;

(iii) for all x,y ∈ X with x � y, k ∈ (0, 1)

d(Tx,Ty) 6 kd(x,y);

(iv) for a given x ∈ X and a sequence {xn} with xn � xn+1 such that xn → x as n → ∞, we have Txn → Tx;
(or) if {xn} is a sequence in X with xn � xn+1 such that xn → x as n→∞, then there exists a subsequence
{xnk} of {xn} such that xnk � x for all k.

Then T has a fixed point in X.

Example 4.13. Consider the sequence {Sn}n∈N as in Example 2.5 of [44]. Let X = {Sn : n ∈ N} and
d(x,y) = |x− y| for all x,y ∈ X. Define order on X as

Sn 6 Sm ⇔ n 6 m.

Then (X,d,6) is a complete partially ordered metric space. Define a self-mapping T on X by

T(Sn) =

{
1, if n = 1,
Sn−1, if n > 1,

and F : R+ → R by F(r) = ln r+ r, then F ∈ F. Also, T is monotone increasing. Indeed, let Sn � Sm, then
n 6 m, so we have three possibilities.

(i) if n = m = 1, then T(Sn) = 1 = T(Sm);
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(ii) if n = 1 & m > 1, then T(Sn) = 1 6 Sm−1 = T(Sm);

(iii) if n > 1 & m > 1 with n < m, then T(Sn) = Sn−1 6 Sm−1 = T(Sm).

Now, let d(T(Sm),T(Sn)) > 0 and Sn 6 Sm, then there arises two cases:

Case 1. For every m ∈N, m > 2 ∧n = 1,

d(T(Sm),T(S1))

d(Sm,S1)
ed(T(Sm),T(S1))−d(Sm,S1) < e−1.

Case 2. For every m,n ∈N, m > n > 1,

d(T(Sm),T(Sn))
d(Sm,Sn)

ed(T(Sm),T(Sn))−d(Sm,S1) < e−1.

In both cases, T satisfies hypothesis (iii) of Corollary 4.10 for τ = 1. Thus, all conditions of Corollary 4.10
hold true and S1 is the fixed point of T in X.

Remark 4.14. In Example 4.13, T is not Harjani-Sadarangani’s type contraction [21] and also it is not a
Banach’s contraction because

lim
n→∞ d(T(Sn),T(S1))

d(Sn,S1)
= 1.

Therefore, Corollary 4.12 can not be applied for this mapping also Theorems 2 and 5 of [21] are not
applicable for this mapping.
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