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Abstract
In this paper, we study the dynamical behavior of a virus model into which cell-mediated and humoral immune responses

are incorporated. The global stability of an infection-free equilibrium and four infected equilibria is established via a Lyapunov
functional approach. The present construction methods are applicable to a wide range of incidence rates that are monotone
increasing with respect to concentration of uninfected cells and concave with respect to the concentration of free virus particles.
In addition, when the incidence rate is monotone increasing with respect to concentration of free virus particles, the functional
approach plays an important role in determining the global stability of each of the four infected equilibria. This implies that the
dynamical behavior of virus prevalence would be determined by basic reproduction numbers when the “saturation effect” for
free virus particles appears. We point out that the incidence rate includes not only separable incidence rate but also non-separable
incidence rate such as standard incidence and Beddington-DeAngelis functional response. c©2017 All rights reserved.
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1. Introduction

Modeling the dynamics of virus infection has been extensively developed in order to investigate short-
or long-term progression of viral production. The pioneering work is done by Nowak and Bangham [16],
in which the relation between antiviral immune responses, virus load, and virus diversity are theoreti-
cally understood by formulating systems with ordinary differential equations describing the population
dynamics of immune responses to virus load. Motivated by their work, many studies have subsequently
focused on the global stability of equilibria in models for viral dynamics which play a crucial role in clar-
ifying and evaluating treatment strategies for infections and establishing thresholds for treatment rates
[11, 12, 14, 15, 20, 24, 29]. In this paper, we focus our attention on the global stability of steady states
for these models, because this should enhance our understanding of virus dynamics, which gives us a
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detailed information and various insights on whether a disease will die out or not, and the mechanisms
of specific immune responses. A typical recent model of viral dynamics containing humoral immune
responses is given by Wang et al. [22] as follows:

x ′(t) = λ− dx(t) − f(x(t), v(t))v(t),
y ′(t) = e−m1τ1f(x(t− τ1), v(t− τ1))v(t− τ1) − δy(t),
v ′(t) = ke−m2τ2y(t− τ2) − cv(t) − qa(t)v(t),
a ′(t) = ga(t)v(t) − ba(t).

(1.1)

The variables x, y and v denote the concentrations of uninfected cells, infected cells and free virus parti-
cles, respectively. The variable a denotes the concentration of B cells, whose principal function is to make
antibodies against soluble antigens. The nonnegative constant τ1, referred to as an intracellular delay,
denotes the time taken for the production of new virus particles after a virus has entered a cell. The
nonnegative constant τ2 denotes the time taken for the maturation of newly produced viruses (see Ouifki
et al. [17]). All other parameters are positive constants. The model (1.1) with f(x, v) = kx (i.e., a bilinear
incidence f(x, v)v = kxv) is equivalent to that presented by Wang et al. [27, Section 3].

For the non-separable function f ∈ C1(R2
+, R), denoting the average number of infected cells, let us

set up the hypotheses in Wang et al. [22, H1-H4]:

(A1) f(x, v) > 0 and f(x, v) = 0 if and only if x = 0.

(A2)
∂f(x, v)
∂x

> 0 for all x > 0 and v > 0.

(A3)
∂f(x, v)
∂v

6 0 for all x > 0 and v > 0.

(A4)
∂(f(x, v)v)

∂v
> 0 for all x > 0 and v > 0.

The hypothesis (A1) biologically indicates that the per-capita number of newly virus-infected cells is
always nonnegative. The hypothesis (A2) indicates that the more the amount of uninfected cells is, then
the more the per-capita number of newly virus-infected cells will be, for a fixed number of free virus
particles. The hypothesis (A3) indicates that the more the amount of virus is, then the less the per-capita
number of newly virus-infected cells will be for a fixed number of uninfected cells. The hypothesis (A4)
indicates that the more the amount of virus is, then the more the number of cells that are newly infected
will be. All of the above hypotheses include the following incidence rates.

Separable

 (i) Bilinear incidence rate ([16, 19]) f(x, v)v = xv,

(ii) Saturated incidence rate ([18]) f(x, v)v =
xv

1 +αv
, α > 0,

Non-separable



(iii) Standard incidence rate ([10])

f(x, v)v =
xv

x+ v
,

(iv) Beddington-DeAngelis functional response ([2, 5])

f(x, v)v =
xv

1 +α1x+α2v
, α1,α2 > 0.

In addition to the effect of humoral immune responses, some authors investigated the effect of cell-
mediated cytotoxic T lymphocytes (CTLs) immune response on the dynamics of cell infection (see, e.g., [1,
3, 6, 7] and the references therein). In contrast to the models with humoral immune response, it is asserted
that these models including CTL response displays rich dynamics when the delays are incorporated; the
global stability of the equilibria is completely determined by threshold parameters [11, 15, 24, 29], whereas
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periodic solutions arise through the Hopf bifurcations [4, 25, 26, 30]. The issues investigated in these
models were related to understanding whether the viruses can be cleared, whether life long immunity
can be achieved in the host, and whether sustained oscillatory viral loads can be observed. Later, Yan
and Wang [28] formulated the following model incorporating both cell-mediated and antibody responses
with delays: 

x ′(t) = λ− dx(t) − kx(t)v(t),
y ′(t) = kx(t− τ)v(t− τ)e−sτ − δy(t) − py(t)z(t),
v ′(t) = δNy(t) − cv(t) − qa(t)v(t),
z ′(t) = βy(t)z(t) − γz(t),
a ′(t) = ga(t)v(t) − ba(t).

(1.2)

Here the variables x, y, v, z and a denote the concentrations of uninfected cells, infected cells, free virus
particles, CTL responses and antibody responses, respectively. On the other hand, in the literature of
epidemiology, it has increasingly been asserted that the incidence rate, characterizing the rate of newly
infected cells, should be written by not bilinear but general nonlinear functions (see, e.g., [8, 9, 26]).

We point out that since both the model (1.1) does not consider cell-mediated cytotoxic T lymphocytes
(CTLs) immune response and model (1.2) does not incorporate non-separable incidence rate, in this paper,
we combine these two considerations to formulate our model. We aim to establish global stability results
and identify sufficient conditions under which oscillations are impossible for a viral model with humoral
immune responses, CTL immune response, and a non-separable incidence rate. For complete character-
ization of the global dynamics, we define some basic reproduction numbers which serve as threshold
parameters that predict whether an infection will go to extinction or persist. The global stability scenario
of infection equilibrium is achieved by LaSalle invariant principle and the Lyapunov functional approach.

This paper is organized as follows. In Section 2, we introduce our model by incorporating a class of
non-separable incidence rates. The model is governed by a system of delay differential equations. We
also specify the basic reproduction numbers of the model and focus on the existence of four infection
equilibria. In Section 3, we establish the global attractivity and (uniform) stability of each of the four
equilibria by constructing Lyapunov functionals based on LaSalle invariance principle. In Section 4, we
offer some concluding remarks on our stability results.

2. The model and preliminaries

Let us consider the following model:

x ′(t) = λ− dx(t) − f(x(t), v(t))v(t),

y ′(t) =

∫∞
0
G1(τ)f(x(t− τ), v(t− τ))v(t− τ)dτ− δy(t) − py(t)z(t),

v ′(t) = δN

∫∞
0
G2(τ)y(t− τ)dτ− cv(t) − qa(t)v(t),

z ′(t) = βy(t)z(t) − γz(t),
a ′(t) = ga(t)v(t) − ba(t).

(2.1)

The uninfected cells are produced at a constant rate λ and die at a per capita rate d. The infected cells are
assumed to die at a rate δ due to the action of virus, each releasingN new virus particles as they are lysed.
Virus particles are cleared from the system at a rate c. The infected cells are also killed via mass action
kinetics by CTLs, which is described by pyz. Virus particles are also neutralized via mass action kinetics
by antibodies, which is described by qav. CTLs are produced at a rate proportional to the abundances
of CTLs and infected cells, βyz, and die at a per capita rate γ. The antibody responses are activated at a
rate proportional to the abundances of antibodies and free viruses, gav, and die at a per capita rate b. To
account for the time lag between viral entry into a target cell and the production of new virus particles,
two distributed intracellular delays are introduced with kernel functions given by Gi(τ) = fi(τ)e

−miτ,
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i = 1, 2. G1(τ) is the probability that target cells contacted by the virus particles at time t− τ survived
τ time units and become infected at time t and G2(τ) is the probability that a cell infected at time t− τ
starts to yield new infectious virus at time t. All the parameters are positive constants. The function f
is assumed to satisfy the hypotheses (A1)-(A4). We also note that the model is equivalent to the model
studied by Wang et al. [24] if the incidence rate f(x, v)v is of the separable form xF(v).

The following assumption:

(A5) Gi(τ) > 0, for τ > 0, and 0 < ai :=
∫∞

0
Gi(ξ)dξ 6 1, i = 1, 2;

is also used widely in the literatures when describing delay kernels. For convenience, we rewrite (2.1) as

x ′(t) = λ− dx(t) − f(x(t), v(t))v(t),

y ′(t) = α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t),

v ′(t) = α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t),

z ′(t) = βy(t)z(t) − γz(t),
a ′(t) = ga(t)v(t) − ba(t),

(2.2)

where α1 = a1, α2 = Nδa2 and gi(ξ) =
Gi(ξ)
ai

for i = 1, 2. We recall that ai =
∫∞

0 Gi(ξ)dξ, thus∫∞
0 gi(ξ)dξ = 1.

We consider a suitable phase and a feasible region. Nonnegative initial functions are given as follows:

(x(θ),y(θ), v(θ), z(θ),a(θ)) = (φ1(θ),φ2(θ),φ3(θ),φ4(θ),φ5(θ)) = φ(θ) ∈ UCψ((−∞, 0], R5
+), (2.3)

where R5
+ = {(x1, x2, x3, x4, x5) ∈ R5 : xi > 0, i = 1, 2, 3, 4, 5} and

UCψ((−∞, 0], R5
+) :=

{
φ ∈ C((−∞, 0], R5

+) : ‖φ‖ψ = sup
s60

|φ(s)|

ψ(s)
<∞,

φ(s)

ψ(s)
is uniformly continuous on (−∞, 0]

}
.

Here we assume that ψ : (−∞, 0] −→ [1,∞) satisfies the following properties:
(1) ψ is continuous and nonincreasing on (−∞, 0] with ψ(0) = 1;
(2) ψ(s+u)

ψ(s) → 1 uniformly on (−∞, 0] as u→ −0;
(3) ψ(s)→∞ as s→ −∞.

We note that UCψ is a Banach space with norm ‖ · ‖ψ. Moreover, if the function ψ satisfies assumptions
(1)-(3), then UCψ is an admissible Banach space. Thus, for system (2.2), existence results of the Peano
type hold (see, for details, Kuang [13, Corollary 5.2]).

It follows from the fundamental theory for integral-differential equations that there exists a Tφ > 0
such that system (2.2) with (2.3) has a unique solution on the interval [0, Tφ). The following theorem
shows that for positive initial values, the solution remains positive and is bounded, implying Tφ = ∞,
that is, the solution exists globally in time. The proof is omitted because it is quite similar to that in Wang
et al. [24, Theorem 2.1].

Theorem 2.1. Let (x(t),y(t), v(t), z(t),a(t))T be the unique solution to system (2.2) with (2.3). Then x(t), y(t),
v(t), z(t) and a(t) are nonnegative for all t > 0. Moreover, all solutions (x(t),y(t), v(t), z(t),a(t))T of system
(2.2) with x(t) > 0, y(t) > 0, v(t) > 0, z(t) > 0 and a(t) > 0 are ultimately bounded.

From Theorem 2.1, we can easily verify that ω-limit sets of system (2.2) are contained in the following
bounded feasible region:

Γ =

{
(x,y, v, z,a) ∈ R5

+ : |x| 6
λ

d
, |y|, |z| 6

λa1

min{d, δ,γ}
, |v|, |a| 6

δa2N
λa1

min{d,δ,γ}

min{c,b}

}
.

We can easily verify that the region Γ is positively invariant with respect to system (2.2).
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2.1. Reproduction numbers and existence of positive equilibria
The equilibria of system (2.2) satisfy the following equalities:

λ− dx− f(x, v)v = 0,
α1f(x, v)v− δy− pyz = 0,
α2y− cv− qav = 0,
βyz− γz = 0,
gav− ba = 0.

(2.4)

System (2.4) always has an infection-free equilibrium E0 = (λ/d, 0, 0, 0, 0) if v = 0, y = 0, z = 0 and a = 0.
By simple calculation, we see that an immune-free equilibrium E1 = (x1,y1, v1, 0, 0) exists if and only if a
positive root of the equation F1(x) = 0 on (0, λ/d), where

F1(x) = f

(
x,
α1α2

δc

)
−

δc

α1α2
.

The basic reproduction number is one of the most important concepts in viral infection models which
serves as a threshold parameter that predicts whether the infection will go to extinction or persist. We
define the basic reproduction number for viral infection as

<0 :=
α1α2

cδ
f(x0, 0). (2.5)

From assumptions (A1) and (A2), the function F1(x) is strictly monotonically increasing with respect to x.
It follows that

F1(0) = −
δc

α1α2
< 0, and F1

(
λ

d

)
= f(x0, 0) −

δc

α1α2
=
α1α2

δc
(<0 − 1).

There exists a unique x1 ∈ (0, λ/d) such that F1(x1) = 0 if and only if <0 > 1. By the relation

y1 =
α1(λ− dx)

δ
and v1 =

α1α2(λ− dx)

δc
,

we get an immune-free equilibrium E1 = (x1,y1, v1, 0, 0).
Next we consider E2 = (x2,y2, v2, z2, 0). For z 6= 0 and a = 0, from the fourth equation of (2.4), we can

get y2 = γ
β < y1, which is equivalent to

<1 :=
βy1

γ
> 1. (2.6)

Then the first equation of (2.4) becomes

f

(
x,
α2γ

βc

)
α2γ

βc
− λ+ dx = 0, (2.7)

and we have

y2 =
γ

β
, v2 =

α2γ

βc
and z2 =

βα1(λ− dx2)

pγ
−
δ

p
.

Since z2 > 0 we have x2 < x
∗, where

x∗ =
λ

d
−

δγ

dβα1
.

It follows that the existence of equilibrium requires x∗ > 0 and (2.7) has a unique positive root x = x2 ∈
(0, x∗). We denote

F2(x) = f

(
x,
α2γ

βc

)
α2γ

βc
− λ+ dx.
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We know F2(x) is strictly monotonically increasing with respect to x from hypothesis (A2). It is clear that
F2(0) = −λ < 0 holds and

F2(x
∗) =f

(
x∗,

α2γ

βc

)
α2γ

βc
− λ+ dx∗

=f

(
x∗,

α2γ

βc

)
α2γ

βc
−
δγ

βα1

=
δγ

βα1

(
f

(
x∗,

α2γ

βc

)
α1α2

δc
− 1

)
.

Therefore, there exists a unique real value x2 ∈ (0, x∗) such that F2(x2) = 0 if and only if λdβα1
dδγ > 1 and

f(x∗, α2γ
βc )

α1α2
δc > 1.

Let us remark that the assumptions (A1) and (A2) imply

f

(
x∗,

α2γ

βc

)
< f

(
λ

d
,
α2γ

βc

)
< f

(
λ

d
, 0
)

,

so that, we get the unique equilibrium E2 = (x2,y2, v2, z2, 0) if and only if <1 > 1. Here, <1 denotes the
average number of the CTL immune cells activated by infected cells when virus infection is successful
and humoral immune responses have not been established. Note that y1 is the number of infected cells at
E1 and 1/r is the average life-span of CTL cells.

Next, we consider E3 = (x3,y3, v3, 0,a3). For a 6= 0 and z = 0, from the fifth equation of (2.4), we can
get v3 = b

g < v1, which is equivalent to

<2 :=
gv1

b
> 1. (2.8)

Then the first equation of (2.4) becomes

kxf

(
b

g

)
− λ+ dx = 0, (2.9)

and we have

y3 =
a1(λ− dx3)

δ
and a3 =

Na1a2g(λ− dx3)

qb
−
c

q
.

It follows that the equation (2.9) has a unique positive root x = x3 ∈ (0, λ/d). Therefore we get the unique
equilibrium E3 = (x3,y3, v3, 0,a3) if and only if <2 > 1. Here, <2 denotes the average number of humoral
immune cells activated by virus when virus infection is successful and CTL responses have not been
established. Note that v1 is the number of free viruses at E1 and 1/b is the average life-span of antibody
cells.

Finally we consider E4 = (x4,y4, v4, z4,a4). For a 6= 0 and z 6= 0, from the fourth and fifth equations of
(2.4), we can get

y4 =
γ

β
and v4 =

b

g
.

From the second equation of (2.4), we can get

z =
δ

p

(
βka1xf(

b
g )

γδ
− 1

)
.

Note that
ka1xf(

b
g )

δ = y3 =
a1(λ−dx)

δ is the number of infected cells at E3. We define the CTL immune
competitive reproductive number <3 for system (2.2) as

<3 :=
βy3

γ
, (2.10)
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where 1/γ is the average life-span of CTL cells. Here, <3 denotes the average number of the CTL im-
mune cells activated by infected cells under the condition that humoral immune responses have been
established.

From the third equation of (2.4), we can get

a =
c

q

(
gδNa2γ

βbc
− 1

)
.

Note that Nδa2γ
βc is the number of the viruses at E2. Here the humoral immune competitive reproductive

number <4 for system (2.2) is denoted as follows.

<4 :=
gv2

b
. (2.11)

Note that 1/b is the average life-span of antibody cells and thus, <4 denotes the average number of the
humoral immune cells activated by viruses under the condition that CTL immune responses have been
established.

When <3 > 1 and <4 > 1, CTL and humoral immune responses can be established simultaneously,
and there exists an interior equilibrium E4 = (x4,y4, v4, z4,a4).

Now we are in a position to state the following theorem on the existence of equilibria under the basic
reproduction numbers.

Theorem 2.2. Let <0, <1, <2, <3 and <4 be defined by (2.5), (2.6), (2.8), (2.10) and (2.11), respectively.

(i) System (2.2) always has an infection-free equilibrium E0.

(ii) System (2.2) has an immune-free infection equilibrium E1 when <0 > 1.

(iii) System (2.2) has an infection equilibrium E2 with only CTL immune responses when <1 > 1.

(iv) System (2.2) has an infection equilibrium E3 with only humoral immune responses when <2 > 1.

(v) System (2.2) has an infection equilibrium E4 with both CTL responses and humoral immune responses when
<3 > 1 and <4 > 1.

3. Global dynamics

We define
Hi(t) :=

∫∞
t

gi(ξ)dξ, i = 1, 2.

From the definition of the function g1 with the assumption (A5), we note that H1(0) = 1, H1(∞) = 0 and
dH1(t)

dt = −g1(t) holds.

The following theorem indicates that the viruses are eventually cleared.

Theorem 3.1. When <0 6 1, the infection-free equilibrium E0 is globally asymptotically stable.

Proof. Define the following Lyapunov functional:

V1(t) =Ux0(t) +
1
α1
y(t) +

δ

α1α2
v(t) +

p

α1β
z(t) +

δq

α1α2g
a(t)

+

∫∞
0
H1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ+

δ

α1

∫∞
0
H2(ζ)y(t− ξ)dξ,

where

Ux0(t) = x(t) − x0 −

∫x(t)
x0

f(x0, 0)
f(s, 0)

ds.
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We calculate the time derivative of V1 as follows.

V ′1(t) =

(
1 −

f(x0, 0)
f(x(t), 0)

)
(λ− dx(t) − f(x(t), v(t))v(t))

+
1
α1

(
α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t)

)
+

δ

α1α2

(
α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t)

)
+

p

α1β
(βy(t)z(t) − γz(t)) +

δq

α1α2g
(ga(t)v(t) − ba(t))

+ f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ+

δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ

= d

(
1 −

f(x0, 0)
f(x(t), 0)

)
(x0 − x(t)) +

f(x0, 0)
f(x(t), 0)

f(x(t), v(t))v(t) −
p

α1
y(t)z(t) −

δc

α1α2
v(t) −

δq

α1α2
a(t)v(t)

+
p

α1
y(t)z(t) −

pγ

α1β
z(t) +

δq

α1α2
a(t)v(t) −

δqb

α1α2g
a(t)

= d

(
1 −

f(x0, 0)
f(x(t), 0)

)
(x0 − x(t)) −

pγ

α1β
z(t) −

δqb

α1α2g
a(t) +

δc

α1α2

(
<0
f(x(t), v(t))
f(x(t), 0)

− 1
)
v(t).

From the assumption (A2), since f(x, v) is strictly monotonically increasing with respect to x, we have

d

(
1 −

f(x0, 0)
f(x(t), 0)

)
(x0 − x(t)) 6 0.

It follows from (A3) that f(x, v) is monotonically decreasing with respect to v, which implies in addition
to <0 6 1 that

<0
f(x(t), v(t))
f(x(t), 0)

− 1 6 0.

Consequently, one can see that V ′1(t) 6 0, and V ′1(t) = 0 if x(t) = x0, z(t) = 0 and a(t) = 0 for <0 6 1.
Hence, every solution of (2.2) tends to M0, where M0 is the largest invariant subset of

{(x,y, v, z,a) ∈ Γ : V ′1 = 0}.

It can be easily verified that M0 is singleton {E0} because every element of M0 satisfies y(t) = 0, v(t) = 0
for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E0 is globally
attractive. In addition, since V1 is estimated by a positive definite function from below

V1(t) > Ux0(t) +
1
α1
y(t) +

δ

α1α2
v(t) +

p

α1β
z(t) +

δq

α1α2g
a(t),

E0 is uniformly stable. This implies that E0 is globally asymptotically stable.

The following theorem indicates that the infection becomes chronic but with no persistent CTL im-
mune response and antibody immune response.

Theorem 3.2. When <0 > 1, <1 6 1 and <2 6 1, the immune-free infection equilibrium E1 is globally asymptot-
ically stable.

Proof. We will make use of the equations for the elements of E1 in order to simplify the expressions:
λ = dx1 + f(x1, v1)v1,
α1f(x1, v1)v1 = δy1,
α2y1 = cv1.
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Let us define g(µ) = µ − 1 − lnµ. One can see that the function g is positive definite: g(µ) > 0 for
µ > 0 and g(µ) = 0 if and only if µ = 1. The function g is called the Volterra-type function which here
plays a crucial role in constructing suitable Lyapunov functionals below. Define the following Lyapunov
functional:

V2(t) = Ux1(t) +
1
α1
y1g

(
y(t)

y1

)
+

δ

α1α2
v1g

(
v(t)

v1

)
+

p

α1β
z(t) +

δq

α1α2g
a(t) +W1(t) +W2(t),

where

Ux1(t) = x(t) − x1 −

∫x(t)
x1

f(x1, v1)

f(s, v1)
ds,

W1(t) = f(x1, v1)v1

∫∞
0
H1(ξ)g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)

f(x1, v1)v1

)
dξ,

W2(t) =
δ

α1
y1

∫∞
0
H2(ξ)g

(
y(t− ξ)

y1

)
dξ.

We then obtain

W ′1(t) = f(x1, v1)v1

∫∞
0
H1(ξ)

dg(f(x(t−ξ),v(t−ξ))v(t−ξ)
f(x1,v1)v1

)

dt
dξ

= − f(x1, v1)v1

∫∞
0
H1(ξ)

dg(f(x(t−ξ),v(t−ξ))v(t−ξ)
f(x1,v1)v1

)

dξ
dξ

= f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x1, v1)v1

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ,

W ′2(t) =
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

δ

α1
y1

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ.

Calculating the time derivative of V2(t) gives

V ′2(t) =

(
1 −

f(x1, v1)

f(x(t), v1)

)
(λ− dx(t) − f(x(t), v(t))v(t))

+
1
α1

(
1 −

y1

y(t)

)(
α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t)

)
+

δ

α1α2

(
1 −

v1

v(t)

)(
α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t)

)
+

p

α1β
(βy(t)z(t) − γz(t)) +

δq

α1α2g
(ga(t)v(t) − ba(t))

+ f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x1, v1)v1

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

δ

α1
y1

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x1, v1)

f(x(t), v1)

)
(x1 − x(t)) + f(x1, v1)v1 − f(x1, v1)

f(x1, v1)v1

f(x(t), v1)

+
f(x1, v1)

f(x(t), v1)
f(x(t), v(t))v(t) −

y1

y(t)

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ
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+
δ

α1
y1 +

p

α1
y1z(t) −

δc

α1α2
v(t) −

δv1

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

δcv1

α1α2
+
δqv1

α1α2
a(t)

−
pγ

α1β
z(t) −

δqb

α1α2g
a(t) + f(x1, v1)v1

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+
δ

α1
y1

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x1, v1)

f(x(t), v1)

)
(x1 − x(t)) + f(x1, v1)v1

[ ∫∞
0
g1(ξ)

(
− g

(
f(x1, v1)

f(x(t), v1)

)
− g

(
f(x(t), v1)

f(x(t), v(t))

)
− g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)y1

f(x1, v1)v1y(t)

))
dξ

+

∫∞
0
g2(ξ)

(
− g

(
v1y(t− ξ)

v(t)y1

))
dξ

]
+
pγ

α1β

(
β

γ
y1 − 1

)
z(t) +

δqb

α1α2g

(
g

b
v1 − 1

)
a(t)

+
f(x1, v1)

f(x(t), v(t))f(x(t), v1)
(f(x(t), v(t)) − f(x(t), v1))(f(x(t), v(t))v(t) − f(x(t), v1)v1).

From (A2), since f(x, v) is strictly monotonically increasing with respect to x, we have

d

(
1 −

f(x1, v1)

f(x(t), v1)

)
(x1 − x(t)) 6 0.

In addition, it follows from (A3) and (A4) that f(x, v) is monotonically decreasing and f(x, v)v is monoton-
ically increasing with respect to v. This yields

(f(x(t), v(t)) − f(x(t), v1))(f(x(t), v(t))v(t) − f(x(t), v1)v1) 6 0.

Moreover, only if v(t) = v1, we have (f(x(t), v(t)) − f(x(t), v1))(f(x(t), v(t))v(t) − f(x(t), v1)v1) = 0. Fur-
thermore, we have βγy1 − 1 6 0 if <1 6 1, and g

cv1 − 1 6 0 if <2 6 1.
Consequently, one can see that V ′2(t) 6 0, and V ′2(t) = 0 if x(t) = x1 and y(t) = y1. Hence, every

solution of (2.2) tends to M1, where M1 is the largest invariant subset of {(x,y, v, z,a) ∈ Γ : V ′2 = 0}.
It can be easily verified that M1 is singleton {E1} because every element of M1 satisfies v(t) = v1 and
z(t) = a(t) = 0 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]),
E1 is globally attractive. In addition, since V2 is estimated by a positive definite function from below:

V2(t) > Ux1(t) +
1
α1
y1g

(
y(t)

y1

)
+

δ

α1α2
v1g

(
v(t)

v1

)
+

p

α1β
z(t) +

δq

α1α2g
a(t),

E1 is uniformly stable. This implies that E1 is globally asymptotically stable.

The following theorem indicates that the infection becomes chronic with persistent CTL immune
response, but the viral load cannot activate the antibody immune responses.

Theorem 3.3. When <1 > 1 and <4 6 1, the infection equilibrium E2 with only CTL immune response is globally
asymptotically stable.

Proof. We will make use of the equations for the elements of E2 in order to simplify the expressions:
λ = dx2 + f(x2, v2)v2,
α1f(x2, v2)v2 = δy2 + py2z2,
α2y2 = cv2,
βy2z2 = γz2.

Define the following Lyapunov functional:

V3(t) =Ux2(t) +
1
α1
y2g

(
y(t)

y2

)
+

(
δ

α1α2
+
pz2

α1α2

)
v2g

(
v(t)

v2

)
+

p

α1β
z2g

(
z(t)

z2

)
+

(
δq

α1α2g
+
pqz2

α1α2g

)
a(t)

+W3(t) +W4(t),
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where

Ux2(t) = x(t) − x2 −

∫x(t)
x2

f(x2, v2)

f(s, v2)
ds,

W3(t) = f(x2, v2)v2

∫∞
0
H1(ξ)g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)

f(x2, v2)v2

)
dξ,

W4(t) = f(x2, v2)v2

∫∞
0
H2(ξ)g

(
y(t− ξ)

y2

)
dξ.

We then obtain

W ′3(t) = f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x2, v2)v2

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ,

W ′4(t) =
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

pz2

α1
y(t)

−
pz2

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x2, v2)v2

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ.

We calculate the time derivative of V3(t):

V ′3(t) =

(
1 −

f(x2, v2)

f(x(t), v2)

)
(λ− dx(t) − f(x(t), v(t))v(t))

+
1
α1

(
1 −

y2

y(t)

)(
α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t)

)
+

(
δ

α1α2
+
pz2

α1α2

)(
1 −

v2

v(t)

)(
α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t)

)
+

p

α1β

(
1 −

z2

z(t)

)
(βy(t)z(t) − γz(t)) +

(
δq

α1α2g
+
pqz2

α1α2g

)
(ga(t)v(t) − ba(t))

+ f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x2, v2)v2

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

pz2

α1
y(t)

−
pz2

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x2, v2)v2

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x2, v2)

f(x(t), v2)

)
(x2 − x(t)) + f(x2, v2)v2 − f(x2, v2)

f(x2, v2)v2

f(x(t), v2)

+
f(x2, v2)

f(x(t), v2)
f(x(t), v(t))v(t) −

y2

y(t)

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+
δ

α1
y2 −

δc

α1α2
v(t) −

δv2

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

δcv2

α1α2
+
δqv2

α1α2
a(t)

−
pz2c

α1α2
v(t) −

pz2v2

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

pcz2v2

α1α2
+
pqz2v2

α1α2
a(t)

+
pγz2

α1β
−

bδq

α1α2g
a(t) −

bpqz2

α1α2g
a(t)

+ f(x2, v2)v2

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ
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+ f(x2, v2)v2

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x2, v2)

f(x(t), v2)

)
(x2 − x(t)) + f(x2, v2)v2

[ ∫∞
0
g1(ξ)

(
− g

(
f(x2, v2)

f(x(t), v2)

)
− g

(
f(x(t), v2)

f(x(t), v(t))

)
− g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)y2

f(x2, v2)v2y(t)

))
dξ

+

∫∞
0
g2(ξ)

(
− g

(
v2y(t− ξ)

v(t)y2

))
dξ

]
+

bq

α1α2g
(δ+ pz2)

(
α2gγ

βbc
− 1

)
a(t)

+
f(x2, v2)

f(x(t), v(t))f(x(t), v2)
(f(x(t), v(t)) − f(x(t), v2))(f(x(t), v(t))v(t) − f(x(t), v2)v2).

From (A2), since f(x, v) is strictly monotonically increasing with respect to x, we have

d

(
1 −

f(x2, v2)

f(x(t), v2)

)
(x2 − x(t)) 6 0.

It follows from (A3) and (A4) that f(x, v) is monotonically decreasing and f(x, v)v is monotonically increas-
ing with respect to v, we obtain

(f(x(t), v(t)) − f(x(t), v2))(f(x(t), v(t))v(t) − f(x(t), v2)v2) 6 0.

Moreover, only if v(t) = v2, we have (f(x(t), v(t)) − f(x(t), v2))(f(x(t), v(t))v(t) − f(x(t), v2)v2) = 0. We
here note that α2gγ

βbc − 1 6 0 if <4 6 1.
Consequently, one can see that V ′3(t) 6 0, and V ′3(t) = 0 if x(t) = x2 and y(t) = y2. Hence, every

solution of (2.2) tends to M2, where M2 is the largest invariant subset of {(x,y, v, z,a) ∈ Γ : V ′3 = 0}. It can
be easily verified that M2 is singleton {E2} because every element of M2 satisfies v(t) = v2, z(t) = z2 and
a(t) = 0 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E2 is
globally attractive. In addition, since V3 is estimated by a positive definite function from below:

V3(t) > Ux2(t) +
1
α1
y2g

(
y(t)

y2

)
+

(
δ

α1α2
+
pz2

α1α2

)
v2g

(
v(t)

v2

)
+

p

α1β
z2g

(
z(t)

z2

)
+

(
δq

α1α2g
+
pqz2

α1α2g

)
a(t),

E2 is uniformly stable. This implies that E2 is globally asymptotically stable.

The following theorem indicates that the infection becomes chronic with persistent antibody immune
response, but the infected cells can not stimulate and activate CTL immune responses.

Theorem 3.4. When <2 > 1 and <3 6 1, the infection equilibrium E3 with only antibody immune response is
globally asymptotically stable.

Proof. We will make use of the equations for the elements of E3 in order to simplify the expressions:
λ = dx3 + f(x3, v3)v3,
α1f(x3, v3)v3 = δy3,
α2y3 = cv3 + qa3v3,
ga3v3 = ba3.

Define the following Lyapunov functional:

V4(t) = Ux3(t) +
1
α1
y3g

(
y(t)

y3

)
+

δ

α1α2
v3g

(
v(t)

v3

)
+

p

α1β
z(t) +

δq

α1α2g
a3g

(
a(t)

a3

)
+W5(t) +W6(t),

where

Ux3(t) =x(t) − x3 −

∫x(t)
x3

f(x3, v3)

f(s, v3)
ds,
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W5(t) =f(x3, v3)v3

∫∞
0
H1(ξ)g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)

f(x3, v3)v3

)
dξ,

W6(t) =f(x3, v3)v3

∫∞
0
H2(ξ)g

(
y(t− ξ)

y3

)
dξ.

We then obtain

W ′5(t) =f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x3, v3)v3

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ,

W ′6(t) =
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x3, v3)v3

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ.

We calculate the time derivative of V4(t):

V ′4(t) =

(
1 −

f(x3, v3)

f(x(t), v3)

)
(λ− dx(t) − f(x(t), v(t))v(t))

+
1
α1

(
1 −

y3

y(t)

)(
α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t)

)
+

δ

α1α2

(
1 −

v3

v(t)

)(
α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t)

)
+

p

α1β
(βy(t)z(t) − γz(t)) +

δq

α1α2g

(
1 −

a3

a(t)

)
(ga(t)v(t) − ba(t))

+ f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x3, v3)v3

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x3, v3)v3

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x3, v3)

f(x(t), v3)

)
(x3 − x(t)) + f(x3, v3)v3 − f(x3, v3)

f(x3, v3)v3

f(x(t), v3)

+
f(x3, v3)

f(x(t), v3)
f(x(t), v(t))v(t) −

y3

y(t)

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+
δy3

α1
+
py3

α1
z(t) −

δc

α1α2
v(t) −

δv3

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

δcv3

α1α2
−
pγ

α1β
z(t)

−
δqa3

α1α2
v(t) +

bδqa3

α1α2g
+ f(x3, v3)v3

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+ f(x3, v3)v3

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x3, v3)

f(x(t), v3)

)
(x3 − x(t)) + f(x3, v3)v3

[ ∫∞
0
g1(ξ)

(
− g

(
f(x3, v3)

f(x(t), v3)

)
− g

(
f(x(t), v3)

f(x(t), v(t))

)
− g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)y3

f(x3, v3)v3y(t)

))
dξ

+

∫∞
0
g2(ξ)

(
− g

(
v3y(t− ξ)

v(t)y3

))
dξ

]
+
pγ

α1β

(
βy3

γ
− 1

)
z(t)

+
f(x3, v3)

f(x(t), v(t))f(x(t), v3)
(f(x(t), v(t)) − f(x(t), v3))(f(x(t), v(t))v(t) − f(x(t), v3)v3).
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From (A2), since f(x, v) is strictly monotonically increasing with respect to x, we have

d

(
1 −

f(x3, v3)

f(x(t), v3)

)
(x3 − x(t)) 6 0.

It follows from (A3) and (A4) that f(x, v) is monotonically decreasing and f(x, v)v is monotonically increas-
ing with respect to v. This yields

(f(x(t), v(t)) − f(x(t), v3))(f(x(t), v(t))v(t) − f(x(t), v3)v3) 6 0.

Moreover, only if v(t) = v3, we have (f(x(t), v(t)) − f(x(t), v3))(f(x(t), v(t))v(t) − f(x(t), v3)v3) = 0. Fur-
thermore, βγy3 − 1 6 0 if <3 6 1.

Consequently, one can see that V ′4(t) 6 0, and V ′4(t) = 0 if x(t) = x3 and y(t) = y3. Hence, every
solution of (2.2) tends to M3, where M3 is the largest invariant subset of {(x,y, v, z,a) ∈ Γ : V ′4 = 0}. It can
be easily verified that M3 is singleton {E3} because every element of M3 satisfies v(t) = v3, z(t) = 0 and
a(t) = a3 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E3 is
globally attractive. In addition, since V4 is estimated by a positive definite function from below:

V4(t) >Ux3(t) +
1
α1
y3g

(
y(t)

y3

)
+

δ

α1α2
v3g

(
v(t)

v3

)
+

p

α1β
z(t) +

δq

α1α2g
a3g

(
a(t)

a3

)
,

E3 is uniformly stable. This implies that E3 is globally asymptotically stable.

The following theorem indicates that susceptible cells, infected cells, free virus particles, CTLs and
antibodies eventually coexist in vivo.

Theorem 3.5. When <3 > 1 and <4 > 1, the infection equilibrium E4 with both CTL response and antibody
response is globally asymptotically stable.

Proof. We will make use of the equations for the elements of E4 in order to simplify the expressions:
λ = dx4 + f(x4, v4)v4,
α1f(x4, v4)v4 = δy4 + py4z4,
α2y4 = cv4 + qa4v4,
βy4z4 = γz4,
ga4v4 = ba4.

Define the following Lyapunov functional:

V5(t) =Ux4(t) +
1
α1
y4g

(
y(t)

y4

)
+

(
δ

α1α2
+
pz4

α1α2

)
v4g

(
v(t)

v4

)
+

p

α1β
z4g

(
z(t)

z4

)
+

(
δq

α1α2g
+
pqz4

α1α2g

)
a4g

(
a(t)

a4

)
+W7(t) +W8(t),

where

Ux4(t) =x(t) − x4 −

∫x(t)
x4

f(x4, v4)

f(s, v4)
ds,

W7(t) =f(x4, v4)v4

∫∞
0
H1(ξ)g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)

f(x4, v4)v4

)
dξ,

W8(t) =f(x4, v4)v4

∫∞
0
H2(ξ)g

(
y(t− ξ)

y4

)
dξ.
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We then obtain

W ′7(t) = f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x4, v4)v4

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ,

W ′8(t) =
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

pz4

α1
y(t)

−
pz4

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x4, v4)v4

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ.

We calculate the time derivative of V5(t):

V ′5(t) =

(
1 −

f(x4, v4)

f(x(t), v4)

)
(λ− dx(t) − f(x(t), v(t))v(t))

+
1
α1

(
1 −

y4

y(t)

)(
α1

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ− δy(t) − py(t)z(t)

)
+

(
δ

α1α2
+
pz4

α1α2

)(
1 −

v4

v(t)

)(
α2

∫∞
0
g2(ξ)y(t− ξ)dξ− cv(t) − qa(t)v(t)

)
+

p

α1β

(
1 −

z4

z(t)

)
(βy(t)z(t) − γz(t))

+

(
δq

α1α2g
+
pqz4

α1α2g

)(
1 −

a4

a(t)

)
(ga(t)v(t) − ba(t))

+ f(x(t), v(t))v(t) −
∫∞

0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+ f(x4, v4)v4

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ

+
δ

α1
y(t) −

δ

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+

pz4

α1
y(t)

−
pz4

α1

∫∞
0
g2(ξ)y(t− ξ)dξ+ f(x4, v4)v4

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x4, v4)

f(x(t), v4)

)
(x4 − x(t)) + f(x4, v4)v4 − f(x4, v4)

f(x4, v4)v4

f(x(t), v4)

+
f(x4, v4)

f(x(t), v4)
f(x(t), v(t))v(t) −

y4

y(t)

∫∞
0
g1(ξ)f(x(t− ξ), v(t− ξ))v(t− ξ)dξ

+
δy4

α1
−

δc

α1α2
v(t) −

δv4

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

δcv4

α1α2

−
pz4c

α1α2
v(t) −

pz4v4

α1v(t)

∫∞
0
g2(ξ)y(t− ξ)dξ+

pcz4v4

α1α2

+
pγz4

α1β
−
qδa4

α1α2
v(t) +

bqδa4

α1α2g
−
pqz4a4

α1α2
v(t) +

bpqz4a4

α1α2g

+ f(x4, v4)v4

∫∞
0
g1(ξ) ln

f(x(t− ξ), v(t− ξ))v(t− ξ)
f(x(t), v(t))v(t)

dξ+ f(x4, v4)v4

∫∞
0
g2(ξ) ln

y(t− ξ)

y(t)
dξ

= d

(
1 −

f(x4, v4)

f(x(t), v4)

)
(x4 − x(t)) + f(x4, v4)v4

[ ∫∞
0
g1(ξ)

(
− g

(
f(x4, v4)

f(x(t), v4)

)
− g

(
f(x(t), v4)

f(x(t), v(t))

)
− g

(
f(x(t− ξ), v(t− ξ))v(t− ξ)y4

f(x4, v4)v4y(t)

))
dξ+

∫∞
0
g2(ξ)

(
− g

(
v4y(t− ξ)

v(t)y4

))
dξ

]
+

f(x4, v4)

f(x(t), v(t))f(x(t), v4)
(f(x(t), v(t)) − f(x(t), v4))(f(x(t), v(t))v(t) − f(x(t), v4)v4).
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From (A2), since f(x, v) is strictly monotonically increasing with respect to x, we have

d

(
1 −

f(x4, v4)

f(x(t), v4)

)
(x4 − x(t)) 6 0.

It also follows from (A3) and (A4) that f(x, v) is monotonically decreasing and f(x, v)v is monotonically
increasing with respect to v. This yields

(f(x(t), v(t)) − f(x(t), v4))(f(x(t), v(t))v(t) − f(x(t), v4)v4) 6 0.

Moreover, only if v(t) = v4, we have (f(x(t), v(t)) − f(x(t), v4))(f(x(t), v(t))v(t) − f(x(t), v4)v4) = 0.
Consequently, one can see that V ′5(t) 6 0, and V ′5(t) = 0 if x(t) = x4 and y(t) = y4. Hence, every

solution of (2.2) tends to M4, where M4 is the largest invariant subset of {(x,y, v, z,a) ∈ Γ : V ′5 = 0}. It can
be easily verified that M4 is singleton {E4} because every element of M4 satisfies v(t) = v4, z(t) = z4 and
a(t) = a4 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E4 is
globally attractive. In addition, since V5 is estimated by a positive definite function from below:

V5(t) >Ux4(t) +
1
α1
y4g

(
y(t)

y4

)
+

(
δ

α1α2
+
pz4

α1α2

)
v4g

(
v(t)

v4

)
+

p

α1β
z4g

(
z(t)

z4

)
+

(
δq

α1α2g
+
pqz4

α1α2g

)
a4g

(
a(t)

a4

)
,

E4 is uniformly stable. This implies that E4 is globally asymptotically stable.

4. Concluding remarks

Throughout this paper, the asymptotic behavior of the solutions of a virus model incorporating the
effect of cell-mediated and humoral immune responses has been studied. By specifying the basic re-
production numbers of the model (2.2), we establish that an infection-free equilibrium E0 is globally
asymptotically stable if and only if <0 6 1 and that there are sufficient conditions under which each of
four infection equilibria is globally asymptotically stable for <0 > 1. Similar to the construction methods
of Lyapunov functionals presented in Section 3, stability results similar to those in Theorems 3.2–3.5 are
also established for the following model with “discrete” delays:

x ′(t) = λ− dx(t) − f(x(t), v(t))v(t),
y ′(t) = α1f(x(t− τ1), v(t− τ1))v(t− τ1) − δy(t) − py(t)z(t),
v ′(t) = α2y(t− τ2) − cv(t) − qa(t)v(t),
z ′(t) = βy(t)z(t) − γz(t),
a ′(t) = ga(t)v(t) − ba(t).

(4.1)

From the relation <4 = <2
<1

, we immediately derive the following corollary for system (4.1).

Corollary 4.1. The following statement holds true.

(i) When <0 6 1, the infection-free equilibrium E0 is globally asymptotically stable.

Under the condition <0 > 1, the following statements also hold true.

(ii) When <1 6 1 and <2 6 1, the immune-free infection equilibrium E1 is globally asymptotically stable.

(iii) When <1 > 1 and <2 6 <1, the infection equilibrium E2 with only CTL immune response is globally
asymptotically stable.

(iv) When <3 6 1 and <2 > 1, the infection equilibrium E3 with only humoral immune response is globally
asymptotically stable.



Y. Enatsu, J. L. Wang, T. Kuniya, J. Nonlinear Sci. Appl., 10 (2017), 5201–5218 5217

(v) When <3 > 1 and <2 > <1, the infection equilibrium E4 with both CTL response and humoral response is
globally asymptotically stable.

To prove the global stability of the four infection equilibria Ei (i = 1, · · · , 4), we construct Lyapunov
functionals with the help of Volterra-type function g. Moreover, the functional methods in Wang et al. [24,
Section 3] are also extended to obtain the global dynamics when the incidence rate is non-separable with
respect to uninfected cells and free virus particles. The analytical approach is motivated by the construc-
tion methods in [9, 11, 15, 24, 29]. The hypotheses (A1)–(A4), including not only a bilinear incidence rate
f(x, v)v = kxv, separable incidence rate f(x, v)v = F(x)G(v) but also (non-separable) standard incidence
rate f(x, v)v = xv

x+v and Beddington-DeAngelis functional response f(x, v)v = xv
1+α1x+α2v

, play a crucial
role in determining the suitable Lyapunov functionals. Moreover, the hypothesis (A4), indicating that the
incidence rate f(x, v)v is monotonically increasing with respect to free virus particles, is not necessary for
the global stability of the infection-free equilibrium E0. Finally, we note that the global stability for the
four infection equilibria Ei (i = 1, · · · , 4) is still completely determined. Biologically, the global stability of
infection equilibrium E2,E3,E4 indicates that lifelong immunity (CTL responses and antibody responses)
can be achieved in the host, and no sustained oscillatory viral loads will be observed. In contrast to
the bifurcation results in the literatures [4, 25, 26, 30], we may be able to rule out the possibility of Hopf
bifurcation from the endemic equilibrium as this equilibrium loses its stability. On the other hand, the dy-
namics of an extended model, containing a class of non-monotone incidence rates (e.g. f(x, v)v = xv

1+αv2 )
incorporating inhibition effect of diseases, is still unclear. Contribution to such open problems includ-
ing cell-to-cell transmission, cell-mediated immune responses and multi-stage infected progression for
activated infected cells (cf. [21, 23]) would also be our future works.
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