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Abstract

This work concerns the two-step Maruyama schemes for nonlinear stochastic differential delay equations (SDDEs). We first
examine the strong convergence rates of the split two-step Maruyama scheme and linear two-step Maruyama scheme (including
Adams-Bashforth and Adams-Moulton schemes) for nonlinear SDDEs with highly nonlinear delay variables, then we investigate
the exponential mean square stability and exponential decay rates of the two classes of two-step Maruyama schemes. These
results are important for three reasons: first, the convergence rates are established under the non-global Lipschitz condition;
second, these stability results show that these two-step Maruyama schemes can not only reproduce the exponential mean square
stability, but also preserve the bound of Lyapunov exponent for sufficient small stepsize; third, they are also suitable for the
corresponding two-step Maruyama methods of stochastic ordinary differential equations (SODEs). c©2017 All rights reserved.
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1. Introduction

Most systems in science and industry are perturbed by some random environmental effects and the
future state will often be related to past states except for the present states of the systems. Stochastic
differential delay equations (SDDEs) have been used to model such systems and have the form

dx(t) = f(x(t), x(t− τ))dt+ g(x(t), x(t− τ))dw(t), t > 0 (1.1)

with the initial data x(t) = ϕ(t) ∈ CbF0
([−τ, 0]; Rn), t ∈ [−τ, 0], where the delay τ > 0 is a fixed positive

constant, the drift f : Rn ×Rn 7→ Rn and the diffusion g : Rn ×Rn 7→ Rn×d are borel measurable, and
w(t) is a d-dimensional Brownian motion. When the delay vanishes, (1.1) is called stochastic ordinary
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differential equations (SODEs). Indeed, SDDEs have come to play an important role in many branches of
science and industry, see [1, 3, 10, 14, 20, 26, 30] for example.

Due to that most of nonlinear stochastic differential equations (SDEs), including SODEs and SDDEs,
do not have the explicit solutions, numerical solutions became an area of particular interest. So far, there
is an extensive literature concerned with numerical analysis for SDEs and the key books in this area are
[18, 22, 23]. In judging the quality of a numerical scheme, it is necessary to examine its convergence
and stability. Abundant achievements have been made in the research of the strong convergence and
exponential mean square stability of the one-step schemes. The linear mean square stability of theta-
Euler methods and theta-Milstein schemes was investigated in [4, 11, 19, 24] and the strong convergence
and exponential mean square stability of nonlinear SDEs with different Lipschitz conditions were well
studied in [13, 15–17, 28, 29, 31–33].

Linear multi-step methods for SDEs also received a lot of attention. Buckwar and Winkler [6, 7] inves-
tigated the linear multi-step Maruyama methods for SODEs with small noise. Sickenberger [25] studied
mean-square convergence of stochastic multi-step methods with variable step-size for SODEs. Buckwar
and Winkler [8] investigated the mean square convergence of linear multi-step Maruyama methods for
SDDEs under global Lipschitz condition. However, these convergence results are all in the sense of mean
square and the strong convergence (or strong Lp convergence) has not be proved. Stability analysis is
another research interest of the multi-step methods. By Lyapunov-type functionals, the asymptotic mean-
square stability of the two-step Maruyama methods for linear SODEs was investigated in [5]. Necessary
and sufficient conditions in terms of the parameters of the two-step Maruyama schemes guaranteeing
their mean square stability were derived for linear SODEs in [27]. Exponential mean square stability of
the two-step Maruyama schemes for linear SDDEs was studied in [9]. However, the mean square stability
analysis of the multi-step schemes has not been established for nonlinear SODE and SDDEs.

The current article studies strong convergence rates and exponential mean square stability of the split
two-step Maruyama and linear two-step Maruyama schemes for nonlinear SDDEs. The strong conver-
gence rates are established for SDDEs with highly nonlinear delay variables. For the stability analysis, we
address the following two questions:

(Q1) If the SDE is exponentially mean square stable, whether the two-step Maruyama methods can pre-
serve this stability property.

(Q2) If the two-step Maruyama methods inherit the exponential mean square stability of the SDE, whether
the exponential decay rate of exact solutions can be preserved as the stepsize ∆→ 0.

The rest of the paper is organized as follows. Section 2 begins with notations and introduces the split
two-step Maruyama and linear two-step Maruyama schemes for SDDEs. Section 3 gives the estimation
of the moment and establishes the strong convergence rates of the two classes of two-step Maruyama
schemes. Section 4 devotes to investigate the exponential mean square stability and the exponential decay
rate of these two-step Maruyama schemes.

2. Notations and preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let | · | denote both
the Euclidean norm in Rn and the trace (or Frobenius) norm in Rn×d. If A is a vector or matrix, its
transpose is denoted by AT . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA). a∨ b

represents max{a,b} and a∧ b denotes min{a,b}. Let (Ω,F, P) be a complete probability space with a
filtration {Ft}t>0 satisfying the usual conditions, that is, it is right continuous and increasing while F0
contains all P-null sets. Let w(t) be a d-dimensional Brownian motion defined on this probability space.

The classic linear two-step Maruyama schemes for SDDE (1.1) was introduced in [8] and have the form

yk+1 +α1yk +α0yk−1 = ∆(β2f(yk+1,yk+1−m) +β1f(yk,yk−m) +β0f(yk−1,yk−1−m))

+ r1g(yk,yk−m)∆wk + r0g(yk−1,yk−1−m)∆wk−1
(2.1)
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with yk = ϕ(k∆) for k = −m, . . . , 0, where ∆ = τ/m for a positive integer m is the constant stepsize,
∆wk := w((k+ 1)∆) −w(k∆) is Brownian increment, and α1,α0,β2,β1,β0, r1, r0 are real parameters; no-
tice that the coefficient α2 = 1 of yk+1 has been normalized. In order to ensure the convergence and
consistency, the following conditions will be needed: (1) Ahlquists root condition, i.e., the polynomial
ρ(r) = r2 + α1r+ α0 has all its zeros in the unit disk |r| 6 1 without multiple zeros on the border |r| = 0.
(2) Deterministic consistency conditions, i.e.,1 + α1 + α0 = 0, 2 + α1 = β0 + β1 + β2. (3) Stochastic consis-
tency conditions, i.e., r1 = 1, r0 = 1 +α1.

In this paper, we consider the case: α0 = 0,α1 = −1, then the two-step Maruyama method (2.1) can be
rewriten as

yk+1 = yk +∆[β2f(yk+1,yk+1−m) +β1f(yk,yk−m) +β0f(yk−1,yk−1−m)] + g(yk,yk−m)∆wk. (2.2)

When β2 = 0,β1 = 3
2 ,β0 = −1

2 , (2.2) is Adams-Bashforth Maruyama scheme, and when β2 = 5
12 ,β1 =

8
12 ,β0 = − 1

12 , (2.2) is Adams-Moulton Maruyama scheme.
In order to examine the strong convergence and stability of (2.2), we introduce the split two-step

Maruyama (STSM) scheme zk, defined by{
yk = zk +β2f(yk,yk−m)∆−β0f(yk−1,yk−1−m)∆,
zk+1 = zk + f(yk,yk−m)∆+ g(yk,yk−m)∆wk, k = 0, 1, 2, . . . (2.3)

with z0 = y0 −β2f(y0,y−m)∆+β0f(y−1,y−m−1)∆, y−m−1 = y−m, ∆wk := w((k+ 1)∆) −w(k∆) is Brow-
nian increment. It is easy to see that approximation yk in (2.3) is actually the linear two-step Maruyama
(LTSM) scheme (2.2) with β1 = 1 −β2 −β0.

Note that when β0 = 0, β2,β1 > 0, (2.2) and (2.3) are the stochastic linear theta-Euler and the split-step
theta-Euler schemes, respectively, which were well investigated for SDDEs in [33]. In order to distinguish,
we call (2.2) linear two-step Maruyama (LTSM) scheme.

Noting that the two classes of two-step schemes (2.3) and (2.2) are semi-implicit when β2 6= 0, to
guarantee that they are well-defined, we need the one-sided Lipschitz condition

〈x− y, f(x, z) − f(y, z)〉 6 µ|x− y|2 (2.4)

for any x,y, z ∈ Rn, and restrict the stepsize ∆ satisfying |β2|µ∆ < 1, which implies that the implicit
equation

y = c+ θ∆f(y, ȳ)

admits a unique solution y = Fβ2,θ(c, ȳ) for any fixed c, ȳ ∈ Rn (see [12]).
Buckwar and Winkler [8] showed that the LTSM scheme (2.2) is mean square convergent under the

global Lipschitz condition on coefficients f and g. Then it is easy to see from zk = yk−β2f(yk,yk−m)∆+
β0f(yk−1,yk−1−m) that STSM scheme is also mean square convergent under the same conditions. In the
following, we can prove that LTSM and STSM schemes is strongly convergent to the exact solution with
order 0.5 under the non-global Lipschitz condition on the delay term.

3. Moment boundedness and strong convergence rate

In this section, let
0 6 Vi(x,y) 6 Li(1 + |x|qi + |y|qi), i = 1, 2, (3.1)

and assume that f and g hold the following assumption.

Assumption 3.1. Assume f(x,y),g(x,y) are C1 functions and there exist constants a, b > 0 such that

|f(x1,y1) − f(x2,y2)| 6 a|x1 − x2|+ V1(y1,y2)|y1 − y2|, (3.2)

|g(x1,y1) − g(x2,y2)| 6 b|x1 − x2|+ V2(y1,y2)|y1 − y2|

for all x,y, x1,y1, x2,y2 ∈ Rn.
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From Assumption 3.1, we have the following estimates

〈x, f(x,y)〉 = 〈x− 0, f(x,y) − f(0,y)〉+ 〈x, f(0,y) − f(0, 0)〉+ 〈x, f(0, 0)〉

6 (1 + a)|x|2 + V1(y, 0)2|y|2 +
1
2
|f(0, 0)|2,

|f(x,y)|2 6 2|f(x,y) − f(0, 0)|2 + 2|f(0, 0)|2 6 2a2|x|2 + 2V1(y, 0)2|y|2 + 2|f(0, 0)|2, (3.3)

and

|g(x,y)|2 6 2|g(x,y) − g(0, 0)|2 + 2|g(0, 0)|2 6 2b2|x|2 + 2V2(y, 0)2|y|2 + 2|g(0, 0)|2. (3.4)

For simplicity, we let K = max{2 + 2a, 2a2, |f(0, 0)|2, 2b2, 2|g(0, 0)|2} and V(y) =
√

2 max{V1(y, 0),V2(y, 0)},
then

2〈x, f(x,y)〉∨ |f(x,y)|2 ∨ |g(x,y)|2 6 K(1 + |x|2) + V(y)2|y|2. (3.5)

The following theorem shows that under Assumption 3.1, Eq. (1.1) has a global solution (see [2]).

Theorem 3.2. If Assumption 3.1 holds, then there exists a unique global solution for Eq. (1.1). Moreover, for all
p > 2, T > 0 , the solution holds the following property

E
[

sup
t∈[0,T ]

|x(t)|p
]
6 C(ϕ,p, T),

where C(ϕ,p, T) is a positive constant depending on the initial data ϕ and p, T .

Note that condition (3.2) implies (2.4) with µ = b. We define K̄ = |β2|+ |β0|+K|β2|, then for ∆ < ∆∗ =
1/K̄, the two-step schemes (2.3) and (2.2) are all well-defined. In order to obtain the convergence rate, we
firstly examine the moment boundedness of the two-step schemes.

Theorem 3.3. Let Assumption 3.1 hold and ∆ < ∆∗. Then for each integer p > 2,

E
[

sup
k∆∈[0,T ]

|zk|
p
]
6 C and E

[
sup

k∆∈[0,T]
|yk|

p
]
6 C.

Proof. By STSM scheme (2.3), we have

|zk+1|
2 = |zk|

2 + |f(yk,yk−m)|2∆2 +∆wTkg
T (yk,yk−m)g(yk,yk−m)∆wk

+ 2∆zTkf(yk,yk−m) + 2(zk + f(yk,yk−m)∆)Tg(yk,yk−m)∆wk.
(3.6)

Substituting zk = yk −β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆ into the last two terms in (3.6) yields

|zk+1|
2 = |zk|

2 + 2∆yTkf(yk,yk−m) + (1 − 2β2)|f(yk,yk−m)|2∆2

− 2β0f(yk−1,yk−1−m)T f(yk,yk−m)∆2 + |g(yk,yk−m)∆wk|
2

+ 2[yk + (1 −β2)f(yk,yk−m)∆−β0f(yk−1,yk−1−m)∆]Tg(yk,yk−m)∆wk,

which implies

|zk+1|
2 6 |z0|

2 + 2∆
k∑
i=0

[yTi f(yi,yi−m)] + (1 − 2β2 + |β0|)∆
2
k∑
i=0

|f(yi,yi−m)|2

+ |β0|∆
2
k∑
i=0

|f(yi−1,yi−1−m)|2 +

k∑
i=0

|g(yi,yi−m)∆wi|
2 + 2

k∑
i=0

yTi g(yi,yi−m)∆wk

+ 2(1 −β2)∆

k∑
i=0

f(yi,yi−m)Tg(yi,yi−m)∆wi

− 2β0∆

k∑
i=0

f(yi−1,yi−1−m)Tg(yi,yi−m)∆wi.

(3.7)
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Resorting to inequalities (3.5), we have from (3.7) that

|zk+1|
2 6 C+C∆

k∑
i=0

|yi|
2 +C∆

k∑
i=0

V(yi−m)2|yi−m|2

+

k∑
i=0

|g(yi,yi−m)∆wi|
2 + 2

k∑
i=0

yTi g(yi,yi−m)∆wk

+ 2(1 −β2)∆

k∑
i=0

f(yi,yi−m)Tg(yi,yi−m)∆wi

− 2β0∆

k∑
i=0

f(yi−1,yi−1−m)Tg(yi,yi−m)∆wi.

Raising both sides to the power p > 1, we have

1
8p−1 |zk+1|

2p 6 C+C∆p
( k∑
i=0

|yi|
2
)p

+C∆p
( k∑
i=0

V(yi−m)2|yi−m|2
)p

+
( k∑
i=0

|g(yi,yi−m)∆wi|
2
)p

+ 2p
∣∣∣ k∑
i=0

yTi g(yi,yi−m)∆wk

∣∣∣p
+C

∣∣∣ k∑
i=0

f(yi,yi−m)Tg(yi,yi−m)∆wi

∣∣∣p
+C

∣∣∣ k∑
i=0

f(yi−1,yi−1−m)Tg(yi,yi−m)∆wi

∣∣∣p.

It is easy to see that for any 0 < l < N

E
[

sup
06k6l

( k∑
i=0

|yi|
2
)p]

6 Np−1E
[ l∑
i=0

|yi|
2p
]

(3.8)

and

E
[

sup
06k6l

( k∑
i=0

V(yi−m)2|yi−m|2
)p]

6 Np−1E
[ l∑
i=0

V(yi−m)2p|yi−m|2p
]

6 CNp−1
(

E|yi−m|2p + E|yi−m|2p(1+q1) + E|yi−m|2p(1+q2)
)

.

(3.9)

Note that yi, yi−m are Fi∆-measurable while ∆wi is Fi∆ independent. Using (3.4), we have

E
(

sup
06k6l

k∑
i=0

|g(yi,yi−m)|2|∆wi|
2
)p

6 Np−1E
[

sup
06k6l

k∑
i=0

|g(yi,yi−m)∆wi|
2p
]

= Np−1E
[ l∑
i=0

|g(yi,yi−m)∆wi|
2p
]

= Np−1
l∑
i=0

E|g(yi,yi−m)|2pE|∆wi|
2p (3.10)

6 C∆
l∑
i=0

E[K(1 + |yi|
2) + V2(yi−m, 0)2|yi−m|2]p
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6 C+C∆

l∑
i=0

E[|yi|
2p] +C∆

l∑
i=0

(E|yi−m|2p + E|yi−m|2p(1+q2)).

The Burkholder-Davis-Gundy inequality gives

E
[

sup
06k6l

∣∣∣ k∑
i=0

yTi g(yi,yi−m)∆wi

∣∣∣p]

6 CE
[ l∑
i=0

|yi|
2|g(yi,yi−m)|2∆

]p/2

6 C∆p/2mp/2−1E

l∑
i=0

|yi|
p[1 + |yi|

2 + V2(yi−m, 0)2|yi−m|2]p/2

6 C+C∆

l∑
i=0

E[|yi|
2p] +C∆

l∑
i=0

(E|yi−m|2p + E|yi−m|2p(1+q2)],

(3.11)

E
[

sup
06k6l

∣∣∣ k∑
i=0

f(yi,yi−m)Tg(yi,yi−m)∆wi

∣∣∣p]

6 CE
[ l∑
i=0

|f(yi,yi−m)|2|g(yi,yi−m)|2∆
]p/2

6 C∆p/2lp/2−1E

l∑
i=0

(
|f(yi,yi−m)|2p + |g(yi,yi−m)|2p

)

6 C+C∆

l∑
i=0

(
E|yi|

2p + E|yi−m|2p + E|yi−m|2p(1+q1) + E|yi−m|2p(1+q2)
)

,

(3.12)

and similarly

E
[

sup
06k6l

∣∣∣ k∑
i=0

f(yi−1,yi−1−m)Tg(yi,yi−m)∆wi

∣∣∣p]

6 C+C∆

l∑
i=0

(
E|yi|

2p + E|yi−m|2p + E|yi−m|2p(1+q1) + E|yi−m|2p(1+q2)
)

,

(3.13)

where we also used (3.5) and the Hölder inequality. Combining (3.8)-(3.13) yields

E
[

sup
06k6l+1

|zk|
2p
]
6 C+C∆

l∑
i=0

E[|yi|
2p] +C∆

l∑
i=0

E[|yi−m|2p]

+C∆

l∑
i=0

E[|yi−m|2p(1+q1)] +C∆

l∑
i=0

E[|yi−m|2p(1+q2)].

(3.14)

Then, using zk = yk − β2f(yk,yk−m)∆+ β0f(yk−1,yk−1−m)∆ and (3.3), again, we deduce that for θ∆ <
1/K,

|zk|
2 = |yk|

2 − 2yTk [β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆]
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+ |β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆|2

> |yk|
2 − 2yTk [β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆],

that is,

|yk|
2 6 |zk|

2 + 2yTk [β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆]

6 |zk|
2 + |β2|∆(|yk|

2 + |f(yk,yk−m)|2) + |β0|∆(|yk|
2 + |f(yk−1,yk−1−m)|2)

6 |zk|
2 +K∆+ (|β2|+ |β0|+K|β2|)∆|yk|

2 + |β0|∆|yk−1|
2

+ 2|β0|∆V1(yk−1−m, 0)2|yk−1−m|2 + 2|β2|∆V1(yk−m, 0)2|yk−m|2,

which implies

(1 − K̄∆)|yk|
2 = (1 − (|β2|+ |β0|+K|β2|)∆)|yk|

2

6 |zk|
2 +K∆+ |β0|∆|yk−1|

2 + 2|β0|∆V1(yk−1−m, 0)2|yk−1−m|2 + 2|β2|∆V1(yk−m, 0)2|yk−m|2.

Using (3.1) and Assumption 3.1, we can obtain that for ∆ < ∆∗ = 1/K̄,

(1 − K̄∆)p|yk|
2p 6 5p−1

(
|zk|

2p + (KT)P + (2|β0|∆)
pL

2p
1 (1 + |yk−1−m|q1)2p|yk−1−m|2p

+ |β0|
p∆p|yk−1|

2p + (2|β0|∆)
pL

2p
1 (1 + |yk−m|q1)2p|yk−m|2p

)
6 5p−1|zk|

2p +C+C∆p|yk−1−m|2p +C∆p|yk−1−m|2p(1+q1)

+C∆p|yk−1|
2p +C∆p|yk−m|2p +C∆p|yk−m|2p(1+q1).

(3.15)

Combining (3.14) and (3.15) produces that for any p > 1

(1 − K̄θ∆)pE
[

sup
06k6l+1

|yk|
2p
]

6 C+C∆

l∑
i=0

E|yi|
2p +C∆

l∑
i=0

E[|yi−m|2p]

+C∆

l∑
i=0

E[|yi−m|2p(1+q1)] +C∆

l∑
i=0

E[|yi−m|2p(1+q2)]

6 C+C∆

l∑
i=0

E[ sup
06k6i

|yk|
2p] +C∆

l∑
i=0

E[|yi−m|2p(1+q1)] +C∆

l∑
i=0

E[|yi−m|2p(1+q2)],

where we also used the following inequality

l∑
i=0

E[|yi−m|2p] =

−1∑
i=−m

E[|yi|
2p] +

l−m∑
i=0

E[|yi|
2p] 6

−1∑
i=−m

E[|yi|
2p] +

l∑
i=0

E[|yi|
2p].

Hence, by the discrete Gronwall inequality, we have that for any p > 2 and l 6 N,

E
[

sup
06k6l

|yk|
p
]
6 C+C∆

{ l−1∑
i=0

E[|yi−m|p(1+q1)] +

l−1∑
i=0

E[|yi−m|p(1+q2)]
}

. (3.16)

Let r1 = 1 + q1, r2 = 1 + q2, and r̄ = r1 ∨ r2(> 1). For any fixed p > 2, we define

pi = ([N/m] + 2 − i)pr̄[N/m]+1−i, i = 1, 2, . . . , [N/m] + 1,
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where [a] denotes the integer part of the real number a. It is easy to see that pi > 2,

r̄pi+1 < pi and p[N/m]+1 = p, i = 1, 2, . . . , [N/m].

By (3.16) and ϕ(t) ∈ CbF0
([−τ, 0]; Rn), we can easily obtain

E
[

sup
06k6m

|yk|
p1
]
6 C,

which together with (3.16) and Hölder’s inequality yields

E
[

sup
06k62m

|yk|
p2
]
6 C+C∆

{ 2m−1∑
i=0

E[|yi−m|p2r1 ] +

2m−1∑
i=0

E[|yi−m|p2r2 ]
}

6 C+C∆
{ 2m−1∑
i=0

(E[|yi−m|p1 ])
p2r1
p1 +

2m−1∑
i=0

(E[|yi−m|p1 ])
p2r2
p1

}
6 C.

Since N/m = T/τ is finite, then repeating the previous procedures gives that for any p > 2

E
[

sup
06k6N

|yk|
p
]
6 E

[
sup

06k6([N/m]+1)m
|yk|

p[N/m]+1

]
6 C,

which together with (3.14) implies
E
[

sup
06k6N

|zk|
p
]
6 C.

After the moment boundedness of the two-step Maruyama schemes, we now turn to their convergence
analysis. Firstly, we need to establish the time continuous interpolations of the time discrete numerical
approximation {zk}k>0. For t ∈ [tk, tk+1), k = 0, 1, . . . ,N − 1, we define the continuous approximate
solutions z(t) as follows

z(t) = z(tk) + (t− tk)f(yk,yk−m) + g(yk,yk−m)(w(t) −w(tk)),

where z(0) = z0 = y0 + β2∆f(y0,y(−τ)) − β0∆f(y−1,y−m), tk = k∆. For t ∈ [−τ, 0], we define y(t) =
x(t) = ϕ(t). It is obvious that the continuous approximations z(t) and y(t) are Ft-measurable, moreover,
z(tk) = zk, y(tk) = yk. In the following, we also use the following equivalent form of z(t)

z(t) = z(0) +
∫t

0
f(y(š),y(š− τ))ds+

∫t
0
g(y(š),y(š− τ))dw(s), (3.17)

where š = tk for s ∈ [tk, tk+1). We call z(t) the continuous extension of the discrete processes zk.
Firstly, we investigate the strong convergence rate of the two classes of theta-Euler schemes for the

case θ ∈ (1/2, 1].

Theorem 3.4. Let Assumption 3.1 hold. Then for any ∆ < ∆∗ and each integer p > 2,

E
[

sup
t∈[0,T ]

|x(t) − z(t)|p
]
6 C∆p/2 (3.18)

and
E
[

sup
k∆∈[0,T ]

|x(tk) − yk|
p
]
6 C∆p/2 (3.19)

hold.

Before proving Theorem 3.4, we introduce some necessary lemmas.
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Lemma 3.5. For any ∆ < ∆∗ and each integer p > 2, we have

E
[

sup
t∈[0,T ]

|z(t)|p
]
6 C.

Proof. For any p > 2, by the integral form (3.17), we have

E
(

sup
s∈[0,t]

|z(s)|p
)
6 4p−1E|z(0)|p + 4p−1E

∣∣∣ ∫t
0
f(y(š),y(š− τ))ds

∣∣∣p
+ 4p−1E

(
sup
s∈[0,t]

∣∣∣ ∫s
0
g(y(ǔ,y(ǔ− τ)))dw(u)

∣∣∣p).
(3.20)

Resorting to (3.5) and Theorem 3.3, we can easily obtain

E

∣∣∣ ∫t
0
f(y(š),y(š− τ))ds

∣∣∣p 6 CE

∫t
0

∣∣∣f(y(š),y(š− τ))∣∣∣pds 6 C. (3.21)

Using the Burkholder-Davis-Gundy inequality, (3.5) and Theorem 3.3 gives

E
(

sup
s∈[0,t]

∣∣∣ ∫s
0
g(y(ǔ,y(ǔ− τ)))dw(u)

∣∣∣p) 6 cpE
( ∫t

0
|g(y(š),y(š− τ))|2ds

)p/2

6 C
∫t

0
E|g(y(š),y(š− τ))|pds 6 C,

(3.22)

where

cp =

 4, p = 2,[
pp+1/2(p− 1)p−1

]p/2
, p > 2.

Therefore, combining (3.21)-(3.22) and (3.20) yields

E sup
s∈[0,T ]

|z(s)|p 6 C.

Lemma 3.6. Assume all the conditions in Theorem 3.4 hold. Then for any p > 2, t ∈ [0, T ], ∆ < ∆∗,

E|x(t) − x(ť)|p 6 C∆p/2,

E|z(t) − z(ť)|p 6 C∆p/2,

and
E|z(ť) − y(ť)|p 6 C∆p/2 (3.23)

hold.

Proof. By Assumption 3.1, Theorem 3.3, and the Burkholder-Davis-Gundy inequality, it is easy to show

E|x(t) − x(ť)|p = CE|

∫t
ť

f(x(s), x(s− τ))ds|p +CE|

∫t
ť

g(x(s), x(s− τ))dw(s)|p

6 C∆p−1
∫t
ť

E|f(x(s), x(s− τ))|pds+CE

∣∣∣ ∫t
ť

|g(x(s), x(s− τ))|2ds
∣∣∣p/2

6 C∆p/2.

Similarly,

E|z(t) − z(ť)|p = C∆pE|f(y(ť),y(ť− τ))|p +CE|g(y(ť),y(ť− τ))(w(t) −w(ť))|p
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6 C∆pE|f(y(ť),y(ť− τ))|p +C∆p/2E|g(y(ť),y(ť− τ))|p 6 C∆p/2.

Applying z(ť) − y(ť) = −β2∆f(y(ť),y(ť − τ)) + β0∆f(y(
ˇ̌t),y(ˇ̌t − τ)) and Theorem 3.3 produces (3.23),

where ˇ̌t = tk−1 for t ∈ [tk, tk+1), k = 1, 2, . . ..

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. Define e(t) = x(t) − z(t). By (3.17) and (1.1), we have

e(t) = e(0) +
∫t

0
[f(x(s), x(s− τ)) − f(y(š),y(š− τ))]ds

+

∫t
0
[g(x(s), x(s− τ)) − g(y(š),y(š− τ))]dw(s).

Let F(s) = f(x(s), x(s− τ))− f(y(š),y(š− τ)) and G(s) = g(x(s), x(s− τ))−g(y(š),y(š− τ)). For any p > 2,
we have

|e(t)|p 6 3p−1|e(0)|p + 3p−1
∣∣∣ ∫t

0
F(s)ds

∣∣∣p + 3p−1
∣∣∣ ∫t

0
G(s)dw(s)

∣∣∣p. (3.24)

By Assumption 3.1, we can obtain that for any ∆ < ∆∗

E|F(s)|p 6 apE|x(s) − y(š)|p + E
(
V1(x(s− τ),y(š− τ))p|x(s− τ) − y(š− τ)|p

)
6 3p−1ap(E|x(s) − z(s)|p + E|z(s) − z(š)|p + E|z(š) − y(š)|p)

+
(

EV1(x(s− τ),y(š− τ))2pE|x(s− τ) − y(š− τ)|2p
)1/2

6 CE|e(s)|p +C
√

E|e(s− τ)|2p +C∆p/2

and

E|G(s)|p 6 bpE|x(s) − y(š)|p + E
(
V2(x(s− τ),y(š− τ))p|x(s− τ) − y(š− τ)|p

)
6 3p−1bp(E|x(s) − z(s)|p + E|z(s) − z(š)|p + E|z(š) − y(š)|p)

+
(

EV2(x(s− τ),y(š− τ))2pE|x(s− τ) − y(š− τ)|2p
)1/2

6 CE|e(s)|p +C
√

E|e(s− τ)|2p +C∆p/2,

where we also used Lemma 3.6 and Theorem 3.3. By the Hölder inequality, we have that for any ∆ < ∆∗

and r ∈ [0, T ]

E
[

sup
t∈[0,r]

∣∣∣ ∫t
0
F(s)ds

∣∣∣p] 6 CE

∫r
0
|F(s)|pds 6 C

∫r
0

E|e(s)|pds+C

∫r
0

√
E|e(s− τ)|2pds+C∆p/2. (3.25)

Resorting to the Burkholder-Davis-Gundy inequality and the Hölder inequality, we have that for any
∆ < ∆∗

E
[

sup
t∈[0,r]

∣∣∣ ∫t
0
G(s)dw(s)

∣∣∣p] 6 cpE
( ∫r

0
|G(s)|2ds

)p/2

6 cpT
p/2−1

∫r
0

E|G(s)|pds

6 C
∫r

0
E|e(s)|pds+C

∫r
0

√
E|e(s− τ)|2pds+C∆p/2,

(3.26)
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where

cp =

 4, p = 2,[
(p)p+1/2(p− 1)p−1

]p/2
, p > 4.

Combining (3.25), (3.26), and (3.24) produces that for any ∆ < ∆∗

E
[

sup
t∈[0,r]

|e(t)|p
]
6 C
∫r

0
E sup
u∈[0,s]

|e(u)|pds+C

∫r
0

√
E|e(s− τ)|2pds+C∆p/2.

Hence, the continuous Gronwall inequality gives that for any ∆ < ∆∗,

E
[

sup
t∈[0,r]

|e(t)|p
]
6 C
∫r

0

√
E|e(s− τ)|2pds+C∆p/2. (3.27)

For any p > 2, we define

pi = ([T/τ] + 2 − i)p2[T/τ]+1−i, i = 1, 2, . . . , [T/τ] + 1,

where [a] denotes the integer part of the real number a. It is easy to see that

2pi+1 < pi and p[T/τ]+1 = p, i = 1, 2, . . . , [T/τ]. (3.28)

Noting that E|e(s)|2p 6 C∆2p for s ∈ [−τ, 0] and any p > 0 since z(s) = x(s) − θ∆f(x(s), x(s − τ)) for
s ∈ [−τ, 0], we have from (3.27) that

E
[

sup
t∈[0,τ]

|e(t)|p1
]
6 C
∫τ

0

√
E|e(s− τ)|2p1ds+C∆p1/2 6 C∆p1/2, (3.29)

which together with (3.28), (3.29), and the Hölder inequality gives that for any ∆ < ∆∗,

E
[

sup
t∈[0,2τ]

|e(t)|p2
]
6 C
∫ 2τ

0

√
E|e(s− τ)|2p2ds+C∆p2/2

6 C
∫ 2τ

0

(
E|e(s− τ)|p1

)p2
p1 ds+C∆p2/2 6 C∆p2/2.

The desired assertion (3.18) then follows by repeating the previous procedures. Combining (3.18), Lemma
3.5, and zk = yk −β2f(yk,yk−m)∆−β0f(yk−1,yk−1−m)∆ gives (3.19).

Remark 3.7. Buckwar and Winkler [8] proved that under the global Lipschitz condition, the LTSM scheme
is mean square convergent, that is, supk∆∈[0,T ] E|yk − x(tk)|

2 6 C∆. Hence, Theorem 3.4 improves the
convergence results in [8]. We obtain the optimal strong convergence rate of the two-step schemes for
SDDEs with highly nonlinear delay variable. These convergence results also hold for SODEs with global
Lipschitz coefficients.

After the convergence rate of the two-step Maruyama schemes, we now establish their stability analy-
sis.

4. Exponential mean square stability

For the purpose of stability, without loss of generality, we assume f(0) = 0 and g(0) = 0. This shows
that SDE (1.1) admits a trivial solution. We also assume that f and g satisfy the following local Lipschitz
condition.
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Assumption 4.1. f and g satisfy the local Lipschitz condition, that is, for each j > 0 there exists a positive
constant Kj such that for any x,y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |ȳ| ∨ |ȳ| 6 j,

|f(x,y) − f(x̄, ȳ)| ∨ |g(x,y) − g(x̄, ȳ)| 6 Kj(|x− x̄|+ |y− ȳ|).

The local Lipschitz condition together with the linear growth condition or a class of monotone condi-
tion (for example, condition (4.1) below) may guarantee that Eq. (1.1) admits a global solution (see [21]).
Let us firstly present the following theorem which gives the stability criterion of the SDDE (1.1) (also see
[21]).

Theorem 4.2. Let Assumption 4.1 hold. If there exist nonnegative constants µ > σ > 0 such that for all x,y ∈ Rn,

2xT f(x,y) + |g(x,y)|2 6 −µ|x|2 + σ|y|2, (4.1)

then the solution to (1.1) has the property

E|x(t)|2 6 C(ϕ)e−γt,

where C(ϕ) is a positive constant dependent on the initial data ϕ, and γ is the unique root of equation

γ+ σeγτ − µ = 0.

This section aims to examine whether the two classes of two-step Maruyama schemes that can replicate
the exponential mean square stability of the exact solution to nonlinear SDDEs.

Theorem 4.3. Let all the conditions in Theorem 4.2 hold, and f satisfies the linear growth condition

|f(x,y)|2 6 K(|x|2 + |y|2). (4.2)

Then there exists a positive stepsize ∆∗∗ such that for any ∆ < ∆∗∗, STSM scheme (2.3) satisfies

E|zk|
2 6 C(x0)e

−γ∆k∆,

where γ∆ ∈ (0, (1/τ) log(µ/σ)) and satisfies
lim
∆→0

γ∆ = γ. (4.3)

Proof. By STSM scheme (2.3), we have

|zk+1|
2 6 |zk|

2 + 2zTkf(yk,yk−m)∆+ |g(yk,yk−m)∆wk|
2

+ |f(yk,yk−m)∆|2 + 2〈zk + f(yk,yk−m)∆,g(yk,yk−m)∆wk〉.
(4.4)

Note that zk = yk −β2f(yk,yk−m)∆+β0f(yk−1,yk−1−m)∆. Substituting this into (4.4) yields

|zk+1|
2 6 |zk|

2 + 2yTkf(yk,yk−m)∆− 2β0f(yk−1,yk−1−m)T f(yk,yk−m)∆2 + |g(yk,yk−m)∆wk|
2

+ (1 − 2β2)|f(yk,yk−m)∆|2 + 2〈zk + f(yk,yk−m)∆,g(yk,yk−m)∆wk〉

6 |zk|
2 − µ∆|yk|

2 + σ∆|yk−m|2 + |β0|K(|yk−1|
2 + |yk|

2 + |yk−1−m|2 + |yk−m|2)∆2

+ |1 − 2β2|K(|yk|
2 + |yk−m|2)∆2 +mk,

(4.5)

where mk = 2〈zk + f(yk,yk−m)∆,g(yk,yk−m)∆wk〉+ |g(yk,yk−m)|2(|∆wk|
2 − ∆). Note that Emk = 0.

Taking expectations on the both sides of inequality (4.5) produces

E|zk+1|
2 6 E|zk|

2 + [−µ+ (|β0|+ |1 − 2β2|)K∆]∆E|yk|
2 +K|β0|∆

2E|yk−1|
2

+ [σ+ (|β0|+ |1 − 2β2|)K∆]∆E|yk−m|2 +K|β0|∆
2E|yk−1−m|2.

Define µ̄∆ = µ− (|β0|+ |1 − 2β2|)K∆, σ̄∆ = σ+ (|β0|+ |1 − 2β2|)K∆. For any positive number O > 1, we
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have

O(k+1)∆E|zk+1|
2 −Ok∆E|zk|

2 6
(

1 −O−∆
)
O(k+1)∆E|zk|

2 − µ̄∆∆O
(k+1)∆E|yk|

2

+ σ̄∆∆O
(k+1)∆E|yk−m|2 +K|β0|∆

2O(k+1)∆
(

E|yk−1|
2 + E|yk−1−m|2

)
,

which implies

O(k+1)∆E|zk+1|
2 6 E|z0|

2 +
(

1 −O−∆
) k∑
j=0

O(j+1)∆E|zj|
2 + σ̄∆∆

k∑
j=0

O(j+1)∆E|yj−m|2

− µ̄∆∆

k∑
j=0

O(j+1)∆E|yj|
2 +K|β0|∆

2
k∑
j=0

O(j+1)∆E|yj−1|
2

+K|β0|∆
2
k∑
j=0

O(j+1)∆E|yj−1−m|2.

(4.6)

Noting that

|zj|
2 = |yj|

2 + 2∆yTj [β2f(yj,yj−m) +β0f(yj−1,yj−1−m)]

+ |β2f(yj,yj−m) +β0f(yj−1,yj−1−m)|2∆2

6 |yj|
2 +∆|yj|

2 + 2|β2f(yj,yj−m) +β0f(yj−1,yj−1−m)|2∆2

6 (1 +∆+ 4|β2|K∆
2)|yj|

2 + 4|β2|K∆
2|yj−m|2 + 4|β0|K∆

2(|yj−1|
2 + |yj−1−m|2),

then we have from (4.6) that

O(k+1)∆E|zk+1|
2 6 E|z0|

2 + (1 +∆+ 4|β2|K∆
2)(1 −O−∆)

k∑
j=0

O(j+1)∆E|yj|
2

+ [σ̄∆ + 4|β2|K∆]∆

k∑
j=0

O(j+1)∆E|yj−m|2 − µ̄∆∆

k∑
j=0

O(j+1)∆E|yj|
2

+ 5K|β0|∆
2
k∑
j=0

O(j+1)∆E|yj−1|
2 + 5K|β0|∆

2
k∑
j=0

O(j+1)∆E|yj−1−m|2.

(4.7)

Note that
k∑
j=0

O(j+1)∆|yj−m|2 = Oτ
−1∑

j=−m

O(j+1)∆|yj|
2 +Oτ

k−m∑
j=0

O(j+1)∆|yj|
2

6 Oτ
−1∑

j=−m

|yj|
2 +Oτ

k∑
j=0

O(j+1)∆|yj|
2,

(4.8)

k∑
j=0

O(j+1)∆E|yj−1|
2 = O∆|y−1|

2 +O∆
k−1∑
j=0

O(j+1)∆|yj|
2 6 O∆|y−1|

2 +O∆
k∑
j=0

O(j+1)∆|yj|
2, (4.9)

and
k∑
j=0

O(j+1)∆|yj−1−m|2 =

k−m−1∑
j=−m−1

O(j+m+2)∆|yj|
2 6 Oτ+∆

−1∑
j=−m

|yj|
2 +Oτ+∆

k∑
j=0

O(j+1)∆|yj|
2. (4.10)
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Let

h(O) = (1 +∆+ 4|β2|K∆
2)

1 −O−∆

∆
− µ̄∆ + (σ̄∆ + 4|β2|K∆)O

τ + 5|β0|K∆O
∆ + 5|β0|K∆O

∆+τ.

Hence, we can obtain from (4.7)-(4.10) that

O(k+1)∆E|zk+1|
2 6 C(ϕ) + h(O)∆

k∑
j=0

O(j+1)∆E|yj|
2, (4.11)

where C(ϕ) is a constant depending on the initial data ϕ. Let ∆∗∗ = (µ− σ)/[(12|β2|+ 2 + 8|β2|)K]. Then
for ∆ < ∆∗∗,

h(1) = −µ+ 2(|β0|+ |1 − 2β2|)K∆+ σ+ 4|β2|K∆+ 10|β0|K∆ 6 −µ+ σ+ (12|β0|+ 2 + 8|β2|)K∆ < 0.

Let Ō = (µ/σ)1/τ, then h(Ō) > µ− σŌτ = 0. Moreover, h ′(O) > 0 for all O ∈ (1, Ō). Therefore, for any
∆ < ∆∗∗, there exists a positive constant O∗(∆) ∈ (1, (µ/σ)1/τ) such that h(O∗(∆)) = 0 and h(O) < 0 for
O < O∗(∆). Let γ∆ = logO∗(∆). By (4.11), we have that for any ∆ < ∆∗∗,

eγ∆k∆E|zk|
2 6 C(ϕ).

It is easy to see from h(O∗(∆)) = 0 that limitation (4.3) holds.

Based on Theorem 4.3, we now investigate the exponential mean stability of the SLTSM scheme.

Theorem 4.4. Let all the conditions in Theorem 4.2 hold. If f satisfies the linear growth condition (4.2), then for
any ∆ < ∆∗∗, SLTE scheme (2.2) has the property

E|yk|
2 6 Ce−(γ∆−ε)k∆, (4.12)

where C is a positive constant, ∆∗∗ is defined in Theorem 4.3, γ∆ is defined in Theorem 4.3 and satisfies the limit
(4.3), and ε ∈ (0,γ∆) is a sufficiently small constant.

Proof. By Theorem 4.3, we have from (4.11) that for any fixed ∆ < ∆̄ and any sufficiently small ε,
h(e(γ∆−ε)) < 0 and

e(γ∆−ε)k∆E|zk|
2 6 C(ϕ) + h(e(γ∆−ε))∆

k∑
j=0

e(γ∆−ε)(j+1)∆E|yj|
2, ∀ k > 0.

Hence, there exists a constant C such that
∑k
j=0 e

(γ∆−ε)(j+1)∆E|yj|
2 6 C for any k > 0, which implies

(4.12).

Remark 4.5. Cao and Zhang [9] obtained the exponential mean square stability of LTSM scheme for linear
SDDE. Theorem 4.4 shows that the LSTM scheme can not only share the exponential mean square stability
of the exact solution, but also preserve the bound of Lyapunov exponent for sufficient small stepsize. The
existed works [5, 27] are devoted to the asymptotic mean square stability of the linear two-step Maruyama
schemes for the linear SODEs. For nonlinear SODEs (the delay vanishes), Theorem 4.4 further takes the
Lyapunov exponent of mean square stability into consideration.
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5. Concluding remark

In this paper, the split two-step Maruyama and linear two-step schemes have been considered for
nonlinear SDDEs. It is shown that the two classes of two-step Maruyama schemes converge strongly to
the exact solution of the SDDEs with highly nonlinear delay variables and the convergence rate is 0.5.
Exponential mean square stability and exponential decay rate of the two classes of two-step Maruyama
schemes are also investigated. It is proved that they can not only inherit the exponential mean square
stability of the exact solution, but also preserve the bound of the second moment Lyapunov exponent for
sufficient small stepsize, which may measure the decay rate of the numerical solutions. When the delay
vanishes, these results also hold for nonlinear SODEs.

Note that these convergence results are based on the global Lipschitz condition in the present states
of the coefficients. When β0 = 0 and β2 ∈ [0, 1], STSM and LTSM schemes are equivalent respectively
with the split step theta-Euler (SSTE) and stochastic linear theta-Euler (SLTE) schemes studied in [34].
Moreover, the strong convergence rate and exponential mean square stability of the theta-Euler schemes
were obtained for SDDEs with non-global Lipschitz condition in not only the delay states, but also the
present states. Hence, it is interesting to question whether the multi-step scheme can be applied to the
SDDEs or SODEs with non-global Lipschitz present states. And we hope to be able to discuss this question
elsewhere.
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