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Abstract

The notion of generalized contractions of rational type on a closed ball is introduced and used to establish some common
fixed point theorems for two, three and four mappings in complete ordered partial metric spaces. These results improve several
well-known, primary and conventional results. We give an example to illustrate the main idea of our results that there are
mappings which have only fixed points inside or on the closed ball instead of whole space. c©2017 All rights reserved.
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1. Introduction and preliminaries

A partial metric on a nonempty set X is a function p : X×X→ [0,∞) such that

(p1) x = y⇔ p(x, x) = p(x,y) = p(y,y);

(p2) p(x, x) 6 p(x,y);

(p3) p(x,y) = p(y, x);

(p4) p(x,y) 6 p(x, z) + p(z,y) − p(z, z).

Partial metrics were introduced in [16] as a generalization of the notion of metric to allow non-zero
self distance for the purpose of modeling partial objects in reasoning about data flow networks. The self
distance p(x, x) is to be understood as a quantification of the extent to which x is unknown. A partial
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metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X. Matthews
[16] proved an analogue of Banach’s fixed point theorem in partial metric spaces. After this remarkable
fixed point theorem, many authors took interest in partial metric spaces and its topological properties
and established many well-known fixed point results successfully (see [1, 2, 5, 6, 11]).

The study of fixed point theorems on contractions involving rational expression was coined by Dass
and Gupta [10]. In [17], Karapinar et al. gave partial metric version of theorem presented by Dass and
Gupta in [10]. Following Dass and Gupta, Almeida et al. [3] established some fixed point theorems on
contractions of rational type which generalize theorem presented by Dass and Gupta [10].

In this paper we work on more general contractive conditions of rational type and present several
fixed point theorems for one, two, three and four mappings in partial metric spaces. These results can
be applied to show the existence of equilibrium points of a dynamical system within or on the magnetic
field.

Consistent with [8, 9, 12–16], the following definitions and results will be needed in the sequel.
Throughout this paper, we denote (0,∞) by R+, [0,∞) by R+

0 , (−∞,+∞) by R and set of natural numbers
by N.

Let T : X → X be a mapping. A point x ∈ X is called a fixed point of T if x = T(x). Let x0 be an
arbitrarily chosen point in X. Define a sequence {xn} in X by a simple iterative method given by

xn+1 = T(xn), where n ∈ {0, 1, 2, · · · }.

Such a sequence is called a Picard iterative sequence and its convergence plays a very important role in
proving an existence of a fixed point of a mapping T .

Each partial metric p on X induces a T0 topology τ(p) on X which has as a base the family of open
balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x,y) < p(x, x) + ε} for all x ∈ X and ε > 0. Also
B(x0, r) = {y ∈ X : p(x,y) 6 p(x, x) + ε} is a closed ball in (X,p).

It is clear that p(x,y) = 0 implies x = y by (P1) and (P2). But if x = y, then p(x,y) may not be 0. A
basic example of a partial metric space is the pair (R+0 ,p), where p(x,y) = max{x,y} for all x,y ∈ R+0 .

Example 1.1 ([16]). If X = {[a,b] : a,b ∈ R,a 6 b} then p([a,b], [c,d]) = max{b,d}− min{a, c} defines a
partial metric p on X.

Definition 1.2 ([16]). Let (X,p) be a partial metric space. Then we have the following.

(a) A sequence {xn} in (X,p) converges to a point x ∈ X if and only if lim
n→∞p(xn, x) = p(x, x).

(b) A sequence {xn} in (X,p) is called a Cauchy sequence if lim
n,m→∞p(xn, xm) exists and is finite.

(c) (X,p) is said to be complete, if for a Cauchy sequence {xn} in X, there exists some z ∈ X such that

lim
n,m→∞p(xn, xm) = lim

n→∞p(xn, z) = p(z, z).

(d) If (X,p) is a partial metric space, then ps(x,y) = 2p(x,y) − p(x, x) − p(y,y), x,y ∈ X, is a metric on
X.

Lemma 1.3 ([16]). Let (X,p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X,ps).
(b) (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore, lim

n→∞ps(xn, z) = 0 if and
only if p(z, z) = lim

n→∞p(xn, z) = lim
n,m→∞p(xn, xm).

Definition 1.4 ([4]). Let X be a nonempty set. Then (X,�,p) is called an ordered partial metric space if

(i) p is a partial metric on X; and
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(ii) � is a partial order on X.

Definition 1.5. Let (X,�) be a partial ordered set. Then x,y ∈ X are called comparable if x � y or y � x
holds. We define ∇ = {(x,y) ∈ X×X | x and y are comparable}.

Definition 1.6. Let X be a nonempty set and let T , f : X → X be mappings. A point y ∈ X is called a
point of coincidence of T and f if there exists a point x ∈ X such that y = T(x) = f(x). The mappings T , f
are said to be weakly compatible if they commute at their coincidence point (i.e., Tf(x) = fT(x) whenever
T(x) = f(x)).

We require the following lemmas.

Lemma 1.7 ([13]). Let X be a nonempty set and f : X→ X a mapping. Then there exists a subset E ⊂ X such that
f(E) = f(X) and f : E→ X is one to one.

Lemma 1.8 ([7]). Let X be a nonempty set and let S, T , f : X → X have a unique point of coincidence v in X. If
(S, f) and (T , f) are weakly compatible, then S, T and f have a unique common fixed point.

2. Common fixed point theorems for two mappings

This section contains some common fixed point theorems for a pair of generalized contractions of
rational type on a closed ball in an ordered partial metric space. We begin with the following definition.

Definition 2.1. Let (X,�,p) be a complete ordered partial metric space and Sg, Tg : X → X be two
mappings. We say that (Sg, Tg) is a pair of generalized contractions of rational type on a closed ball if
they satisfy the following condition:

p(Sg(x), Tg(y)) 6 λmax
{
p(x,y),

p(x,Sg(x))p(y, Tg(y))
1 + p(x,y)

,
p(x,Sg(x))p(y, Tg(y))

1 + p(Sg(x), Tg(y))

}
(2.1)

for all (x,y) ∈ (B(x0, r) ×B(x0, r))∩∇, λ ∈ [0, 1) and for any x0 ∈ X.

Theorem 2.2. Let (X,�,p) be a complete ordered partial metric space and Sg, Tg : X → X be two mappings such
that the following conditions hold.

(1) (Sg, Tg) is a pair of generalized contractions of rational type on a closed ball;

(2) Sg, Tg are nonincreasing mappings such that x0 � Sg(x0);

(3) p(x0,Sg(x0)) 6 (1 − λ)[r+ p(x0, x0)].

Then there exists a point x∗ such that p(x∗, x∗) = 0. Also if for a nonincreasing sequence {xn} in B(x0, r), {xn}→ u

implies that u � xn, then x∗ = Sg(x
∗) = Tg(x

∗). Moreover, x∗ is unique if any two points x,y in B(x0, r) are
comparable.

Proof. Let x0 be any initial point in X and choose a point x1 in X such that x1 = Sg(x0). Since Sg(x0) � x0,
(x1, x0) ∈ ∇ and let x2 = Tg(x1). Since x1 � Tg(x1), (x2, x1) ∈ ∇. Continuing this process and having
chosen xn in X such that

x2i+1 = Sg(x2i) and x2i+2 = Tg(x2i+1), where i = 0, 1, 2, · · · ,

we obtain (xn+1, xn) ∈ ∇ for all n ∈ N. We claim that xn ∈ B(x0, r) for all n ∈ N. By assumption (3), we
have

p(x0,Sg(x0)) 6 (1 − λ)[r+ p(x0, x0)]
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6 r+ p(x0, x0).

It follows that x1 ∈ B(x0, r). Let x2, · · · , xj ∈ B(x0, r) for some j ∈ N. If j = 2i+ 1, then (x2i+1, x2i) ∈
(B(x0, r) ×B(x0, r))∩∇, where i = 0, 1, 2, · · · j−1

2 . By (2.1), we obtain

p(x2i+1, x2i+2) = p(Sg(x2i), Tg(x2i+1))

6 λmax


p(x2i, x2i+1),

p(x2i,Sg(x2i))p(x2i+1, Tg(x2i+1))

1 + p(x2i, x2i+1)
,

p(x2i,Sg(x2i))p(x2i+1, Tg(x2i+1))

1 + p(Sg(x2i), Tg(x2i+1))


= λmax


p(x2i, x2i+1),

p(x2i, x2i+1)p(x2i+1, x2i+2)

1 + p(x2i, x2i+1)
,

p(x2i, x2i+1)p(x2i+1, x2i+2)

1 + p(x2i+1, x2i+2)


6 λmax {p(x2i, x2i+1),p(x2i+1, x2i+2)} ,

which implies that

p(x2i+1, x2i+2) 6 λp(x2i, x2i+1)

6 λ2p(x2i−1, x2i) 6 · · · 6 λ2i+1p(x0, x1).
(2.2)

If j = 2i+ 2, then x1, x2, · · · , xj ∈ B(x0, r) and (x2i+2, x2i+1) ∈ (B(x0, r) ×B(x0, r))∩∇, (i = 0, 1, 2, · · · , j−2
2 ).

We obtain
p(x2i+2, x2i+3) 6 λ

2i+2p(x0, x1). (2.3)

Thus from (2.2) and (2.3), we have

p(xj, xj+1) 6 λ
jp(x0, x1), for some j ∈ N. (2.4)

Now consider

p(x0, xj+1) 6 p(x0, x1) + · · ·+ p(xj, xj+1) − [p(x1, x1) + · · ·+ p(xj, xj)]
6 p(x0, x1) + · · ·+ λjp(x0, x1) (by (2.4))

= p(x0, x1)[1 + · · ·+ λj−1 + λj]

6 (1 − λ)[r+ p(x0, x0)]
(1 − λj+1)

1 − λ

6 r+ p(x0, x0),

which gives xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N. Also (xn+1, xn) ∈ (B(x0, r)× B(x0, r)) ∩∇
for all n ∈ N. It implies that

p(xn, xn+1) 6 λ
np(x0, x1), ∀n ∈ N. (2.5)

From (p2), we have

p(xn, xn) 6 p(xn, xn+1)

6 λnp(x0, x1) −→ 0, as n→∞.
(2.6)

Moreover,

ps(xn+1, xn) = 2p(xn, xn+1) − p(xn, xn) − p(xn+1, xn+1)

6 2p(xn, xn+1)

6 2λnp(x0, x1). (by (2.5))
(2.7)
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Thus by the triangular inequality, we get

ps(xn+k, xn) 6 ps(xn+k, xn+k−1) + · · ·+ ps(xn+1, xn)

6 2λn+k−1p(x0, x1) + · · ·+ 2λnp(x0, x1) (by (2.7))

= 2λnp(x0, x1)[λ
k−1 + λk−2 + · · ·+ 1]

6 2λnp(x0, x1)
(1 − λk)

1 − λ
→ 0, as n→∞.

Hence the sequence {xn} is a Cauchy sequence in (B(x0, r),ps). By Lemma 1.3, {xn} is a Cauchy sequence
in (B(x0, r),p). Therefore, there exists a point x∗ ∈ B(x0, r) with lim

n→∞ xn = x∗. Also lim
n→∞ps(xn, x∗) = 0.

Now by Lemma 1.3 and (2.6), we have

p(x∗, x∗) = lim
n→∞p(xn, x∗) = lim

n,m→∞p(xn, xm) = 0. (2.8)

In addition, by the given assumption, xn → x∗ as n→∞ implies that (x∗, xn) ∈ ∇. Also,

(x∗, x2n+1) ∈ (B(x0, r)×B(x0, r))∩∇.

Then

p(x∗,Sg(x∗)) 6 p(x∗, x2n+2) + p(x2n+2,Sg(x∗)) − p(x2n+2, x2n+2)

6 p(x∗, x2n+2) + λmax


p(x∗, x2n+1),
p(x∗,Sg(x∗))p(x2n+1, Tg(x2n+1))

1 + p(x∗, x2n+1)
,

p(x∗,Sg(x∗))p(x2n+1, Tg(x2n+1))

1 + p(Sg(x∗), Tg(x2n+1))

 .

On taking limit n→∞ and by using (2.5) and (2.8), we obtain

p(x∗,Sg(x∗)) 6 0,

and x∗ = Sg(x∗).
Similarly, by using

p (x∗, Tg(x∗)) 6 p(x∗, x2n+1) + p(x2n+1, Tg(x∗)) − p(x2n+1, x2n+1),

we can show that x∗ = Tg(x
∗). Hence Sg and Tg have a common fixed point in B(x0, r). In order to

show the uniqueness of fixed point, suppose on the contrary that y is another point in B(x0, r) such that
y = Sg(y) = Tg(y). Since x∗ � y,

p(x∗,y) = p(Sg(x∗), Tg(y))

6 λmax


p(x∗,y),

p(x∗,Sg(x∗))p(y, Tg(y))
1 + p(x∗,y)

,

p(x∗,Sg(x∗))p(y, Tg(y))
1 + p(Sg(x∗), Tg(y))


6 λmax

{
p(x∗,y),

p(x∗, x∗)p(y,y)
1 + p(x∗,y)

,
p(x∗, x∗)p(y,y)

1 + p(x∗,y)

}
6 λp(x∗,y),

which implies p(x∗,y) = 0. Now, using the properties (p1) and (p2), we have x∗ = y, as desired.
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In Theorem 2.2, the assumption (3) is imposed to restrict the contractive condition (2.1) only for x,y
in B(x0, r). The following example explains Theorem 2.2 and describes the importance of restrictions
imposed in Theorem 2.2.

Example 2.3. Let X = R+0 be endowed with order x � y if p(x, x) 6 p(y,y) and let p : X×X→ R+0 ∪ {0} be
the complete ordered partial metric on X defined by p(x,y) = max{x,y}.

Sg(x) =

{ x

13
, if x ∈ [0, 1],

x− 4
7 , if x ∈ (1,∞),

and

Tg(x) =

{ x

26
, if x ∈ [0, 1],

x− 3
5 , if x ∈ (1,∞).

Clearly, Sg and Tg are nonincreasing mappings. Take λ = 3
7 , x0 = 1

2 , r = 1
2 . Then we have p(x0, x0) =

max{1
2 , 1

2 } =
1
2 and B(x0, r) = [0, 1]. Also

(1 − λ)[r+ p(x0, x0)] = (1 −
3
7
)[

1
2
+

1
2
] =

4
7

,

p(x0,Sg(x0)) = p(
1
2

,Sg
1
2
) = p(

1
2

,
1

26
) = max{

1
2

,
1
26

} =
1
2
<

4
7

.

Without loss of generality we can assume that x > y and for x,y ∈ (1,∞),

p(Sg(x), Tg(y)) = max{x−
4
7

,y−
3
5
} = x−

4
7

>
3
7

max

{
x,

xy

1 + x
+

xy
3
7 + x

}
,

p(Sg(x), Tg(y)) > λmax


p(x,y),

p(x,Sg(x))p(y, Tg(y))
1 + p(x,y)

,

p(x,Sg(x))p(y, Tg(y))
1 + p(Sg(x), Tg(y))

 .

So the contractive condition does not hold on X. Now if x,y ∈ B(x0, r), then

p(Sg(x), Tg(y)) = max{
x

13
,
y

26
} =

1
13

max{x, 0.5y}

6
3
7
[x]

=
3
7

max
{
x,

xy

1 + x
+

xy
x
13 + 1

}

= λmax


p(x,y),

p(x,Sg(x))p(y, Tg(y))
1 + p(x,y)

,

p(x,Sg(x))p(y, Tg(y))
1 + p(Sg(x), Tg(y))

 .

Therefore, all the conditions of Theorem 2.2 are satisfied. Moreover, x = 0 is a common fixed point of Sg
and Tg.

Corollary 2.4. Let (X,�,p) be a complete ordered partial metric space, x0, x,y ∈ X, r > 0 and Sg : X → X be a
nonincreasing mapping. Suppose that there exists λ ∈ [0, 1) such that the following conditions hold:
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(1) Sg is a generalized contraction of rational type on a closed ball;

(2) Sg is a nonincreasing mapping such that x0 � Sg(x0);

(3) p(x0,Sg(x0)) 6 (1 − λ)[r+ p(x0, x0)].

Then there exists a point x∗ such that p(x∗, x∗) = 0. Also, if for a nonincreasing sequence {xn} in B(x0, r), {xn}→ u

implies that u � xn, then x∗ = Sg(x∗). Moreover, x∗ is unique if any two points x,y in B(x0, r) are comparable.

Proof. Setting Tg = Sg in Theorem 2.2, we get a unique point x∗ ∈ B(x0, r) such that x∗ = Sg(x∗).

The following result relaxes the condition (3) of Theorem 2.2 but imposes the condition (2.1) for all
comparable elements in the whole space X.

Corollary 2.5. Let (X,�,p) be a complete ordered partial metric space and Sg, Tg : X → X be two nonincreasing
mappings. Suppose that there exists λ ∈ [0, 1) such that the following condition holds for all (x,y) ∈ ∇

p(Sg(x), Tg(y)) 6 λmax


p(x,y),

p(x,Sg(x))p(y, Tg(y))
1 + p(x,y)

,

p(x,Sg(x))p(y, Tg(y))
1 + p(Sg(x), Tg(y))

 .

Then, there exists a point x∗ such that p(x∗, x∗) = 0. Also, if for a nonincreasing sequence {xn} in X, {xn} → u

implies that u � xn, then x∗ = Sg(x∗) = Tg(x∗).

Corollary 2.6. Let (X,p) be a complete partial metric space and Sg, Tg : X→ X be two mappings such that

p(Sg(x), Tg(y)) 6 λmax


p(x,y),

p(x,Sg(x))p(y, Tg(y))
1 + p(x,y)

,

p(x,Sg(x))p(y, Tg(y))
1 + p(Sg(x), Tg(y))


for all x,y ∈ B(x0, r). Then, there exists a point x∗ such that p(x∗, x∗) = 0 and x∗ = Sg(x∗) = Tg(x∗). Moreover,
x∗ is a unique common fixed point of Sg and Tg.

3. Common fixed point theorems for three and four mappings

Now we apply Theorem 2.2 to obtain a unique common fixed point of three mappings on a closed
ball in complete partial ordered metric space. The technique and style of our proof is quite smart and
innovative.

Theorem 3.1. Let (X,�,p) be an ordered partial metric space, x0, x,y ∈ X, r > 0 and f be a nonincreasing
mapping on X such that Sg(X) ∪ Tg(X) ⊂ f(X), B(f(x0), r) ⊆ f(X) and (Tg(x), f(x)), (Sg(x), f(x)) ∈ ∇. Assume
that Sg and Tg are self-mappings which satisfy the following condition

p(Sg(x), Tg(y)) 6 λmax


p(f(x), f(y)),

p(f(x),Sg(x))p(f(y), Tg(y))
1 + p(f(x), f(y))

,

p(f(x),Sg(x))p(f(y), Tg(y))
1 + p(Sg(x), Tg(y))

 (3.1)

for all (f(x), f(y)) ∈ (B(f(x0), r)×B(f(x0), r))∩∇, λ ∈ [0, 1). In addition,

p(f(x0), Tg(x0)) 6 (1 − λ)[r+ p(f(x0), f(x0))]. (3.2)

If for a nonincreasing sequence {xn} in B(f(x0), r), {xn}→ u implies that u � xn, f(X) is a complete subspace of X
and (Sg, f) and (Tg, f) are weakly compatible, then Sg, Tg and f have a common fixed point f(z) in B(f(x0), r) with
p(f(z), f(z)) = 0.
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Proof. Due to Lemma 1.7, there exists E ⊂ X such that f(E) = f(X) and f : E→ X is one-to-one. Now since
Sg(X) ∪ Tg(X) ⊂ f(X), we define two mappings φ,ψ : f(E) → f(E) by φ(fx) = Sg(x) and ψ(fx) = Tg(x),
respectively. Since f is one-to-one on E, φ,ψ are well-defined. Since (Sg(x), f(x)) ∈ ∇ implies that
(φ(fx), fx) ∈ ∇ and (Tg(x), f(x)) ∈ ∇ implies that (ψ(fx), fx) ∈ ∇, φ and ψ are nonincreasing. Now
f(x0) ∈ B(f(x0), r) ⊆ f(X) and so f(x0) ∈ f(X). Let yo = f(x0). Choose a point y1 in f(X) such that
y1 = ψ(y0). Since ψ(yo) � yo, (y1,yo) ∈ ∇ and let y2 = φ(y1). Now φ(y1) � y1 gives (y2,y1) ∈ ∇.
Continuing this process and having chosen yn in f(X) such that

y2i+1 = ψ(y2i) and y2i+2 = φ(y2i+1), where i = 0, 1, 2, · · · ,

then y2i+1 = ψ(y2i) � y2i implies (y2i+1,y2i) ∈ ∇. By a similar argument of Theorem 2.2, we can get
yn ∈ B(f(x0), r). Due to (3.2), we have

p(f(x0),ψ(f(x0))) 6 (1 − λ)[r+ p(f(x0), f(x0))].

By (3.1), (f(x), f(y)) ∈ (B(f(x0), r) ×B(f(x0), r))∩∇ and

p(φ(f(x)),ψ(f(y))) 6 λmax


p(f(x), f(y)),

p(f(x),φ(f(x)))p(f(y),ψ(f(y)))
1 + p(f(x), f(y))

,

p(f(x),φ(f(x)))p(f(y),ψ(f(y)))
1 + p(φ(f(x)),ψ(f(y)))

 .

Since f(X) is a complete space, all the conditions of Theorem 2.2 are satisfied, and we deduce that there
exists a common fixed point f(z) ∈ B(f(x0), r) of φ and ψ. Also p(f(z), f(z)) = 0. Now f(z) = φ(fz) = ψ(fz)
or f(z) = Sg(z) = Tg(z) = f(z). Thus f(z) is the point of coincidence of Sg, Tg and f. Let v ∈ B(f(x0), r) be
another point of coincidence of f,Sg and Tg. Then, there exists u ∈ B(f(x0), r) such that v = f(u) = Sg(u) =
Tg(u), which implies that f(u) = φ(f(u)) = ψ(f(u)). This contradicts the fact that f(z) ∈ B(f(x0), r) is a
unique common fixed point of φ and ψ. Hence v = f(z). Thus Sg, Tg and f have a unique point of
coincidence f(z) ∈ B(f(x0), r). Now since (Sg, f) and (Tg, f) are weakly compatible, by Lemma 1.8, f(z) is
a unique common fixed point of Sg, Tg and f.

Now we can apply Corollary 2.5 to obtain a unique common fixed point result of three mappings in a
complete partial ordered metric space.

Corollary 3.2. Let (X,�,p) be an ordered partial metric space and f be a nonincreasing mapping on X such that
Sg(X)∪ Tg(X) ⊂ f(X) and (Tg(x), f(x)), (Sg(x), f(x)) ∈ ∇. Assume that Sg, Tg are self-mappings on X satisfying
the following contractive condition

p(Sg(x), Tg(y)) 6 λmax


p(f(x), f(y)),

p(f(x),Sg(x))p(f(y), Tg(y))
1 + p(f(x), f(y))

,

p(f(x),Sg(x))p(f(y), Tg(y))
1 + p(Sg(x), Tg(y))


for all (f(x), f(y)) ∈ ∇ and λ ∈ [0, 1). Assume that, for a nonincreasing sequence {xn} in f(X), {xn} → u implies
that u � xn and f(X) is a complete subspace of X. In addition, if (Sg, f) and (Tg, f) are weakly compatible, then
Sg, Tg and f have a unique common fixed point f(z) in f(X) with p(f(z), f(z)) = 0.

In the following theorem, we establish the existence of a unique common fixed point of four mappings
on a closed ball in a complete partial metric space.

Theorem 3.3. Let (X,p) be a partial metric space, x0, x,y ∈ X, r > 0 and f be self-mapping on X such that
Sg(X), Tg(X) ⊂ f(X) = φ(X) and B(f(x0), r) ⊆ f(X). Assume that Sg and Tg are self-mappings which satisfy the
following conditions

p (Sg(x), Tg(y)) 6 λmax


p(f(x),φ(y)),

p(f(x),Sg(x))p(φ(y), Tg(y))
1 + p(f(x),φ(y))

,

p(f(x),Sg(x))p(φ(y), Tg(y))
1 + p(Sg(x), Tg(y))

 (3.3)
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for all f(x), f(y) ∈ B(f(x0), r), where λ ∈ [0, 1) and

p(f(x0),Sg(x0)) 6 (1 − λ)[r+ p(f(x0), f(x0))]. (3.4)

If f(X) is a complete subspace of X and (Sg, f) and (Tg,φ) are weakly compatible, then Sg, Tg, f and φ have a
unique common fixed point f(z) in B(f(x0), r) with p(f(z), f(z)) = 0.

Proof. Due to Lemma 1.7, there exist E1,E2 ⊂ X such that f(E1) = f(X) = φ(X) = φ(E2), f : E1 →
X,φ : E2 → X are one to one. Now define the mappings Π,Θ : f(E1) → f(E1) by Π(f(x)) = Sg(x) and
Θ(g(x)) = Tg(x), respectively. Since f,φ are one to one on E1 and E2 respectively, the mappings Π,Θ are
well-defined. Since f(x0) ∈ B(f(x0), r) ⊆ f(X), f(x0) ∈ f(X). Let yo = f(x0). Choose a point y1 in f(X) such
that y1 = Π(yo) and let y2 = Θ(y1). Continuing this process and having chosen yn in f(X) such that

y2i+1 = Π(y2i) and y2i+2 = Θ(y2i+1), where i = 0, 1, 2, · · · ,

and by a similar argument of Theorem 2.2, we can get yn ∈ B(f(x0), r). Also by (3.4), we have

p(f(x0),Π(f(x0))) 6 (1 − λ)[r+ p(f(x0), f(x0))].

By (3.3), for f(x),φ(y) ∈ B(f(x0), r), we have

p (Π(f(x)),Θ(φ(y))) 6 λmax


p(f(x),φ(y)),

p(f(x),Π(f(x)))p(φ(y),Θ(φ(y)))
1 + p(f(x),φ(y))

,

p(f(x),Π(f(x)))p(φ(y),Θ(φ(y)))
1 + p(Π(f(x)),Θ(φ(y)))

 .

Since f(X) is a complete space, all the conditions of Corollary 3.2 are satisfied, and we deduce that there
exists a unique common fixed point f(z) ∈ B(f(x0), r) of Π and Θ. Further Π and Θ have no fixed point
other than f(z). Also p(f(z), f(z)) = 0. Now f(z) = Π(f(z)) = Θ(f(z)) or f(z) = Sg(z) = f(z). Thus f(z)
is a point of coincidence of f and Sg. Let w ∈ B(f(x0), r) be another point of coincidence of Sg and f.
Then, there exists u ∈ B(f(x0), r) such that w = f(u) = Sg(u), which implies that f(u) = Π(f(u)). This
contradicts the fact that f(z) ∈ B(f(x0), r) is a unique fixed point of Π. Hence w = f(z). Thus Sg and f have
a unique point of coincidence f(z) ∈ B(f(x0), r). Since (Sg, f) are weakly compatible, by Lemma 1.8, f(z)
is a unique common fixed point of Sg and f. Since f(X) = φ(X), there exists v ∈ X such that f(z) = φ(v).
Now we have

Π(f(z)) = Θ(f(z)) = f(z)⇒ Π(φ(v)) = Θ(φ(v)) = φ(v)⇒ Tg(v) = φ(v)

and thus φ(v) is a point of coincidence of Tg and φ. Now

Tg(x) = φ(x)⇒ Θ(φ(x)) = φ(x).

This implies that φ(v) = φ(x). Since Tg and φ are weakly compatible, we obtain a unique common fixed
point φ(v) for Tg and φ. But φ(v) = f(z). Thus, Sg, Tg, φ and f have a unique common fixed point
f(z) ∈ B(f(x0), r).
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