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Abstract

Let Ω be a set in the complex plane C. Also let p(z) be analytic in the upper half-plane ∆ = {z : z ∈ C and =(z) > 0} and
suppose that ψ : C3 ×∆ → C. In this paper, we investigate the problem of determining properties of functions p(z) that satisfy
the following second-order differential superordination:

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
.

Applications of these results to second-order differential superordination for analytic functions in ∆ are also presented. c©2017
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1. Introduction

Let ∆ denote the upper half-plane, that is,

∆ = {z : z ∈ C and =(z) > 0},

and let H[∆] denote the class of functions f : ∆→ C which are analytic in ∆ and which satisfy the so-called
hydrodynamic normalization (see [1, 13, 17])

lim
∆3z→∞[f(z) − z] = 0.
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Also let S[∆] denote the class of all functions in H[∆] which are univalent in ∆. Various basic properties
concerning functions belonging to the class S[∆] were developed in a series of articles (see, for details,
[10, 18, 19]).

A function f ∈ H[∆], with f(z) 6= 0, is said to be starlike in ∆ if and only if

=

(
f ′(z)

f(z)

)
< 0 (z ∈ ∆).

We denote by S∗[∆] the subclass of H[∆] consisting of functions which are starlike in ∆. We note that, the
functions in the class S∗[∆] have the property 0 /∈ f(∆).

A function f ∈ H[∆], with f(z) 6= z and f ′(z) 6= 0, is said to be convex in ∆ if and only if

=

(
f ′′(z)

f ′(z)

)
> 0 (z ∈ ∆).

We denote by K[∆] the subclass of H[∆] consisting of functions which are convex in ∆. The classes S∗[∆]
and K[∆] were introduced by Stankiewicz [17].

We first need to recall the notion of subordination in the upper half-plane.
Let f and g be members of the class H[∆]. The function f is said to be subordinate to g, or g is said to

be superordinate to f, if there exists a function ϕ ∈ H[∆], with ϕ[∆] ⊂ ∆, such that

f(z) = g
(
ϕ(z)

)
(z ∈ ∆).

In such a case, we write
f ≺ g or f(z) ≺ g(z) (z ∈ ∆).

Furthermore, if the function g is univalent in ∆, then we have the following equivalence ([14]):

f(z) ≺ g(z) (z ∈ ∆)⇐⇒ f(∆) ⊂ g(∆).

Let Ω be any set in the complex plane C. Also let p(z) be analytic in ∆ and suppose that ψ : C3×∆→
C. Răducanu and Pascu [14] have extended the theory of second-order differential subordination in the
unit disk U to the upper half-plane ∆ by using methods similar to those used in the unit disk introduced
by Miller and Mocanu [11]. They determined properties of functions p(z) that satisfy the following
second-order differential subordination:{

ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
⊂ Ω.

Recently, Tang et al. [20] (see also [22]) have considered the applications of these results to second-
order differential subordination for analytic functions in ∆.

In the following, we will list some definitions and theorem, which are required in our next investiga-
tions.

Definition 1.1 ([14]). Let ψ : C3 ×∆ → C and the function h(z) be univalent in ∆. If the function p(z) is
analytic in ∆ and satisfies the following second-order differential subordination:

ψ
(
p(z),p ′(z),p ′′(z); z

)
≺ h(z) (z ∈ ∆), (1.1)

then p(z) is called a solution of the differential subordination. A univalent function q(z) is called a
dominant of the solutions of the differential subordination or, more simply, a dominant if p(z) ≺ q(z) for
all p(z) satisfying Eq. (1.1). A dominant q̃(z) that satisfies the following condition:

q̃(z) ≺ q(z) (z ∈ ∆)

for all dominants q(z) of Eq. (1.1) is said to be the best dominant.
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Definition 1.2 ([11, p. 403, Definition 8.3i]). Let Q(∆) denote the set of functions q ∈ H[∆] that are analytic
and injective on ∆\E(q), where

E(q) =

{
ξ ∈ ∂∆ : lim

z→ξ
q(z) =∞} ,

and are such that q ′(ξ) 6= 0 for ξ ∈ ∂∆\E(q).

Definition 1.3 ([14]). Let Ω be a set in C and q ∈ Q(∆). The class of admissible functions Ψ∆[Ω,q] consists
of those functions ψ : C3 ×∆→ C that satisfy the following admissibility condition:

ψ(r, s, t; z) /∈ Ω

whenever

r = q(ξ), s = kq ′(ξ) and =

(
t

q ′(ξ)

)
= k2=

(
q ′′(ξ)

q ′(ξ)

)
,

where z ∈ ∆, ξ ∈ ∂∆ \ E(q) and k = 0.
If ψ : C2 ×∆→ C, then the above admissibility condition reduces to the following form:

ψ(q(ξ),kq ′(ξ); z) /∈ Ω,

where z ∈ ∆, ξ ∈ ∂∆ \ E(q) and k = 0.

Theorem 1.4 ([14]). Let ψ ∈ Ψ∆[Ω,q] and p ∈ H[∆]. If

ψ
(
p(z),p ′(z),p ′′(z); z

)
∈ Ω (z ∈ ∆),

then
p(z) ≺ q(z) (z ∈ ∆).

Following the theory of second-order differential superordinations in the unit disk, which was intro-
duced by Miller and Mocanu [12], Tang et al. [22] considered the dual problem of determining properties
of functions p(z) that satisfy the following second-order differential superordination:

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
.

In other words, we determine the conditions on Ω, Σ, and ψ for which the following implication holds:

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
=⇒ Σ ⊂ p(∆), (1.2)

where Σ is any set in C.
If either Ω or Σ is a simply-connected domain, then Eq. (1.2) can be rephrased in terms of superor-

dination. If p(z) is univalent in ∆, and if Σ is a simply-connected domain with Σ 6= C, then there is a
conformal mapping q(z) of ∆ onto Σ such that q(0) = p(0). In this case, Eq. (1.2) can be rewritten as
follows:

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
=⇒ q(z) ≺ p(z) (z ∈ ∆). (1.3)

If Ω is also a simply-connected domain with Ω 6= C, then there is a conformal mapping h of ∆ onto Ω
such that h(0) = ψ

(
p(0), 0, 0; 0

)
. In addition, if the function ψ

(
p(z),p ′(z),p ′′(z); z

)
is univalent in ∆, then

Eq. (1.3) can be rewritten as

h(z) ≺ ψ
(
p(z),p ′(z),p ′′(z); z

)
(z ∈ ∆) =⇒ q(z) ≺ p(z) (z ∈ ∆).

There are three key ingredients in the implication relationship Eq. (1.3): the differential operator ψ, the
set Ω and the“dominating” function q(z). If two of these entities were given, one would hope to find
conditions on the third entity so that Eq. (1.3) would be satisfied. In this article, we start with a given set
Ω and a given function q(z), and determine a set of “admissible” operators ψ so that Eq. (1.3) holds true.

We first introduce the following definition.
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Definition 1.5. Let ψ : C3 × ∆ → C and the function h(z) be analytic in ∆. If the functions p(z) and
ψ
(
p(z),p ′(z),p ′′(z); z

)
are univalent in ∆ and satisfy the following second-order differential superordina-

tion:

h(z) ≺ ψ
(
p(z),p ′(z),p ′′(z); z

)
(z ∈ ∆), (1.4)

then p(z) is called a solution of the differential superordination. An analytic function q(z) is called a
subordinant of the solution of the differential superordination or, more simply, a subordinant if q(z) ≺
p(z) for p(z) satisfying Eq. (1.4). A univalent subordinant q̃(z) that satisfies the following condition:

q(z) ≺ q̃(z) (z ∈ ∆)

for all subordinants q(z) of Eq. (1.4) is said to be the best subordinant. We note that the best subordinant
is unique up to a rotation of ∆.

For Ω a set in C, with ψ and p(z) as given in Definition 1.5, we suppose that Eq. (1.4) is replaced by

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
.

Although this more general situation is a “differential containment”, yet we also refer to it as a differential
superordination, and the definitions of solution, subordinant and best subordinant as given above can be
extended to this more general case.

We will use the following lemma [11, p. 405, Lemma 8.3k] from the theory of second-order differential
subordinations in ∆ to determine the subordinants of second-order differential superordinations in ∆.

Lemma 1.6 ([11]). Let q ∈ H[∆] and p ∈ Q(∆). If q(z) is not subordinate to p(z), then there exist points
z0 = x0 + iy0 ∈ ∆ and ξ0 ∈ ∂∆ \ E(p), and an m > 0, such that

(i) q(z0) = p(ξ0);
(ii) q(∆0) ⊂ p(∆), where ∆y0 = {z : z ∈ C and =(z) > y0};

(iii) q ′(z0) = mp(ξ0);

(iv) =
(
q ′′(z0)
q ′(z0)

)
= m2={

p ′′(ξ0)
q ′(z0)

}.

2. Admissible functions and a fundamental result

In this section, we first define the class of admissible functions referred to in the preceding section.

Definition 2.1. Let Ω be a set in C and q ∈ H[∆] with q ′(z) 6= 0. The class of admissible functions
Ψ ′∆[Ω,q] consists of those functions ψ : C3 ×∆→ C that satisfy the following admissibility condition:

ψ(r, s, t; ξ) ∈ Ω,

whenever

r = q(z), s =
q ′(z)

m
and =

(
t

q ′(z)

)
5

1
m2=

(
q ′′(z)

q ′(z)

)
, (2.1)

where z ∈ ∆, ξ ∈ ∂∆ and m > 0.
If ψ : C2 ×∆→ C, then the admissible condition Eq. (2.1) reduces to

ψ

(
q(z),

q ′(z)

m
; ξ
)
∈ Ω (z ∈ ∆; ξ ∈ ∂∆;m > 0).

The next theorem is a foundation result in the theory of the second-order differential superordinations
in ∆.
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Theorem 2.2. Let ψ ∈ Ψ ′∆[Ω,q] and q ∈ H[∆]. If p ∈ Q(∆) and ψ
(
p(z),p ′(z),p ′′(z); z

)
is univalent in ∆, then

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
(2.2)

implies that
q(z) ≺ p(z) (z ∈ ∆).

Proof. Suppose that
q(z) 6≺ p(z) (z ∈ ∆).

Then, by Lemma 1.6, there exist points z0 = x0 + iy0 ∈ ∆ and ξ0 ∈ ∂∆ \ E(p), and an m > 0, that satisfy
the conditions (i) to (iv) of Lemma 1.6. Using these conditions with r = p(ξ0), s = p ′(ξ0), t = p ′′(ξ0), and
ξ = ξ0 in Definition 2.1, we obtain

ψ
(
p(ξ0),p ′(ξ0),p ′′(ξ0); ξ0

)
∈ Ω,

which contradicts to Eq. (2.2), so we have

q(z) ≺ p(z) (z ∈ ∆).

In the special case, when Ω 6= C is a simply-connected domain and h is a conformal mapping of ∆
onto Ω, we denote this class Ψ ′∆[h(∆),q] by Ψ ′∆[h,q]. The following result is an immediate consequence
of Theorem 2.2.

Theorem 2.3. Let q ∈ H[∆]. Also let the function h(z) be analytic in ∆ and suppose that ψ ∈ Ψ ′∆[h,q]. If
p ∈ Q(∆) and ψ

(
p(z),p ′(z),p ′′(z); z

)
is univalent in ∆, then

h(z) ≺ ψ
(
p(z),p ′(z),p ′′(z); z

)
(z ∈ ∆) (2.3)

implies that
q(z) ≺ p(z) (z ∈ ∆).

Theorems 2.2 and 2.3 can only be used to obtain the subordinants of the differential superordination
of the form Eqs. (2.2) or (2.3).

Theorem 2.4. Let the function h(z) be analytic in ∆ and let ψ : C3 × ∆ → C. Suppose that the following
differential equation:

ψ
(
q(z),q ′(z),q ′′(z); z

)
= h(z) (2.4)

has a solution q ∈ Q(∆). If

ψ ∈ Ψ ′∆[h,q], p ∈ Q(∆) and ψ
(
p(z),p ′(z),p ′′(z); z

)
is univalent in ∆, then Eq. (2.3) implies that

q(z) ≺ p(z) (z ∈ ∆)

and q(z) is the best subordinant.

Proof. Since ψ ∈ Ψ ′∆[h,q], by applying Theorem 2.3, we deduce that q(z) is a subordinant of Eq. (2.3).
Since q(z) satisfies Eq. (2.4), it is also a solution of the differential superordination Eq. (2.3). Therefore,
all subordinants of Eq. (2.3) will be subordinate to q(z). Hence, q(z) will be the best subordinant of Eq.
(2.3).

Next, by making use of the second-order differential superordination results in ∆ obtained in Section
2 (see, for details, Theorems 2.2, 2.3, and 2.4), we determine certain appropriate classes of admissible
functions and investigate some second-order differential superordination properties of analytic functions
in ∆. It should be remarked in passing that, in recent years, several authors obtained many interesting
results associated with second-order and third-order differential subordination and differential superor-
dination in the unit disk. The interested reader may refer to several earlier works including (for example)
[2–9, 15, 16, 21, 23, 24].
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3. Second-order differential superordinations results

In this section, we obtain some second-order differential superordination results in ∆. For this aim,
the class of admissible functions is given in the following definition.

Definition 3.1. Let Ω be a set in C and q ∈ H[∆] with q ′(z) 6= 0. The class Φ ′∆[Ω,q] of admissible
functions consists of those functions φ : C3 ×∆→ C that satisfy the following admissibility condition:

φ(u, v,w; ξ) ∈ Ω,

whenever

u = q(z), v =
q ′(z)

mq(z)

(
q(z) 6= 0

)
,

and

=

(
u(wv+ v2)

q ′(z)

)
5

1
m2=

(
q ′′(z)

q ′(z)

)
(z ∈ ∆; ξ ∈ ∂∆; m > 0).

Theorem 3.2. Let φ ∈ Φ ′∆[Ω,q], f(z) 6= 0 and f ′(z) 6= 0. If f ∈ H[∆],

f ′(z)

f(z)
∈ Q(∆) and φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)

is univalent in ∆, then

Ω ⊂

{
φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
: z ∈ ∆

}
, (3.1)

which implies that

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆).

Proof. Define the function p(z) in ∆ by

p(z) =
f ′(z)

f(z)
(z ∈ ∆). (3.2)

A simply calculation yields

f ′′(z)

f ′(z)
−
f ′(z)

f(z)
=
p ′(z)

p(z)
(z ∈ ∆).

Further computations show that

f(z)
[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
=
p ′′(z)

p ′(z)
−
p ′(z)

p(z)
. (3.3)

We now define the transformation from C3 to C by

u(r, s, t) = r, v(r, s, t) =
s

r
, and w(r, s, t) =

rt− s2

rs
. (3.4)

Let

ψ(r, s, t; z) = φ(u, v,w; z) = φ
(
r,
s

r
,
rt− s2

rs
; z
)

. (3.5)
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Using the equations (3.2) to (3.3), we find from Eq. (3.5) that

ψ
(
p(z),p ′(z),p ′′(z); z

)
= φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
. (3.6)

Since φ ∈ Φ ′∆[Ω,q], Eqs. (3.1) and (3.6) yield

Ω ⊂
{
ψ
(
p(z),p ′(z),p ′′(z); z

)
: z ∈ ∆

}
.

We see from Eq. (3.4) that the admissible condition for φ ∈ Φ ′∆[Ω,q] in Definition 3.1 is equivalent to the
admissible condition for ψ as given in Definition 2.1. Hence ψ ∈ Ψ ′∆[Ω,q] and, by Theorem 2.2, we have

q(z) ≺ p(z) (z ∈ ∆)

or, equivalently,

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆),

which evidently completes the proof of Theorem 3.2.

If Ω 6= C is a simply-connected domain and Ω = h(∆) for some conformal mapping h(z) of ∆ onto Ω,
then the class Φ ′∆[h(∆),q] is written simply as Φ ′∆[h,q]. Proceedings similarly as in the preceding section,
the following result is an immediate consequence of Theorem 3.2.

Theorem 3.3. Let q ∈ H[∆]. Also let the function h(z) be analytic in ∆ and φ ∈ Φ ′∆[h,q]. If f ∈ H[∆], with
f(z) 6= 0 and f ′(z) 6= 0,

f ′(z)

f(z)
∈ Q(∆) and φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
is univalent in ∆, then

h(z) ≺ φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
(z ∈ ∆) (3.7)

implies that

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆).

Theorems 3.2 and 3.3 can only be used to obtain subordinations involving the differential superordi-
nation of Eqs. (3.1) or (3.7). The following theorem proves the existence of the best subordinant of Eq.
(3.7) for a suitably chosen φ.

Theorem 3.4. Let the function h(z) be analytic in ∆ and let φ : C3 × ∆ → C. Suppose that the following
differential equation:

φ

(
q(z),

q ′(z)

q(z)
,
q ′′(z)

q ′(z)
−
q ′(z)

q(z)
; z
)

= h(z)

has a solution q ∈ Q(∆). If φ ∈ Φ ′∆[h,q], f ∈ H[∆], with f(z) 6= 0 and f ′(z) 6= 0,

f ′(z)

f(z)
∈ Q(∆) and φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
is univalent in ∆, then

h(z) ≺ φ

(
f ′(z)

f(z)
,
f ′′(z)

f ′(z)
−
f ′(z)

f(z)
,
f(z)

[
f ′(z)f ′′′(z) − [f ′′(z)]2

]
f ′(z)

[
f(z)f ′′(z) − [f ′(z)]2

] −
f ′(z)

f(z)
; z

)
(z ∈ ∆)
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implies that

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆),

and q(z) is the best subordinant.

Proof. The proof of Theorem 3.4 is similar to that of Theorem 3.6 in [20] and it is being omitted here.

Definition 3.5. Let Ω be a set in C and q ∈ H[∆]. The class Φ ′∆,1[Ω,q] of admissible functions consists of
those functions φ : C2 ×∆→ C that satisfy the following admissibility condition:

φ

(
q(z),

q ′(z)

m
; ξ
)
∈ Ω (z ∈ ∆; ξ ∈ ∂∆; m > 0).

Theorem 3.6. Let φ ∈ Φ ′∆,1[Ω,q]. If f ∈ H[∆], with f(z) 6= 0,

f ′(z)

f(z)
∈ Q(∆) and φ

(
f ′(z)

f(z)
,
f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
; z
)

is univalent in ∆, then

Ω ⊂
{
φ

(
f ′(z)

f(z)
,
f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
; z
)

: z ∈ ∆
}

(3.8)

implies that

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆).

Proof. Define the function p(z) in ∆ by

p(z) =
f ′(z)

f(z)
(z ∈ ∆). (3.9)

A simply calculation yields

f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
= p ′(z). (3.10)

We next define the transformation from C2 to C by

u(r, s) = r and v(r, s) = s. (3.11)

Then, upon setting

ψ(r, s; z) = φ(u, v; z) = φ (r, s; z) , (3.12)

the proof will make use of Theorem 1.4. Indeed, if we use the equations (3.9) and (3.10), we find from Eq.
(3.12) that

ψ
(
p(z),p ′(z); z

)
= φ

(
f ′(z)

f(z)
,
f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
; z
)

. (3.13)

Since φ ∈ Φ ′∆,1[Ω,q], it follows from Eqs. (3.8) and (3.13) that

Ω ⊂
{
ψ
(
p(z),p ′(z); z

)
: z ∈ ∆

}
.
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We know from Eq. (3.11) that the admissible condition for φ ∈ Φ ′∆,1[Ω,q] in Definition 3.5 is equivalent
to the admissible condition for ψ as given in Definition 2.1. Hence ψ ∈ Ψ ′∆[Ω,q] and, by Theorem 2.2, we
get

q(z) ≺ p(z) (z ∈ ∆)

or, equivalently,

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆).

In the case Ω 6= C is a simply-connected domain with Ω = h(∆) for some conformal mapping h(z) of
∆ onto Ω, the class Φ ′∆,1[h(∆),q] is written as Φ ′∆,1[h,q]. Proceedings similarly, the following result is an
immediate consequence of Theorem 3.6.

Theorem 3.7. Let q ∈ H[∆] and the function h(z) be analytic in ∆. Also let φ ∈ Φ ′∆,1[h,q]. If f ∈ H[∆], with
f(z) 6= 0,

f ′(z)

f(z)
∈ Q(∆) and φ

(
f ′(z)

f(z)
,
f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
; z
)

is univalent in ∆, then

h(z) ≺ φ
(
f ′(z)

f(z)
,
f ′′(z)

f(z)
−

[f ′(z)]2

[f(z)]2
; z
)

(z ∈ ∆)

implies that

q(z) ≺ f
′(z)

f(z)
(z ∈ ∆).
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